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Abstract

Word embeddings, which can better capture the fine-grained
semantics of words, have proven to be useful for a vari-
ety of natural language processing tasks. However, because
discourse structures describe the relationships between seg-
ments of discourse, word embeddings cannot be directly in-
tegrated to perform the task. In this paper, we introduce a
mixed generative-discriminative framework, in which we use
vector offsets between embeddings of words to represent the
semantic relations between text segments and Fisher kernel
framework to convert a variable number of vector offsets into
a fixed length vector. In order to incorporate the weights of
these offsets into the vector, we also propose the Weighted
Fisher Vector. Experimental results on two different datasets
show that the proposed method without using manually de-
signed features can achieve better performance on recogniz-
ing the discourse level relations in most cases.

Introduction

Discourse relations describe how two segments (e.g. clauses,
sentences, and larger multi-clause groupings) of discourse
are logically connected. These relations can be used to
describe the high-level organization of text. Hence, vari-
ous NLP applications, such as opinion mining (Somasun-
daran and Wiebe 2009; Heerschop et al. 2011; Taboada
et al. 2011), summarization (Thione et al. 2004; Cristea,
Postolache, and Pistol 2005), essay quality analysis (Attali
and Burstein 2006), and event detection (Huang and Riloff
2012), can benefit from it.

Along with the increasing requirements, the discourse
relation classification and discourse parsing tasks have
received considerable attention in recent years. Exist-
ing researches have been conducted from different per-
spectives, including rich linguistic features (Soricut and
Marcu 2003; Subba and Di Eugenio 2009; Feng and Hirst
2012), rule based methods (Polanyi et al. 2004), statisti-
cal methods (Baldridge and Lascarides 2005; Duverle and
Prendinger 2009; Lin, Kan, and Ng 2009; Muller et al. 2012;
Li et al. 2014; Ji and Eisenstein 2015), and deep learning
based methods (Li, Li, and Hovy 2014). Because there is no
discourse-level grammar analogous to sentence-level gram-
mar, discourse relations are less straightforward to define
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and capture than sentence-level parsing. Most of the works
mentioned above treated the task as a supervised classifica-
tion problem and used linguistic features relating to words
and other syntax-related cues to perform the task.

Recently, methods for learning continuous word represen-
tations have succeeded in capturing semantic and syntactic
regularities using vector arithmetic (Pennington, Socher, and
Manning 2014). Mikolov et al. (2013) introduced an inter-
esting observation about word analogies. For example:

v(king)− v(queen) ≈ v(man)− v(woman)

v(·) denotes the embedding of a word. This indicates that
vector offsets in embedding space can represent the shared
semantic relations between word pairs. Many existing works
also show that hidden relation between words can be rep-
resented by the vector arithmetic (Pennington, Socher, and
Manning 2014; Fu et al. 2014). Thus, it motivates us to as-
sume that offsets between embeddings of words in a pair of
text segments can represent their relevant semantic relations.

In this paper, we introduce a method based on the idea
of using vector offsets between word embeddings for dis-
course relation extraction. Each word in a discourse seg-
ment is first embedded into a d-dimensional vector space
by a looking-up word embeddings table. Word embeddings
can be learned in advance by a feed-forward neural network
language model (Bengio et al. 2006), continuous skip-gram
model (Mikolov et al. 2013), or other methods. Then vec-
tor offsets between word embeddings in segment pairs are
calculated. As the number of words is variable in differ-
ent segments, we propose to use the Fisher kernel frame-
work (Jaakkola, Haussler, and others 1999) to aggregate
these vector offsets into a fixed length vector. Finally, su-
pervised methods are used to model the task based on the
fixed length vectors.

The main contributions of this work can be summarized
as follows:
• We proposed to use vector offsets between word embed-

dings to represent semantic relations between sentences
or segments.

• The Fisher kernel framework is incorporated to convert a
variable number of vector offsets into a fixed length vec-
tor, and in order to incorporate the weights of these offsets
into the vector, we also propose the Weighted Fisher Vec-
tor.
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Figure 1: The processing framework of the proposed approach.

• Experimental results on two datasets show that the pro-
posed method can achieve comparable performance with
the state-of-the-art methods using rich linguistic features.

The Proposed Approach

Inspired by the observations in word analogy of word em-
beddings, we in this work assume that vector offsets between
word embeddings in each pair of text segments can represent
the semantic relations between them. The processing flow
of the proposed approach is shown in Fig. 1. Given a pair
of text segments, first, through a lookup table, each word in
the pair of text segments is represented by its correspond-
ing word embedding. Then, the vector offsets between all
of the word embeddings in the two text segments are com-
puted. These vector offsets compose a word embedding off-
set matrix. Since the size of the matrix is depended on the
lengths of the two text segments, it can not be directly used
for supervised methods. Hence, we then use Fisher kernel
framework to aggregate them into fixed-length vectors. Fi-
nally, we use a supervised classifier to predict the discourse
relation based on the generated vectors. In the following of
this section, we will illustrate the details of these steps of the
proposed framework.

The Word Embedding Offset Matrix

Distributed word representations (word embeddings) are
usually designed to capture the attributional similarities be-
tween words, which is defined by Turney (2006). It means
that words with the same context will be close in the em-
beddings spaces. Recently, various works also demonstrated
that vector offset between word embeddings can present the
hidden semantic relations between words. Based on these
observations, in this work, we propose to use offsets between
embeddings of words in a pair of text segments to learn the
relations between them.

A text segment s with length N in a corpus D can be
represented as a word sequence w1, w2, ...wN . Through a
lookup table T , s can be transformed to a sequence of word

embeddings es = ew1
, ew2

, ...ewN
with each word in s been

mapped into a d-dimensional vector space. Suppose there
are two text segments sp, sq with length m and n, in order
to construct an embedding offset matrix M , we first con-
vert them to two embedding sequences esp and esq . Then
we compute the vector offsets between all word embeddings
in the two segments, these vector offsets fill an offsets ma-
trix M , where M is a m × n matrix and M = {oij |oij =
ewi

− ewj
, 0 ≤ i ≤ m, 0 ≤ j ≤ n}, ewi

and ewj
are the

ith and jth word embeddings in esp and esq . As the number
of words are variable in different segments, the size of the
embedding offset matrix (EOM) is also different.

Fig. 2 visualizes four word embeddings offset matrixes,
which are constructed based on the examples given in the
PDTB annotation manual (Prasad et al. 2007). Fig. 2 (a) and
(b) show examples about CONTINGENCY relation. Fig. 2
(c) and (d) show examples about COMPARISON relation.
From the these examples, we can see that a large percent
of offsets in Fig. 2 (a) and (b) point to the bottom-left di-
rections. While, many vectors offsets in Fig. 2 (c) and (d)
point to the right directions, except for the offsets related to
the stop words (such as to, the, et al. ). We can see that the
EOMs constructed based on the sentence pairs with the same
relations are similar with each other and EOMs of different
relations are different.

Fisher Vector

Given an embedding offset matrix M , since we don’t focus
on the order of those vector offsets in the matrix, then M can
be treated as a bag of vector offsets M = {ot, 1 ≤ t ≤ N},
where N represents the size of M . We assume that the gen-
eration process of M can be modeled by a probability density
function uλ with parameter λ. Then the vector offset matrix
M can be characterized using the following score function:

GM
λ = ∇λ log uλ(M), (1)

where GM
λ is a vector whose size is only depended on the

number of parameters in λ, not on the number of offset in the
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(d) COMPARISON: (S1) The
company intends to pay divi-
dends from available cash flow,
(S2) the amount may vary from
quarter to quarter.

Figure 2: Examples of 2-dimensional PCA projections of word embedding offset matrixes.

matrix. The gradient describes the contribution of each indi-
vidual parameters to the generative process. In other words,
it describes how the parameters of the generative model uλ

should be modified to better fit the data. The fisher kernel on
these gradient is (Jaakkola, Diekhans, and Haussler 1999):

KFK(M, M̂) = GM ′
λ F−1

λ GM̂
λ , (2)

where Fλ is the Fisher information matrix of uλ:

Fλ = EM∼uλ

[
GM

λ GM ′
λ

]
. (3)

Since Fλ is symmetric and positive definite, it has a
Cholesky decomposition Fλ = L′λLλ, and KFK(M, M̂)
can be rewritten as a dot-product between normalized vector
G with:

G M
λ = LλG

M
λ = Lλ∇λ log uλ(M), (4)

where G M
λ is referred to as the Fisher Vector of M .

We follow the work of (Perronnin and Dance 2007), and
choose uλ to be a Gaussian mixture model(GMM): uλ(x) =∑k

i=1 wiui(x). Thus λ = {wi, μi,Σi, 1 ≤ i ≤ K}, where
wi, μi and Σi are respectively the mixture weight, mean vec-
tor and covariance matrix of Gaussian ui. We assume that
the covariance metrics are diagonal as any distribution can
be approximated with an arbitrary precision by a weighted
sum of Gaussian with diagonal covariance, we use the nota-
tion σ2

i = diag(Σi)(Perronnin and Dance 2007). The GMM
uλ is trained on the whole set of embedding offset matrix
through Maximum Likelihood(ML).

We consider the gradient with respect to the mean and
the diagonal covariance matrix (the gradient with respect to
the weight parameters brings little additional information).
Let D denote the dimensionality of ot in M , let G M

μ,i be the
gradient with respect to the mean μi and G M

σ,i be the gradient
with respect to σi of Gaussian i. Mathematical derivations
lead to:

G M
μ,i =

1

N
√
wi

N∑
t=1

γt(i)

(
ot − μi

σi

)
, (5)

G M
σ,i =

1

N
√
2wi

N∑
t=1

γt(i)

[
(ot − μi)

2

σ2
i

− 1

]
, (6)

where γt(i) is the soft assignment of ot to Gaussian i, which
is also known as the posterior probability or responsibility:

γt(i) =
wiui(ot)∑N

j=1 wjuj(ot)
, (7)

and where N is the size of offset matrix M , the division and
exponentiation of vectors should be understood as term-by-
term operations. The final gradient vector G M

λ is the con-
catenation of the G M

μ,i and G M
σ,i vectors for i = 1, ...,K and

is therefore 2KD-dimensional.

Weighted Fisher Vector One weakness of the Fisher Vec-
tor described above is that when training GMM, the con-
tributions of all the offsets in the Offset Matrix are equal.
However, since every word in one text segment has its own
weight (e.g. tf-idf), then the offset between different word
embeddings in one text segment pair should have different
weights to the relation of the pair. Based on this assumption,
each offset in the Offset Matrix has its own weight α when
training GMM, and the Offset Matrix M then becomes a
weighted Matrix Mw = {αtot, 1 ≤ t ≤ N}. With these
weighted matrices, we evaluate the parameters of GMM and
generate fisher vectors as described above, we name these
generated vectors Weighted Fisher Vector.

Experiment

We evaluated the proposed method on two datasets: the Penn
Discourse Treebank (Miltsakaki et al. 2004) and explanatory
relations in product reviews (Zhang et al. 2013).

Implicit Discourse Relation Detection with Penn
Discourse Treebank

Experiment Protocols The dataset we used in this work
is Penn Discourse Treebank 2.0 (Prasad et al. 2008), which
is one of the largest available annotated corpora of discourse
relations. It contains 40,600 relations, which are manually
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Table 1: The performances of different approaches on the PDTB. “FV” represents our approach using Fisher Vector, and
“WFV” represents our approach using Weighted Fisher Vector. “ADD” is additive vector composition and “PWM” is point-
wise multiplicative vector composition (Mitchell and Lapata 2010), “RAE” is (Socher et al. 2011)’s recursive auto-encoder
mentioned above. CON means to use the concatenation of compositional text segment vectors as features, SUB denotes using
the subtraction of compositional text segment vectors as features.

Comparison Contingency Expansion Temporal
(Pitler, Louis, and Nenkova 2009) 21.96% 47.13% 76.42% 16.76%
(Zhou et al. 2010) 31.79% 47.16% 70.11% 20.30%
(Park and Cardie 2012) 31.32% 49.82% 79.22% 26.57%
(McKeown and Biran 2013) 25.4% 46.94% 75.87% 20.23%
(Ji and Eisenstein 2015) 35.93% 52.78% 80.02% 27.63%

ADD+CON 26.58% 40.03% 69.72% 12.03%
PWM+CON 25.01% 41.31% 66.03% 14.28%
RAE+CON 18.83% 44.49% 71.96% 13.31%
ADD+SUB 26.30% 39.52% 67.42% 11.18%
PWM+SUB 24.09% 41.56% 65.87% 11.60%
RAE+SUB 19.46% 43.69% 69.88% 12.32%
FV 29.75% 51.86% 80.50% 18.28%
WFV 30.21% 53.57% 80.90% 20.24%

annotated from the same 2,312 Wall Street Journal (WSJ) ar-
ticles as the Penn Treebank. We followed the recommended
section partition of PDTB 2.0, which is to use sections 2-
20 for training and sections 21-22 for testing (Prasad et al.
2008). For comparison with the work of Pitler et al. (2009),
Zhou et al. (2010), Mckeown et al. (2013), and Ji (2015) we
trained four binary classifiers to identify each of the top level
relations. For each classifier, we used an equal number of
positive and negative samples as training data, because each
of the relations except Expansion is infrequent (Pitler, Louis,
and Nenkova 2009). The negative samples were chosen ran-
domly from training sections 2-20. In our experiment, due
to the high cost of computing word embeddings, we used
the embeddings trained by us on the WSJ Corpus as well
as the publicly available embeddings provided by Collobert
et al. (2011)1, Turian et al. (2010)2, Mikolov (2012)3 and
Mikolov et al. (2013)4.

We used a 10-fold cross-validation of the training set to
select the optimal word embeddings as well as the number of
Gaussian densities in the Gaussian Mixture Model (GMM).
300-dimensional vectors pre-trained by Mikolov (2013)
achieve the best performance. The optimal number of Gaus-
sian densities in GMM is 16. As for the weights in Weighted
Fisher Vector, it is reported in the work of Pitler et al.(2009)
that the nouns, verbs and adjectives in the pair contribute
more to the detection of its relation. In this experiment, we
simply set the weight of the offset between nouns, verbs and
adjectives to 2, and the others to 1. For the binary classifier,
we trained a Random Forest Classifier based on the Fisher
Vectors.

For comparing with the proposed method, we also con-

1http://ml.nec-labs.com/senna/
2http://metaoptimize.com/projects/wordreprs/
3http://rnnlm.org/
4https://code.google.com/p/word2vec/

ducted an experiment in which we used the other methods
to combine word embeddings of the two text segments to
compose their text segments embeddings. These methods
are widely used to capture syntactic and semantic meanings
of text segments (Mitchell and Lapata 2010). We obtained
the text segments vector from its word embeddings by using
the following methods:

• Vector Addition (ADD): It was defined as constructing
the text segment vector by simply sum the word embed-
dings in that text segment (Mitchell and Lapata 2010).

SentV ec(+) =
∑

∀ewi
∈sent

ewi
(8)

• Point-wise Multiplication (PWM): Mitchell and Lapata
(2010) proposed to construct the text segment vector by
using point-wise multiplication for every word embed-
ding in that text segment.

SentV ec(�) =
∏

∀ewi
∈sent

ewi
(9)

• Recursive Autoencoder (RAE): Socher (2011) used the
parser tree of a sentence as the basis for a RAE. The aim
is to construct a vector representation for the tree’s root
bottom-up where the leaves contain word vectors.

We then performed either concatenation or subtraction on
the two text segments embeddings to generate a new vector.
After that, we trained supervised classifiers to predict the
discourse relations based on the generated vectors.

Results The performances of the four binary classifiers on
the top level relations are shown in Table 1. The first high-
light for this table is that our approach achieved better per-
formance than previous methods on Contingency and Ex-
pansion relations as well as achieved a comparable result
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Figure 3: The Precision and Recall on the four top level re-
lations of all the embeddings mentioned above. The number
of Gaussian densities is fixed to 16.

on Comparison and Temporal. This proves our assumption
that vector offsets between word embeddings in each dis-
course segment represent the semantic and syntactic mean-
ings of the discourse segments. Also, setting different weight
to some important offsets can obviously improve the perfor-
mance. Furthermore, compared with previous works (Pitler
et al. (2009), Zhou et al. (2010), etc.), which used either a
lot of complex textual features and contextual information
about the two text segments or a larger unannotated corpus
to do the prediction, the proposed approach is quite simple
and elegant. We only used the information of the two text
segments themselves, no complex features and contextual
information are needed. We do not even require parsing of
the two text segments. With so little information required,
we still achieved even better results on the same dataset than
previous works did, thus showing that our method is power-
ful in modeling discourse relations. We can also observe that
the performance on temporal relation is not so good as other
relations, we believe it is mainly because the training sam-
ples of temporal relation are much less than other relations,
maybe those samples are inadequate to train our model.

The results of using compositional text segment vectors
on the four top relations are also shown in Table 2. As can
be seen from the table, each of these compositional methods
has its own strengths and weaknesses. For example, RAE
(Socher et al. 2011) performs much better than other com-
positional methods on the Contingency relation, but it has a
weaker performance on the Comparison relation. Also, us-
ing concatenation often gets better results than subtraction.
In general, the results based on text segment vectors are less
than satisfactory, and the performance of our approach far
exceeds these results. One possible explanation for this phe-
nomenon is much of the word analogy information cannot be
held when constructing the text segment vectors. It demon-
strated that the proposed word embedding offset matrix has
carried as much information of the word analogy as possi-
ble, so that it can represent the semantic relations between
two text segments.

Parameter Sensitivity Finally, we conducted another ex-
periment to show how the hyperparameters (i.e. the kind of
word embedding and the number of Gaussian densities in
GMM) affect the effectiveness of our proposed method. In
that experiment, we first fixed the number of Gaussian den-
sities and change the word embedding used in our method.
Then we fixed the word embedding and modified the num-
ber of Gaussian densities so that we could see how the hy-
perparameter alone affects the effectiveness of the proposed
method.

Fig. 3 shows the results of using different word embed-
dings. From the figure, we can observe that although differ-
ent embeddings were used, the points of the same relation
gathered together into four clusters which correspond to the
top four relations. In each cluster, the points are very close to
each other, which means the Precision and Recall are almost
the same under different word embeddings. Taking a deeper
look at each cluster, we observe that the skip-gram-Google
embedding get slightly better performance than other em-
beddings, whereas the performance of the Skip-Gram-WSJ
and C&W embeddings were less than satisfactory. We be-
lieve this is mainly because the Skip-Gram-Google embed-
ding was trained on Google News, which is one of the
largest corpora used for embedding training, whereas the
Sip-Gram-WSJ embedding was trained by us using a cor-
pus much smaller than all of the other embeddings used.
The C&W embedding was trained on the Wikipedia corpus,
which is quite different from the news corpus, so it is rea-
sonable for its unsatisfied results on PDTB.

In summary, when fixing the number of Gaussian densi-
ties in GMM, the change of word embeddings has minor
effect on the performance of our proposed method; all of
the embeddings can achieve fairly good performance. Also,
training the word embedding on a large corpus may help im-
prove performance.

Fig. 4 illustrates the results via the number of Gaussian
densities K, which is used for Fisher kernel. From the fig-
ure, we can find that with the increasing number of Gaussian
densities, the four curves fluctuate little. One possible expla-
nation for this phenomenon is once the number of Gaussian
densities is enough to model the vector offsets, this hyperpa-
rameter will have little effect on the performance of our pro-
posed method. Based on the experiments given above, we
conclude that the hyperparameters for our proposed method
are very easy to choose; no special skills or empirical knowl-
edge are needed.

Explanatory Relation in Product Reviews

The explanatory relation dataset (Zhang et al. 2013) contains
a number of reviews about digital cameras crawled from
Buzzillions5, which is a product review site and contains
more than 16 million reviews. It contains 1,137 sentences,
which are composed of 1,665 clauses. 694 clauses are la-
beled subjective, and 478 clauses explain other ones. More
than 56.1% opinion expressions are explained by their corre-
sponding explanatory sentences. Given this dataset, the aim
is to decide whether the opinion clause and nearby clauses

5www.buzzillions.com
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relations, with word embedding fixed to Skip-Gram-Google Embedding.

Table 2: Performance comparisons between the proposed
method and other state-of-the-art methods implemented by
Zhang et al. (2013)

Methods Accuracy F1
RAE-Subj+PDTB-Rel 28.5% 32.8%
RAE-Subj+SVM-Rel 32.4% 47.6%
MLN 56.2% 63.5%

ADD+CON 67.6% 68.7%
PWM+CON 62.3% 60.5%
RAE+CON 69.4% 68.8%
ADD+SUB 61.0% 61.5%
PWM+SUB 57.5% 58.0%
RAE+SUB 62.0% 63.9%
FV 73.4% 77.4%
WFV 75.2% 79.3%

hold an explanatory relation or not. To make our results com-
parable to Zhang et al. (2013), we followed the protocol they
used to divide the dataset (i.e. we used 80% of the reviews
as training set and the others as test set). All the hyperpa-
rameters are the same as we used in the last experiment.

We illustrate the results of the proposed method and the
results achieved by Zhang et al. (2013) using other methods
in Table 2. Since we used the same training and testing data,
we listed the results reported in their literature. From the
results, we observe that the proposed method achieved sig-
nificant improvements over all of the other previous meth-
ods. We achieved 19.00% absolute improvement (33.92%
relative improvement) over the previous best accuracy and
15.80% absolute improvement (24.88% relative improve-
ment) over the previous best F1-score. Such dramatic im-
provements show that our proposed approach is effective in
modeling the discourse level relations.

In summary, we can see that the proposed method
achieved satisfactory results on both datasets, showing that
our method is not designed for a specific dataset; instead,
it has great abilities of generalization. Moreover, the hyper-
parameters used for the two datasets are also same. It shows
that the proposed method can be easily adopted for other
tasks.

Conclusions

In this work, we introduced a novel method to model the re-
lations between discourse level relations between text seg-
ments. Motivated by the observation of offsets between
word embeddings, we proposed to use vector offsets be-
tween words in the embedding space. Since the length of
text segments is different, the offsets between word em-
beddings cannot be directly integrated to perform the task.
We incorporated the Fisher kernel framework to convert a
variable number of vector offsets into a fixed length vector,
and in order to incorporate the weights of these offsets into
the vector, we also propose the Weighted Fisher Vector. To
demonstrated the effectiveness of the proposed method, we
evaluated it on two different datasets. Experimental results
demonstrate that the performances of the proposed method
are better than pervious best results and other representation
methods for text segment in most cases.
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