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Abstract

Global information such as event-event association, and la-
tent local information such as fine-grained entity types1, are
crucial to event classification. However, existing methods
typically focus on sophisticated local features such as part-of-
speech tags, either fully or partially ignoring the aforemen-
tioned information. By contrast, this paper focuses on fully
employing them for event classification. We notice that it is
difficult to encode some global information such as event-
event association for previous methods. To resolve this prob-
lem, we propose a feasible approach which encodes global
information in the form of logic using Probabilistic Soft
Logic model. Experimental results show that, our proposed
approach advances state-of-the-art methods, and achieves the
best F1 score to date on the ACE data set.

Introduction

In the ACE (Automatic Context Extraction) event extraction
task, an event is represented as a structure which is com-
posed of a trigger, an event type, and the corresponding ar-
guments with different roles. The objective of event extrac-
tion is to extract event instances of specific types and their
arguments in a given document.

To this end, previous methods frequently employ a
pipeline architecture including two main steps (Ji and Gr-
ishman 2008; Liao and Grishman 2010; Hong et al. 2011) as
follows: (1) event classification, which involves identifying
event triggers and their corresponding event types; (2) argu-
ment classification, which involves, for each detected trig-
ger, identifying its arguments and their corresponding roles.
This paper focuses primarily on the first subtask, event clas-
sification, which is important to and independent of the sub-
sequent argument classification and strongly influences the
final event extraction performance.

One difficulty in event classification is the ambiguity of
the trigger words. For example, the trigger word “beat” in
“Obama beat McCain” reflects an Elect event (meaning that
Obama won the presidential election), but it can be eas-
ily misidentified as an Attack event trigger. Existing meth-
ods typically focus on exploiting sophisticated local fea-
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1This information can not be directly obtained using NLP tools,
thus we call it latent information.

tures such as part-of-speech tags. Most of these features re-
flect predominantly the contextual information around given
words; such features are called local features. We argue that
existing local features are insufficient for disambiguation of
event trigger words. Global information such as event-event
association, and latent local information such as fine-grained
entity types, are crucial to this task. We employ two sen-
tences as follows to demonstrate the aforementioned issue.

(1) He left the company, and he planned to go home
directly.
(2) Obama beat McCain.

Global Information. In the first sentence, it is difficult to
tell whether “left” triggers a Transport event (meaning that
a person left a place) or an End-Position event (a person re-
tired from a company) when we consider only on the first
clause “He left the company”. If we could consider the texts
from a broader perspective and observe that there is a Trans-
port event in the second clause (triggered by “go”), we
would have more confidence in predicting the token “left”
to be a Transport event trigger because Transport events
are more likely to co-occur with Transport events than with
End-Position events. We refer to this type of global informa-
tion as Event-event association.

Latent Local Information. In the second sentence, if we
know only that both Obama and McCain are persons, it is
difficult to identify the word “beat” as an Elect event trig-
ger because both of Elect and Attack events occur among
persons and Attack events occur in most cases. However, if
we know that both Obama and McCain are politicians, we
will have ample grounds on which to predict it as an Elect
event trigger. We refer to this type of latent information as
Fine-grained entity types.

Several existing methods have realized the usefulness of
such information. However, they employ them only partially
or mechanically. For example, Liao and Grishman (2010)
proposed a two-pass ad hoc method to employ event-event
association but ignored fine-grained entity types, and Hong
et al. (2011) were versa; Li, Ji, and Huang (2013) proposed a
jointly sentence-level approach to employ event-event asso-
ciation, but failed to capture it in the document level. Thus,
the results of these methods are still only locally optimized
values and their performance is far from satisfactory.

The above observations motivate us to simultaneously
employ the aforementioned information. The key is how to
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Figure 1: The framework of our approach (including training and testing processes)

encode global information. A straightforward way is to rep-
resent it as features and feed them into a classifier combined
with local features. However, the biggest problem in this
paradigm is that it is impossible to encode some global in-
formation (such as event-event association) as a simple fea-
ture. To resolve this problem, we propose a feasible solu-
tion which encodes global information in the form of logic.
Our proposed approach consists of two parts: the local part
and the global part, which focus on capturing local (includ-
ing latent) and global information, respectively (see Figure
1). Specifically, (1) in the local part, we learn a classifier
that employs predominantly local features to generate initial
judgments for each trigger candidate; (2) in the global part,
we gather “event-event” association and “topic-event” asso-
ciation as global information and construct a global infor-
mation database; (3) we formalize both the initial judgments
and the global information as first-order logic formulas and
model them using Probabilistic Soft Logic (PSL) (Kimmig
et al. 2012; Bach et al. 2013); and (4) finally, we generate
the final results through PSL-based inference.

Note that, in our approach, local features are not mod-
eled in the PSL. The reason is that similar to Markov Logic
Networks (MLNs) (Richardson and Domingos 2006), for
sophisticated local features, which are typically extremely
high dimensional, it is difficult to model them using PSL
(Poon and Vanderwende 2010; Venugopal et al. 2014). Thus,
we use different models to capture local vs. global infor-
mation. Nevertheless, through inference in PSL, all global
information is captured and incorporated with a rich set
of local information in a unified process. Therefore, our
method is expected to achieve better performance than exist-
ing methods. It is worth noting that by virtue of the use of the
first-order logic formulas, the encoded global information is

intuitive for the human mind to understand and demonstrates
good interpretability. Moreover, it is very convenient to in-
corporate new global information by adding formulas and
offers high expandability.

We have conducted experimental comparisons on a
widely used benchmark dataset (ACE 20052). The results
demonstrate that our approach is effective and achieves the
best performance compared with state-of-the-art methods.
In summary, our main contributions are: (1) We propose
a novel approach based on PSL, which consists of the lo-
cal part and the global part, to combine local (including
latent) and global information for event classification. (2)
We develop three types of latent features (see Section 3)
which are demonstrated highly effective for event classi-
fication. (3) We explore two types of global information,
event-event association and topic-event association in dif-
ferent textual granularity. With this global information, our
proposed method achieves a considerable improvement.

Background

Task Description

The event classification task is a sub-task of the ACE eval-
uations. We will first introduce the ACE event extraction
task. In ACE evaluations, an event is defined as a specific
occurrence involving one or more participants. And event
extraction task requires that certain specified types of events,
which are mentioned in the source language data be de-
tected. We introduce some ACE terminology to facilitate the
understanding of this task:

Entity: an object or a set of objects in one of the semantic
categories of interests.

2https://catalog.ldc.upenn.edu/LDC2006T06
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Entity mention: a reference to an entity (typically, a noun
phrase).

Event trigger: the main word that most clearly expresses
an event occurrence.

Event arguments: the mentions that are involved in an
event (participants).

Event mention: a phrase or sentence within which an
event is described, including the trigger and arguments.

The 2005 ACE evaluation included 8 types of events, with
33 subtypes. Following previous work, we treat these simply
as 33 separate event types and ignore the hierarchical struc-
ture among them. Consider the following sentence:

He died in the hospital.
An event extractor should detect a Die event mention, along
with the trigger word “died”, the victim “He” and the place
“hospital”.

Unlike the standard ACE event extraction task, we con-
centrate only on trigger identification and event type clas-
sification, which implies that in the previous example, our
task is to identify that the token “died” is a trigger and that
its type is Die.

Related Work

Event extraction is an increasingly hot and challenging
research topic in NLP. Many approaches have been pro-
posed for this task. Nearly all the existing methods on ACE
event extraction use supervised paradigm. We further di-
vide supervised approaches into feature-based methods and
representation-based methods.

In feature-based methods, a diverse set of strategies has
been exploited to convert classification clues (such as se-
quences and parse trees) into feature vectors. Ahn (2006)
uses the lexical features(e.g., full word, pos tag), syntactic
features (e.g., dependency features) and external-knowledge
features(WordNet) to extract the event. Inspired by the hy-
pothesis of One Sense Per Discourse (Yarowsky 1995), Ji
and Grishman (2008) combined global evidence from re-
lated documents with local decisions for the event extrac-
tion. To capture more clues from the texts, Gupta and Ji
(2009), Liao and Grishman (2010) and Hong et al. (2011)
proposed the cross-event and cross-entity inference for the
ACE event task. Li, Ji, and Huang (2013) proposed a joint
model to capture the conbinational features of triggers and
arguments.

In representation-based methods, candidate event men-
tions are represented by embedding, which typically are
fed into neural networks. Two similarly related work haven
been proposed on event classification (Chen et al. 2015;
Nguyen and Grishman 2015). Nguyen and Grishman (2015)
empolyed Convolutional Neural Networks (CNNs) to auto-
matically extract sentence-level features for event classifi-
cation. Chen et al. (2015) proposed dynamic multi-pooling
operation on CNNs to capture better sentence-level features.

The Local Part

Chen and Ng (2012) proved that performing trigger iden-
tification and classification in a unified manner is superior
to handling them separately. Similar to previous work, we

model these activities as a word classification task. Each
word in a sentence is a trigger candidate, and our objective
is to classify each of these candidates into one of 34 classes
(33 event types plus a NEGATIVE class). We learn a clas-
sifier to perform this task based on a set of local features.
Unlike a standard classifier, the trained classifier generates
a probability distribution over 34 possible labels rather than
a single predicted label. We use Logistic Regression model
(LR) as our classifier because of its ability in handling high-
dimensional sparse features. The features presented in pre-
vious work (Ahn 2006; Li, Ji, and Huang 2013) serve as the
base features. In addition, we develop several latent features.

Fine-Grained Entity Types

Hong et al. (2011) demonstrated that fine-grained entity
types play an important role in event extraction. They used
web information obtained from search engines to describe
entity mentions. Then, they clustered all mentions based on
their descriptions and treated these clusters as fine-grained
entity types. However, the operation of performing online
searches and extracting related information incur high time
costs. Moreover, performing such searches for a large num-
ber of entity mentions is problematic because most search
engines place limitations on users’ query frequencies. Thus,
we do not use search engines for this purpose; instead, we
use WordNet to generate the descriptions of entity mentions.
In detail, for a given entity mention3, we use its related

Label Entity Mentions

City

New York City, New York,
Chicago, Los Angeles, Rawalpindi,
Bonn, Minneapolis, Basra, Mosul,
San Francisco, Kirkuk, Karbala,
Philadelphia, Gary, New Orleans,
long beach, fort worth, hong kong, ...

President

George W. Bush, Lyndon Johnson,
Franklin Roosevelt, truman, lincoln,
tyler, kennedy, jfk, andrew jackson,
bill clinton, jimmy carter,
George Bush, George Washington, ...

Table 1: Example of entity clustering results

words, hypernyms and synonyms in WordNet to describe it.
We perform K-means clustering algorithm based on the gen-
erating descriptions for entity mentions. Table 1 shows two
clusters from our results. The labels are manually tagged.

Trigger Candidate Types

Similarly to the entity mentions, we also cluster the trigger
candidates. We use the same strategy to generate the de-
scription of trigger candidates. Before clustering, we remove
certain words that are unlikely to be triggers based on their
part-of-speech tags. Table 2 shows examples of our results.
The words in c1 tend to indicate Attack events, whereas the

3Following previous work, we use the gold standard entity men-
tion.
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Type Words

c1
fight, EW, assault, sortie, warfare, War,
Battle, combat, battle, Defense, Combat,
ASSAULT, Wars, war, siege, defense, ...

c2

fifty, ft, gi, en, em, twenty-three, dong,
mm, seventeen, ng, lb, hm, nines, sixty,
Dollar, Miles, fin, Bob, millimeter, rupee,
dozen, acre, Unit, Sixers, ...

Table 2: Example of candidates clustering results

words in c2 are numbers and units, which trigger almost no
events.

Rich Context Features

As discussed in the introduction, information from a broad
perspective is important for event classification. Thus, we
construct several features to capture information related to
the entire sentence, such as the entity types of all entities in
the current sentence.

With the previous two clusters, we construct three cate-
gories of latent features as follows:

• RCF: the conjunction of Rich Context Features and base
features.

• FET: the conjunction of Fine-grained Entity Types and
base features.

• TCT: the conjunction of Trigger Candidate Types and
base features.

The Global Part

In this part, we gather global information and incorporate it
into a PSL model. Then, the inference is conducted to make
the final judgment for events’ classes. First, we briefly intro-
duce PSL.

Probabilistic Soft Logic

PSL is a framework for collective, probabilistic reasoning in
relational domains (Kimmig et al. 2012; Bach et al. 2013).
Similar to MLNs, it uses weighted first-order logic formu-
las to compactly encode complex undirected probabilistic
graphical models. However, PSL brings two remarkable ad-
vantages compared to MLNs. First, PSL relaxes the boolean
truth values of MLNs to continuous, soft truth values. This
allows for easy integration of continuous values, such as
similarity scores. Second, PSL restricts the syntax of first
order formulas to that of rules with conjunctive bodies. To-
gether with the soft truth values constraint, the inference in
PSL is a convex optimization problem in continuous space
and thus can be solved using efficient inference approaches.
For further details, see the references (Kimmig et al. 2012;
Bach et al. 2013).

Encoding Global Information

There are two types of global information that we wish to
incorporate into our method: the event-event association and
topic-event association.

Event-Event Association The probability of events’ co-
occurrence is closely related to their types. For example, an
Attack event is much more likely to co-occur with a Die
event than with a Marriage event. We use the conditional
probability p(t1 | t2) , which denotes the probability of ob-
serving a t1 type event given that a t2 type event has been
observed, to represent the event-event association. We cal-
culate this probability at both the sentence and document
levels, which are denoted by psen and pdoc, respectively.

psen(t1 | t2) = numsen(t1, t2)∑
t∈T numsen(t, t2)

(1)

pdoc(t1 | t2) = numdoc(t1, t2)∑
t∈T numdoc(t, t2)

(2)

In Equation 1, t1 and t2 denote event types;
numsen(t1, t2) is the co-occurrence frequency between t1
type events and t2 type events in the same sentence; and
T is the set of all possible event types. The meanings of
symbols in Equation 2 are similar but apply at the document
level.

We define two indicator functions Isen(c1, c2) and
Idoc(c1, c2), where the symbols c1, c2 denote trigger candi-
dates. Isen(c1, c2) is true when c1 and c2 are in the same sen-
tence. Idoc(c1, c2) is similar, but applies at document level.
Finally, we define four predicates to encode this information
in the PSL model, which are listed in the upper portion of
Table 3. The symbols t1 and t2 denote event types.

Topic-Event Association A document on a certain topic
tends to describe events of several certain types. For exam-
ple, entertainment news items often describe events of Mar-
riage and Born types but almost never include events of At-
tack or Die types. We apply a Latent Dirichlet Allocation
(LDA) (Blei, Ng, and Jordan 2003) model to the ACE corpus
and label each document with a topic. Then, we calculate the
probability of observing an event of type t in a document on
topic p,

pt(t | p) = num(t, p)
∑

t′∈T num(t′, p)
(3)

Figure 2 shows the distribution of Attack, Transport and
Die events among the considered topics. As shown in the
figure, the topic of a document is a strong indicator of the
events that it contains. For example, a document on topic 14
is more likely to contain Attack events than Transport events.

We define a indicator function It(c, p), which is true when
the topic of the document containing c is p. Finally, we de-
fine two predicates listed in the middle portion of Table 3 to
encode this information in our method.

Inference

Beltagy, Erk, and Mooney (2014) found that the standard
formula for conjunction in PSL is overly restrictive and does
not work well for semantic textual similarity. The same is-
sue arises in our task. Therefore, following them, we rede-
fine the formula for conjunction as I(l1 ∧ l2 ∧ · · · ∧ ln) =
1
n

∑n
i=1 I(li).
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Figure 2: Topic-event distribution

Type Predicate Assignment

Event-Event

sameSen(c1, c2) Isen(c1, c2)
senLevel(t1, t2) psen(t1 | t2)
sameDoc(c1, c2) Idoc(c1, c2)
docLevel(t1, t2) pdoc(t1 | t2)

Topic-Event topic(c, p) It(c, p)
topicEvt(p, t) pt(t | p)

Local-Part candEvt(c, t) pl(c, t)

Table 3: Observed predicates and their corresponding as-
signments

We define the predicate eventType(c, t) to indicate that
candidate c triggers an event of type t. It is the only tar-
get predicate in our model, whose assignments are not given
during inference and thus need to be predicted. All others are
observed predicates, which are always assumed to be known
during inference. Table 3 lists all the observed predicates
and their corresponding assignments, where candEvt(c, t)
is used to encode the probability pl(c, t), which is the initial
judgments generated by the local part. Putting all predicates
together, we design three formulas to apply the aforemen-
tioned information in PSL (see Table 4). Formula f1 en-
codes the relationship between document topics and event
types (topic-event association). Formulas f2 and f3 model
the relationship between event types in sentence and docu-
ment level, respectively (event-event association).

f1
topic(c, p) ∧ topicEvt(t, p)∧

candEvt(c, t) → eventType(c, t)

f2
sameSen(c1, c2)∧

senLevel(t1, t2) ∧ candEvt(c2, t2)∧
eventType(c1, t1) → eventType(c2, t2)

f3
sameDoc(c1, c2)∧

docLevel(t1, t2) ∧ candEvt(c2, t2)∧
eventType(c1, t1) → eventType(c2, t2)

Table 4: Formulas in the PSL model

We manually set the formulas’ weights in our experi-
ments4. The inference results provide us with the most likely
interpretation, that is, the soft-truth assignments to the pred-

4Manually setting the weights is a common strategy for PSL
when there is a lack of sufficient training data (Pujara et al. 2013;
Memory et al. 2012). The weights of f1, f2 and f3 were set to 10, 2
and 1, respectively

icate eventType. By choosing a threshold for the truth val-
ues in the interpretation, we can select a set of grounded
atoms of the target predicate with high confidence.

Experiments

Data Set and Experimental Setup

We performed experiments on the ACE 2005 corpus. For
the purpose of comparison, we followed the evaluation of
Li, Ji, and Huang (2013): randomly selected 30 articles from
different genres as the development set, and we subsequently
conducted a blind test on a separate set of 40 ACE 2005
newswire documents. We used the remaining 529 articles as
our training data set. The corpus was processed using the
Stanford CoreNLP Toolkit (Manning et al. 2014).

Following previous work (Liao and Grishman 2010; Hong
et al. 2011; Li, Ji, and Huang 2013), we use the following
criteria to evaluate the results:

1. A trigger is correctly identified if its offset matches a
reference trigger.

2. A trigger is correctly classified if both its event type and
offset match a reference trigger.

We searched for the hyperparameters on the development
set. We searched for both the number of fine-grained entity
clusters and the number of trigger clusters (denoted by nfec

and nftc, respectively) in {50k | k = 1, 2, · · · , 10}, the
number of topics np in {10k | k = 1, 2, · · · , 10}, and the
truth-value threshold thr in {0.05k | k = 1, 2, · · · , 20}.
These parameters were independently sought. The selected
values used in our experiment were nfec = 200, nftc =
300, np = 50 and thr = 0.6.

Overall Performance

Table 5 shows the experimental results obtained on the blind
test set. Since most previous work did not report identifying
results, we only compare classifying performances to state-
of-the-art methods in this part, leaving identifying perfor-
mances in other parts of this section. From the results, we
can state the following observations.

1. LR(base+latent) outperforms LR(base) significantly
with a gain of 2.1% improvement, which demonstrates that
the latent features proposed in Section 3 are highly effective
for this task.

2. Compared with LR(base+latent), with incorporating of
global information, Combined PSL achieves a gain of 1.4%
improvement, thereby demonstrating that the global infor-
mation is important to this task. To sum up, combining the
latent and global information enables our proposed approach
to obtain a gain of 3.5% improvement in total.

3. Nguyen’s CNN and Chen’s DMCNN are the latest work
on this task, which achieved the best performance among
state-of-the-art methods. Our method outperforms both of
them and further demonstrates the effectiveness of our ap-
proach.

Effects of Latent Features

We investigate the effects of the latent features proposed in
Section 3 both to classifiers and to our proposed model. Ta-
ble 6 shows the results (F1 value). It is evident that RCF
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Methods Pre Rec F1
Li’s baseline 74.5 59.1 65.9

Liao’s cross-event 68.7 68.9 68.8
Hong’s cross-entity 72.9 64.3 68.3

Li’s joint model 73.7 62.3 67.5
Nguyen’s CNN 71.8 66.4 69.0

Chen’s DMCNN 75.6 63.6 69.1
LR(base) 69.6 62.5 65.9

LR(base+latent) 75.2 62.1 68.0
Combined PSL 75.3 64.4 69.4

Table 5: Overall performances. Both LR(base) and
LR(base+latent) are logistic regression models. The former
model uses the base features only, and the latter model addi-
tionally uses latent features. Combined PSL is our proposed
approach, which uses both the latent and global information.

features enable the classifier to achieve more improvements
for classification than for identification (0.9% vs. 0.1%), and
TCT features are versa (0.6% vs. 1.3%). The previous ob-
servation also persists in the combined PSL model. We be-
lieve this phenomenon occurs because of the follows rea-
sons: RCF features reflect rich information around a given
candidate, and this specific information can indicate its event
type; whereas, TCT features are obtained from clustering re-
sults which reflect the high-level and coarse information of
the candidate, thus they could only indicate the coarse event
type (i.e. whether it is a trigger or not) but are not specific
enough to indicate the event type. In addition, the results
also show that, with incorporating all these features, both
the classifier and our proposed approach achieve consider-
able improvements (more than 1.5%), which demonstrate
that these latent features are highly effective for this task.

Features Classifier Combined PSL
Ident Class Ident Class

Base
Features 68.3 65.9 69.7 67.9

+ RCF 68.4 66.8 69.8 68.6
+ FET 69.2 67.1 70.6 68.9
+ TCT 69.6 66.5 71.1 68.2
+ all 70.7 68.0 71.7 69.4

Table 6: Effects of latent features. RCF, FET, and TCT repre-
sent our three categories of latent features(see Section 3.3).
The column labeled with “Classifier” shows the results of
classifiers with different features; the column labeled with
“Combined PSL” shows the results of our proposed models
with different features in the local part.

Effects of Different Types of Global Information

Our proposed approach uses two types of global informa-
tion: the event-event association and the topic-event associa-
tion. Their detail effects are illustrated in Table 7, where “No
Global Information (NGI)” indicates that the truth values of

eventType(c, t) were directly set to candEvt(c, t)5. From
the table, we observe that both types of global information
help the proposed model to obtain better performances. We
achieve the best performance when incorporating both of
them simultaneously.

Features Ident (%) Class (%)
F1 F1

No Global Information 70.6 68.1
+ event-event 70.8 68.7
+ topic-event 71.2 69.0
+ all 71.7 69.4

Table 7: Effects of global information

Discussion

Topic-event association reflects document level information,
thus we consider it as global information and apply it in
the global part in our experiments. However, unlike event-
event association, technically, it could also be incorporated
in the local part. We construct two systems, one encodes
the topic-event association in local part and the other en-
codes that in global part, to investigate the effects. We ob-
serve that employing this information in the local part yields
less improvement (68.8%/69.4%). This may occur because
when this global information is combined with the high-
dimensional local features, the local part is unable to effec-
tively learn this single feature, causing its effect to be weak-
ened. This finding may indicate that it is necessary to treat
the high-dimensional local features and the global features
separately. However, this topic is out of the scope of this
work, we will defer it to a future study.

Conclusions

We propose a novel approach based on PSL, which consists
of the local part and the global part, to exploit local (includ-
ing latent) and global information in event classification.
In the local part, we develop several latent features which
are demonstrated highly effective for event classification.
In the global part, we explore two types of global informa-
tion, event-event association and topic-event association, in
different textual granularity. The experimental results show
that, with incorporating the latent and global information,
our proposed approach obtains a gain of 3.5% improvement
in total. Moreover, we outperforms state-of-the-art methods
and achieve the best performance on the benchmark dataset.
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