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Abstract 
Machine learning approaches to relation extraction are typi-
cally supervised and require expensive labeled data. To break 
the bottleneck of labeled data, a promising approach is to ex-
ploit easily obtained indirect supervision knowledge – which 
we usually refer to as distant supervision (DS). However, tra-
ditional DS methods mostly only exploit one specific kind of 
indirect supervision knowledge – the relations/facts in a 
given knowledge base, thus often suffer from the problem of 
lack of supervision. In this paper, we propose a global distant 
supervision model for relation extraction, which can: 1) com-
pensate the lack of supervision with a wide variety of indirect 
supervision knowledge; and 2) reduce the uncertainty in DS 
by performing joint inference across relation instances. Ex-
perimental results show that, by exploiting the consistency 
between relation labels, the consistency between relations 
and arguments, and the consistency between neighbor in-
stances using Markov logic, our method significantly outper-
forms traditional DS approaches. 

 Introduction   
Relation extraction (RE) aims to identify and categorize re-
lations between pairs of entities in text. For example, a RE 
system will extract CEO-of(Jobs, Apple) from the sentence 
“Jobs is the CEO of Apple”. In recent years, with the expec-
tation to build large scale, machine-readable knowledge ba-
ses which can support natural language understanding and 
human-like reasoning (e.g., Yago1 , DBPedia 2  and Free-
base 3 ), there is an increasing need for extracting rela-
tions/facts from large scale corpus (e.g., the Web). Unfortu-
nately, machine learning approaches to relation extraction 
are typically supervised and require expensive labeled data, 
therefore are unlikely to be scaled to the web situation. 

To break the bottleneck of labeled data, a promising ap-
proach is to exploit easily obtained indirect supervision 
knowledge – which we usually refer to as distant supervi-
sion (DS). For example, as shown in Figure 1, we can collect 
training instances by heuristically aligning relations in a 
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knowledge base (KB) with the sentences in a given corpus, 
then these instances can be used to build relation extractors 
using classifiers such as SVM and logistic classifier. 

 
Figure 1.Training instance labeling using KB relations 
However, traditional DS methods mostly only exploit one 

specific kind of indirect supervision knowledge – the rela-
tions/facts in a given knowledge base such as Freebase and 
Yago. Ignoring many other kinds of indirect supervision 
knowledge, traditional methods often suffer from the prob-
lem of lack of supervision. Specifically, the lack of supervi-
sion will introduce a lot of uncertainty and will result in 
wrongly labeled training instances. For example, in Figure 
1 if only using the relations in KB as supervision knowledge, 
we will not be able to accurately label the three training in-
stances S1-S3 because they can be labeled as either CEO-of, 
Founder-of or NR (Not a Relation), and there will be totally 
3×3×3×2×2=108 possible states for the labels of the five 
example instances. Since most machine learning techniques 
require accurately labelled training instances, the label un-
certainty will result in big challenges. 

To resolve the above problem, this paper proposes a 
global distant supervision model for relation extraction, 
which can: 1) compensate the lack of supervision with a 
wide variety of indirect supervision knowledge; and 2) re-
duce the uncertainty in DS by performing joint inference 
across relation instances. The idea of our method is that we 

1 http://www.mpi-inf.mpg.de/yago-naga/yago 
2 http://www.dbpedia.org/ 
3 http://www.freebase.com/ 

Knowledge Base
CEO-of(Steve Jobs, Apple)

Founder-of(Steve Jobs, Apple)
CEO-of(Marissa Mayer, Yahoo!)

Founder-of(Steve Wozniak, Apple)

S1: Jobs, the CEO of Apple CEO-of, Founder-of, NR CEO-of
S2: Jobs left Apple CEO-of, Founder-of, NR NR
S3: Jobs is the cofounder of Apple CEO-of, Founder-of, NR Founder-of
S4: Mayer is the new CEO of Yahoo! CEO-of, NR CEO-of
S5: Woz is the cofounder of Apple Founder-of, NR Founder-of

Heuristically
labeling

Relation instances Possible labels by DS Golden labels
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can reduce uncertainty by accumulating evidence from 
many kinds of weak supervision knowledge and learning 
models which are globally consistent with all these weak su-
pervision. For instance, apart from the relations in KB, we 
human can also derive supervision from world knowledge, 
such as selectional preference (a CEO usually is a business 
person), relation entailment (the capital of a country is also 
a city of the country), relation co-occurrence (a company’s 
founder usually is its CEO, too) and label consistency be-
tween neighbors (similar instances tend to express the same 
kind of relations). It is clear that if we can model and exploit 
all these kinds of indirect supervision knowledge together, 
we will enhance the performance of distant supervision. 

 
Figure 2. Dependencies between the objects in Figure 1 

Our method will further reduce the uncertainty in DS by 
performing joint inference across relation instances. 
Through joint inference, evidence can be propagated across 
dependent decisions, and the “easy/unambiguous” decisions 
can be leveraged to help related “hard/ambiguous” ones. 
For example, in Figure 2, we can label the ambiguous in-
stances S1 and S3 correspondingly as CEO-of and Founder-
of using the evidence from the unambiguous instances S5 
and S4, where the evidence can be propagated through the 
similar dependencies between (S3, S5) and (S1, S4). 

To materialize the above vision, there are several chal-
lenges to overcome. Firstly, our model should be expressive 
enough to accommodate a wide variety of supervision 
knowledge. Secondly, our model should compactly encode 
complex dependencies between different decisions. Thirdly, 
our model should be able to make globally consistent deci-
sions under a lot of uncertainty and complex dependency 
structure. In this paper, we employ Markov logic (Richard-
son and Domingos, 2006) as representation language, and 
propose a globally consistent Markov logic network for DS 
which can address all above three challenges. We test our 
model on a publicly available data set. Experimental results 
show that our method significantly outperforms traditional 
DS methods. 

This paper is organized as follows. Section 2 reviews re-
lated work and introduces Markov logic. Section 3 describes 
the global distant supervision model. Section 4 describes the 
learning and the inference of our model. Section 5 discusses 
experimental results. Finally Section 6 concludes this paper. 

Background 

Distant Supervision for Relation Extraction 
As described above, a fundamental challenge of distant su-
pervision is the label uncertainty of training instances. A 
straightforward solution is to turn the distant supervision 
problem into a direct supervision problem using the heuris-
tic alignment assumption “any sentence that contains a pair 
of entities is likely to express their relation in a KB” (Craven 
and Kumlien, 1999; Wu et al., 2007; Mintz et al., 2009). Un-
fortunately, the DS assumption often fails and results in 
wrongly labeled training instances. 

One common solution of label uncertainty is to use multi-
instance learning techniques, which can exploit the depend-
encies between the labels of an entity pair and the labels of 
its mentions (Bunescu and Mooney, 2007; Riedel et al., 
2010; Yao et al., 2010). Hoffmann et al. (2010) and 
Surdeanu et al. (2012) extended the multi-instance model 
into multi-instance multi-label model so that an entity pair 
can have multiple labels. Xu et al. (2013), Min et al. (2013), 
Ritter et al. (2013) and Zhang et al. (2013) further extended 
the model to resolve the incompleteness of KB. The main 
drawback of these methods is that they only exploit one spe-
cific kind of indirect supervision knowledge, but ignore 
many other kinds of useful supervision knowledge. 

There were also some DS methods which try to eliminate 
wrongly labeled instances using additional knowledge. Tak-
amatsu et al. (2012), Roth and Klakow (2013) and Han and 
Sun (2014) exploited the distributional statistics of in-
stances/ patterns/features. Hoffmann et al. (2010) and Zhang 
et al. (2010) focused on learning dynamic lexicon. Nguyen 
and Moschitti (2011) and Pershina et al. (2014) constructed 
extractors by infusing labeled corpus with heuristically la-
beled corpus of DS. Riedel et al. (2013) and Fan et al. (2014) 
exploited the co-occurrence statistics between relation 
types/instances/features. The main drawback of these meth-
ods is that they are specialized to the used supervision 
knowledge, cannot exploit different kinds of indirect super-
vision knowledge together. 

Markov Logic 
In this study, the main representation challenges of our 
model include how to accommodate a wide variety of super-
vision knowledge and how to compactly encode complex 
dependencies. One of the most powerful representation lan-
guages for the above challenges is Markov logic (Richard-
son and Domingos, 2006), which is a probabilistic extension 
of first-order logic. First-order logic can compactly encode 
very complex dependencies, and has been extensively stud-
ied for knowledge representation. Markov logic extends 
first-order logic by softening formulas with weights, so that 
it can also handle noise and uncertainty. 

S3 S2 S1

S5 S4

Jobs, Apple

Woz, Apple Mayer, Yahoo!

similar similar

mentionmention

mention

Founder-of CEO-of

Founder-of CEO-of
cooccur

mention
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Specifically, a Markov Logic Network (MLN) is a set of 
weighted first-order clauses. Together with a set of con-
stants, it defines a Markov network with one node per 
ground predicate and one feature per ground clause. The 
weight of a feature is the weight of the first-order clause that 
originated it. The probability of a state x in such a network 
is given by the log-linear model: 

 1
( ) exp( ( ))i ii

P x w f x
Z

� �  

where Z is a normalization constant, wi is the weight of the 
ith formula, and fi = 1 if the ith clause is true, and fi = 0 
otherwise. MLN has been successfully applied to many dif-
ferent tasks, such as unsupervised coreference resolution 
(Poon and Domingos, 2008), relational pattern clustering 
(Kok and Domingos, 2008), etc. 

The Global Distant Supervision Model for Re-
lation Extraction 

This section describes our global distant supervision model 
which uses Markov logic as representation language. We 
first propose a base MLN which can encode the relations in 
a KB as supervision knowledge, then we extend the base 
MLN with more supervision knowledge and more decision 
dependencies. 

We assume that there exist k distinct relation types of in-
terest R = {r1, …, rk}, therefore there are k+1 possible rela-
tion type labels { }�T R NR  for each instance. In relation 
extraction, a dataset contains a set of entity pairs P = {p1, …, 
p|P|} with each entity pair p = (arg1, arg2), and a set of rela-
tion instances M = {m1, …, m|M|} with each instance is a tri-
ple m = (arg1, arg2, sentence). The sentence of an instance 
is represented as a feature vector, which is extracted using 
the method in Surdeanu et al. (2012). We use Mp to denote 
the set of all instances mentioning entity pair p. 

Base MLN 
Given a data set, the goal of our model is to predict the rela-
tion types of all entity pairs and the labels of all instances, 
which are represented using the following query predicates: 
- HasRel(p,r), which is true iff (i.e., if and only if) the 

entity pair p has a relation of type r; 
- Label(m,t!), which is true iff the label of instance m is 

t (t  T). The “t!” notation signifies that for each in-
stance m, this predicate is true only for a unique value of 
t, i.e., an instance cannot have multiple relation labels. 

The main local evidence predicates of an instance contain: 
- HasFea(m,f),  which is true iff instance m has feature f; 
- Arg1Type(m,c), which is true iff the argument 1 of m is 

of entity type c; 
- Arg2Type(m,c), which is true iff the argument 2 of m is 

of entity type c. 

These evidence predicates are used to predict instance la-
bel through the feature prediction rule (where “ ” is the 
logical entailment operator): 

HasFea(m,+f)  Label(m,+t) 

and the selectional preference rule (where “ ” is the logi-
cal conjunction operator): 

Arg1Type(m,+c)  Label(m,+t) 

Arg2Type(m,+c)  Label(m,+t) 

The “+” notation signifies that MLN contains an instance of 
the rule with a separate weight for each value combination 
of the variables with a plus sign. For example, our model 
will contain a separate feature prediction rule for each (fea-
ture, relation type) value combination, such as 
‘HasFea(m,ceo) Label(m,CEO-of)’ and ‘HasFea(m, 
co-found) Label(m,CEO-of)’. We also model relation 
label priors using the unit clause: 

Label(+m,+t) 

Based on the above formulas, our model can predict the 
label of an instance by modeling the dependencies between 
an instance’s relation label and its features and arguments. 
Once we know the label of an instance, the relation between 
its entity pair can be extracted using the hard extraction rule: 

Label(m,r) Mention(m,p)  HasRel(p,r) 

where the evidence predicate Mention(m,p) is true iff in-
stance m mentions entity pair p. Notice that, the extraction 
rule doesn’t indicate each true ground HasRel(p,r) predi-
cate will have a supporting true ground Label(m,r) predi-
cate in Mp. Therefore once we know the relation between a 
pair of entities, we use an additional alignment rule to pre-
dict the labels of its mention instances: 

HasRel(p,+r)  AtLeastOne(Mp,+r) 
where the predicate AtLeastOne(Mp,r) will be true iff at 
least one instance in Mp has label r. The alignment rule is 
mainly used to encode the supervision from the relations in 
a KB: in the training of DS models, all values of the ground 
HasRel predicates are given by a KB, and which will be ex-
ploited to label the ground Label predicates through the 
above alignment rule. 

Consistency between Relation Labels 
The base MLN model only exploits the supervision from the 
relations in a KB. In many cases, there are rich inter-depend-
encies between the different relation labels of an entity pair. 
Several main label dependencies include relation entailment 
(e.g., Capital-of City-of), relation mutual exclusion (e.g., 
Parent-of cannot co-occur with Spouse-of), and relation co-
occurrence (e.g., CEO-of and Founder-of). The above label 
dependencies can provide additional supervision and reduce 
the uncertainty in DS by forcing consistency between rela-
tion labels. For example, if the entity pair (Paris, France) 
has a relation Capital-of, then it must also has a relation 
City-of based on the entailment rule “Capital-of City-of”. 

Specifically, we model the consistency between relation 
labels using the relation co-occurrence rule: 
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HasRel(p,+r) HasRel(p,+r’) 
and the hard relation entailment rule: 

HasRel(p,r)  Entail(r,r’) HasRel(p,r’) 
where the evidence predicate Entail(r,r’) is true iff rela-
tion type r entails r’. The relation co-occurrence rule can 
capture both co-occurrence consistency (if the rule weight 
for a (relation type, relation type) pair is positive) and mu-
tual exclusion consistency (if the rule weight for a (relation 
type, relation type) pair is negative). 

Consistency between Relation and Argument 
Traditionally, the argument information of an instance is 
represented using its words and its entity type. However, the 
above representation can only capture limited argument in-
formation. For example, for the argument ‘MIT’, this repre-
sentation only captures the information that ‘MIT is an or-
ganization’, but ignores many other useful information such 
as ‘MIT is a school’, ‘MIT is a university’, etc. In our model, 
we reduce uncertainty in relation extraction by exploiting 
more argument information. 

Specifically, argument information can be exploited to 
reduce uncertainty in the following two ways: 

1) The rich argument information can better model se-
lectional preference. This is because traditional entity types 
(such as Person, Location, Organization and Date) are usu-
ally too coarse to precisely capture the selectional prefer-
ence of a relation type. For example, argument 2 of 
schools_attended must be an education institute, but most 
current RE systems don’t contain this entity type. 

2) The argument information can be used to filter out 
invalid values. For example, argument 2 of the relation type 
person:age is of entity type NUMBER, but not all numbers 
are valid person age values because nearly all persons’ ages 
are between 0 and 120. For demonstration, we investigated 
the NUMBER entities in the KBP data set (Surdeanu et al., 
2012), and found that nearly 99% of NUMBER entities are 
invalid person age values. 

Based on the above observation, our model encodes the 
consistency between a relation and its arguments using the 
relation-argument consistency rules: 

Arg1HasFea(m,+f)  Label(m,+t) 

Arg2HasFea(m,+f)  Label(m,+t) 

And we extract argument features as follows: 
1) Firstly, we identify the fine-grained Freebase entity 

types of an argument by matching its name with Freebase, 
then these entity types are used as its features; 

2) Secondly, we extract an age validation feature for 
NUMBER entity – IsValidPerAge. We extract this feature if 
a NUMBER entity is an integer and its numeric value is 
within [0, 120]. 

Consistency between Neighbor Instances 
In this section, we model the dependency between neighbor 
instances as indirect supervision knowledge. The start point 

of our method is the nearest neighbor consistency assump-
tion, which means that nearby instances are likely to have 
the same label. Based on this assumption, the similarity be-
tween instances can reduce the uncertainty in DS: the clas-
sification results should be sufficiently smooth with respect 
to the underlying similarity structure, and the label of an in-
stance should be consistent with its neighbors. 

Specifically, we model the consistency between neighbor 
instances using the nearest neighbor consistency rule: 

KNNOf(m,m’)  Label(m,t)  Label(m’,t) 
where the evidence predicate KNNOf(m,m’) is true iff m is 
one of the k-nearest neighbors of m’. 

To find k-nearest neighbors of an instance, we use a sim-
ilarity measure as follows: 

arg1 arg2 sentsim(m, m') = sim (m, m') sim (m, m') sim (m, m')� �  

where simsent is the cosine similarity between two instances’ 
feature vectors, simarg1 and simarg2 are cosine similarities be-
tween arg1s’ feature vectors and between arg2s’ feature vec-
tors. We use the features discussed in above section to rep-
resent an argument, where each feature is weighted using its 
maximum mutual information value over different relation 
types (Aggarwal & Zhai, 2012). 

Learning and Inference 
In this section, we describe the learning and the inference of 
our global distant supervision MLN model, and the extrac-
tion of new relations using the learned model. 

Learning. In the learning of DS systems, the relations 
between entity pairs are given, but the labels of instances are 
unknown. Therefore, distantly supervised learning in Mar-
kov logic maximizes the conditional log-likelihood 

( , ) log ( | )

log ( , | )
z

L x y P Y y X x

P Y y Z z X x

� � �

� � � ��
 

where X, Y, Z correspondingly are evidence predicates, 
known/observed query predicates, unknown/hidden query 
predicates in training data. In our global distant supervision 
MLN, Y includes HasRel, Z includes Label, AtLeastOne 
and X includes HasFea, Arg1Type, Arg2Type, Mention, 
Arg1HasFea, Arg2HasFea, KNNOf and Entail. The gra-
dient of the above optimization problem is: 

| , , |]( , ) [ [ ]Z y x i Y Z x i
i

L nEx y E n
w
�

� �
�

 

where ni is the number of true groundings of the ith clause. 
The gradient is the difference of two expectations, each of 
which can be approximated using samples generated by al-
gorithms such as SampleSAT(Wei et al., 2004) and MC-
SAT(Poon & Domingos, 2006). Using the above gradient, 
many gradient based learning algorithms can be used to 
learn our MLN model, such as LBFGS and Conjugate Gra-
dients. This study employs PSCG algorithm (Lowd & Do-
mingos, 2007) with two adjustments: 1) we use a fixed step 
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length; 2) we use the inverse of the number of true ground-
ings as our preconditioner, rather than the inverse diagonal 
Hessian. We found that these two adjustments can improve 
the quality of learned models. 

Due to the hidden variables Z, the optimization problem 
of distantly supervised learning is not convex, so parameter 
initialization is important. In this study, we first learn the 
parameters of the base MLN model, then the learned 
weights of the base MLN model are used to initialize the 
learning of the full MLN model. 

Inference. In MLN, all decisions are jointly inferred. 
Many inference algorithms have been developed for MLN, 
including MaxWalkSAT (Kautz et al., 1997), SampleSAT 
(Wei et al., 2004), MC-SAT (Poon & Domingos, 2006), etc. 
In this study, we use SampleSAT to generate samples for 
weight learning and use MaxWalkSAT for inference on new 
data. We extended SampleSAT and MaxWalkSAT with the 
ability to flip multi-atoms at each step, so that the hard rules 
in our model and the mutual exclusion of instance labels will 
always be satisfied. 

For relation extraction on a new data set, we first initial-
ize the MLN state by running a MaxWalkSAT pass with 
only the formulas in base MLN, then run another pass with 
all formulas. We found this can improve the quality of the 
optimal MLN state. Given the optimal MLN state, each true 
ground HasRel predicate will be extracted as a relation. 

Extraction Ranking. As shown in previous methods 
(Hoffmann et al., 2011; Surdeanu et al., 2012), many factors 
can be used to estimate the confidence of extractions for a 
better precision/recall trade-off, such as the marginal proba-
bility of HasRel(p,r) and the redundancy of an extraction 
in a large corpus. Following these observations, we sort ex-
tractions using the confidence score: 

p
m

Mm
Conf(p, r) P( = Reliabilr) ity(p, r)z

�
� �max  

where p is an entity pair, r is the extracted relation type be-
tween p, zm is the label of instance m, P(zm = r) =  P(Label(m, 
r) = true | Y, Z-m; w) is the conditional probability of in-
stance m having label r in MLN, given all the values of other 
predicates and the MLN parameters w. Reliability(p, r) 
measures whether this extraction is reliable, following the 
idea of the internal consistency reliability in statistics and 
research (Trochim, 2000), that is, whether this relation can 
be extracted in different instances. Specifically, we compute 
Reliability(p, r) as the Average Inter-item Correlation be-
tween instance labels: 

p

m m'
m,m' M

Reliablity(p, Correlati (r) on , )z z
��

� ave  

where  include all mentions of p whose labels are not NR; 
Correlation(zm, zm’)is the correlation score between the two 
labels, its value will be 1.0 if zm= zm’, and if zm ≠ zm’, its 
value will be the relation type co-occurrence probability: 

cooccur m m'P (z , z )=1/1+exp(- )w  

where w is the weight of the relation co-occurrence rule 
‘HasRel(p,zm) HasRel(p,zm’)’. 

Experiments 
In this section, we assess the performance of our method and 
compare it with traditional methods. 

Data Set 
We evaluate our method on a publicly available data set —
KBP, which was developed by Surdeanu et al. (2012). KBP 
was constructed by aligning the relations from English Wik-
ipedia infoboxes against a document collection which con-
tains the corpus provided by the KBP shared task (Ji et al., 
2010; Ji et al., 2011) and a complete snapshot of the June 
2010 version of Wikipedia. KBP contains 183,062 training 
relations and 3,334 testing relations. This paper tunes and 
tests different methods use the same partitions and the same 
evaluation method as Surdeanu et al. (2012). 

System and Baselines 
We tune our global distant supervision model using the val-
idation partition of KBP. After tuning for different MLN 
models, we used PSCG algorithm (5 samples, 10~20 itera-
tions, step length 0.03) and SampleSAT inference algorithm 
(5,000,000 ~ 10,000,000 flips with 20% noise flips, 30% 
random ascent flips, and 50% SA flips) for learning. Be-
cause positive/negative instances are highly imbalanced in 
the training corpus, we put a higher misclassification cost 
(the tuned value is 2.0) to positive instances. For the KNNOf 
evidence predicates, we use 10 nearest neighbors for each 
instance (with similarity > 0.2). 

We compare our method with three baselines: 
Mintz++ – This is a traditional DS method proposed by 

Mintz et al.(2009), which labels training instances using 
heuristic DS assumption, and employs a multi-class logistic 
classifier for extraction. 

Hoffmann – This is a multi-instance multi-label DS 
model proposed by Hoffmann et al. (2011), where the label 
dependency between an entity pair and its mentions is mod-
eled using a deterministic at-least-one assumption. 

Surdeanu – This is a multi-instance multi-label DS model 
proposed by Surdeanu et al. (2012), where the label depend-
ency between an entity pair and its mentions is modeled us-
ing a relational classifier. 

In our experiments, we use the implementations and the 
optimal settings of Stanford’s MIMLRE package (Surdeanu 
et al., 2012) for all three baselines, which is open source and 
was shown to achieve state-of-the-art performance. 

Overall Results 
Following previous methods, we evaluate the different 
methods using the standard Precision, Recall and F1-meas-
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ure on the ranked relation extractions, and provide the pre-
cision/recall curves of different methods. For our model, we 
use two different settings: the first is the base MLN model – 
MLN-Base; the second is the full MLN model – MLN-Full. 
The overall results are shown in Figure 3 and Table 1. 

 
Figure 3. Precision/Recall curves on KBP dataset 

System P R F1 
Mintz++ 0.260 0.250 0.255 
Hoffmann 0.306 0.198 0.241 
Surdeanu 0.249 0.314 0.278 
MLN-Base 0.262 0.302 0.281 
MLN-Full 0.426 0.259 0.322 

Table 1.  The best F1-measures in P/R curves 

From the above results, we can see that: 
1) By accommodating a wide variety of supervision 

knowledge and making joint inference, our method signifi-
cantly outperforms traditional DS methods: compared with 
the three baselines Mintz++, Hoffmann and Surdeanu, our 
MLN-Full model correspondingly achieved 26%, 34% and 
16% F1 improvements. 

2) Markov logic can effectively represent knowledge 
and encode complex dependencies between different deci-
sions for relation extraction. Using the same supervision 
knowledge (i.e., the relations in a KB), MLN-base corre-
spondingly achieved 17% and 1% F1 improvements over 
the multi-instance baselines: Hoffmann and Surdeanu. 

3) The uncertainty in distant supervision can be greatly 
reduced by accommodating a wide variety of indirect super-
vision knowledge and performing joint inference across re-
lation instances. In Table 1 we can see that, compared with 
the MLN-Base model, the MLN-Full model achieved 15% 
F1 improvement. In Figure 3 we can see that the MLN-Full 
model achieved a consistent precision improvement over the 
MLN-Base model on nearly all recall region. 

Detailed Analysis 
To analyze the effect of different kinds of indirect supervi-
sion knowledge, we incrementally accommodated con-
sistency between relation labels (LabelDep), consistency 

between relation and argument (ArgFea) and consistency 
between neighbor instances (NeighborSim) into the base 
MLN model. The results are presented in Table 2. 

Model P R F1 ΔBase 
MLN-Base 0.262 0.302 0.281 --- 
 + LabelDep 0.323 0.292 0.307 9.3% 
 + ArgFea 0.390 0.260 0.312 11.0% 
 + NeighborSim 0.426 0.259 0.322 14.6% 

Table 2. The best F1-measures in P/R curves by incremen-
tal accommodating indirect supervision knowledge (where 
ΔBase is the F1 improvement over the MLN-Base model) 

From Table 2, we can see that: 
1) The accommodation of additional supervision 

knowledge is an effective way to improve the performance 
of DS systems. In our model, all three types of indirect su-
pervision knowledge improved the performance of our 
MLN model. 

2) The exploitation of relation label dependencies sig-
nificantly improved the extraction performance. For in-
stance, our model correspondingly achieved 9.3%, 27.4% 
and 10.4% F1 improvements over MLN-Base, Hoffmann 
and Surdeanu. We believe this is because Markov logic pro-
vides a flexible way to encode complex label dependencies, 
such as entailment, mutual exclusion and co-occurrence. 
Therefore our method can reduce uncertainty more than tra-
ditional multi-instance model based DS approaches, which 
model the relation labels of an entity pair independently. 

3) The incorporation of rich argument features im-
proved the relation extraction performance. We believe this 
is because rich argument features can provide additional 
useful information. For example, the information ‘MIT is a 
University’ is useful for extracting relations of type 
schools_attended. 

4) The consistency between neighbor instances im-
proved the extraction performance. This verified both the 
effectiveness of using similarity between instances as addi-
tional supervision and the effectiveness of using joint infer-
ence to reduce uncertainty. 

Conclusion 
In this paper, we propose a global distant supervision model 
which can: 1) compensate the lack of direct supervision with 
a wide variety of indirect supervision knowledge; and 2) 
overcome the uncertainty in DS by performing joint infer-
ence across relation instances. Experimental results showed 
that our method can significantly improve the relation ex-
traction performance on a publicly available data set. 

Distant supervision is a challenging task, future direc-
tions include incorporating additional knowledge (e.g., in-
trinsic structure of data sets such as clusters), better model-
ing of dependency, and other techniques which can accom-
modate heterogeneous supervision for distant supervision. 
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