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Abstract

Previous work for relation extraction from free text is mainly
based on intra-sentence information. As relations might be
mentioned across sentences, inter-sentence information can
be leveraged to improve distantly supervised relation extrac-
tion. To effectively exploit inter-sentence information , we
propose a ranking-based approach, which first learns a scor-
ing function based on a listwise learning-to-rank model and
then uses it for multi-label relation extraction. Experimental
results verify the effectiveness of our method for aggregat-
ing information across sentences. Additionally, to further im-
prove the ranking of high-quality extractions, we propose an
effective method to rank relations from different entity pairs.
This method can be easily integrated into our overall relation
extraction framework, and boosts the precision significantly.

Introduction

Relation extraction (RE) aims to generate structured rela-
tional knowledge from unstructured natural language text.
Traditional supervised approaches for relation extraction
(RE), based on hand-labeled corpora, cannot satisfy the de-
mand for web-scale relation extraction due to the expensive
and laborious annotation. To address this issue, Mintz et al.
(2009) proposed a distant supervision (DS) based approach
to automatically generate labeled data by heuristically align-
ing a database of relational facts (e.g., Freebase) with free
text (e.g., New York Times corpora). An example accounting
for this process is shown in Table 1. In this paper, we define
that a instance is a sentence mentioning a certain entity pair
in knowledge bases. There might exist multiple matched in-
stances for the same entity pair and this case is called “multi-
instance”. In Table 1, we label the matched instances for the
entity pair (Steven Spielberg, Saving Private Ryan) using the
gold standard relation coming from knowledge bases Film-
director (Steven Spielberg, Saving Private Ryan).

However, distant supervision still faces the following
problems. First, a sentence that mentions two entities par-
ticipating in a relation in knowledge bases would not nec-
essarily express this relation explicitly. Also, there may be
multiple relations holding for the same pair of entities (this
is called “multi-label”) and it’s hard to make out which re-
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Entity pair (Steven Spielberg, Saving Private Ryan)

Gold relation

from Film-director (Steven Spielberg, Saving Private Ryan)

knowledge bases

S1: Steven Spielberg’s film Saving Private Ryan is
Relation instances loosely based on the brothers story.

from

free text S2: Allison co-produced the Academy Award-winning
Saving Private Ryan, directed by Steven Spielberg ...

Table 1: Labeled instances by distant supervision, using
the relation Film-director (Steven Spielberg, Saving Private
Ryan) in knowledge bases

lation a sentence that mentions the entity pair should be la-
beled by.

In their efforts to address these limits, researchers have
followed two fundamentally different lines, which we call
entity-level learning and sentence-level learning , respec-
tively. The original work (Mintz et al. 2009; Riedel, Yao,
and McCallum 2010) in DS for RE fell into the entity-
level learning, which aggregated features from multiple sen-
tences to directly make entity-level extraction (not assign
relation labels to individual sentences). However their ap-
proaches ignored detailed sentence-level information, and
could not deal with the multi-label problem. The subse-
quent work (Hoffmann et al. 2011; Surdeanu et al. 2012;
Ritter et al. 2013) used the latent-variable to explicitly model
the sentence-level relation which is assigned to a single sen-
tence. These approaches all assign certain labels to indi-
vidual sentences, which intrinsically fell into the sentence-
level learning. While they have improved precision and re-
call in relation extraction, they are all based on the inac-
curate built-in assumption that a sentence expresses either
one certain relation or no relation. As relations also can be
mentioned across sentences, this assumption may not always
hold, which partly causes the loss of some indicative infor-
mation about the types of relation. For example, Mintz et
al. (2009) showed that combining information in different
matched sentences for the same entity pair can help predict
its relations.

From Table 1, we can see that relying on the sentence
S1 alone cannot certainly decide the Film-director relation,
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since it could instead be the evidence for Film-writer or
Film-producer relation. The sentence S2 also could be ev-
idence for other relations which are expressed in a similar
way (e.g., Apple, directed by Jobs . . . ). However, the com-
bination of the two sentences is a strong indicator of the
Film-director relation. Therefore, conducting relation pre-
diction by aggregating inter-sentence information could cap-
ture more information otherwise a single sentence may not
contain, and potentially improve the performance. In this pa-
per, we argue that entity-level learning is a more promising
and appropriate line compared with sentence-level learning
due to the existence of natural groups (groups of instances
for the same entity pair) in DS scenario and the significance
of aggregating inter-sentence information.

We propose an effective entity-level relation extraction
learning algorithm called RankRE to aggregate the inter-
sentence information. Based on a novel perspective of learn-
ing to rank, RankRE can deal with the special multi-instance
and multi-label learning problem (Surdeanu et al. 2012) in
the DS scenario. More importantly, it effectively leverages
inter-sentence information to further enhance relation ex-
traction. The intuition of our method is that, it is more nat-
ural for a sentence to rank all possible relations based on
the likelihood that this sentence explicitly or implicitly ex-
presses them, than just assign a single label to it. For exam-
ple, given the sentence S1 in Table 1, relations Film-writer,
Film-producer and Film-director should be ranked at higher
positions than other irrelevant relations based on the likeli-
hood that the sentence S1 explicitly or implicitly expresses
the corresponding relation. We do not make an aggressive
relation prediction for any instance (as it might be wrong),
but rather learn a scoring function that maps each relation
class to a real value which represents the likelihood. Fi-
nally, we make predictions of relation labels for a pair of
entities by aggregating ranking scores from all its matched
instances. Additionally, as the high-quality extractions are
particularly important in web-scale relation extraction, we
propose a method from a “global” ranking perspective to fur-
ther improve the ranking of high-quality extractions. Specif-
ically, this method imposes ranking constrains on relations
from different entity pairs and successfully ranks the most
confident extractions at the highest positions.

We conduct experiments on a widely used dataset from
two different aspects. Experimental results demonstrate that
our approach outperforms other baselines in both relation
extraction precision and scalability.

The contributions of this paper are summarized as fol-
lows:

• To the best of our knowledge, RankRE is the first RE
approach that models the multi-instance and multi-label
problem in the DS scenario by learning to rank. We ex-
ploit this technique to aggregate inter-sentence informa-
tion and conduct entity-level learning.

• RankRE is computationally efficient, and runs much
faster than existing methods in distantly supervised rela-
tion extraction.

• We verify the efficiency and effectiveness of our model
through two different levels of experiments.

The remainder of this paper is organized as follows: we
start by discussing related work. Then we describe our
ranking-based approach for distantly supervised relation ex-
traction and analyze how this approach can capture inter-
sentence information. Finally, we evaluate our approach and
report the results.

Related Work

Distant Supervision for Relation Extraction

The idea of distant supervision was first introduced in the
field of bioinformatics (Craven, Kumlien, and others 1999).
Mintz et al. (2009) adopted distant supervision to perform
large-scale relation extraction by using Freebase (a knowl-
edge base) to distantly or weakly annotate Wikipedia cor-
pora. Riedel et al. (2010) proposed the At-Least-One as-
sumption which relaxed the strong DS assumption. As de-
scribed in our introduction part, these methods can exploit
aggregate information from multiple sentences, whereas it
ignores sentence-level detail and cannot conduct multi-label
extraction. We aim at overcoming these disadvantages and
exploiting aggregate information more effectively. To re-
solve the multi-label problem, methods which annotated ev-
ery instance with a latent variable were proposed (Hoffmann
et al. 2011; Surdeanu et al. 2012; Ritter et al. 2013). Han
et al. (2014) proposed a novel semantic consistency model,
which achieved impressive performance in extracting rela-
tions of long tail instances.

Another active research direction for distant supervision
is to directly reduce the noise in training data. Takamatsu
et al. (2012) proposed a generative model to eliminate false
positive training examples. Xu et al. (2013) proposed a pas-
sage retrieval model to reduce false negative training exam-
ples. Roller et al. (2015) detected potential false negative
training examples by using a knowledge inference method.

Our work is closely related to Weston et al. (2013)
which also adopted a ranking method for relation extraction.
Their approach used a ranking-based embedding frame-
work which was inspired by TransE (Bordes et al. 2013),
a promising embedding method modeling multi-relational
data. However, they still learned the scoring function based
on single instance, and thus, like other approaches described
above, cannot exploit aggregate information from multiple
instances during training. Besides, their method cannot ef-
fectively handle the multi-label problem.

Learning to Rank

Learning to rank, a recently popular machining learning
technique, is widely used in document retrieval, collab-
orative filtering and many other applications whose cen-
tral problem is ranking (Herbrich, Graepel, and Obermayer
1999; Joachims 2002; Freund et al. 2003; Burges et al.
2005). In this section, we briefly review the work concerned
with our work.

Our method is inspired by the listwise approach in learn-
ing to rank (Cao et al. 2007; Xia et al. 2008). Their ap-
proaches learned a ranking function by taking individual
lists, rather than pairs, as instances and minimizing a loss
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function defined over them. We adapt their listwise ap-
proaches for this problem by slightly changing the way of
transforming scores to probability distributions. Also, we
adopt a different learning method, a perceptron-style addi-
tive parameter update approach (Collins 2002), which turns
out to be efficient and effective.

Our Method

In this section, we describe our ranking-based method for
relation extraction. We first model the likelihood that a in-
stance explicitly or implicitly expresses each relation of in-
terest by learning to rank; then we learn the ranking function
and exploit it for relation extraction.

Relation Likelihood Modeling via Learning to
Rank

We assume that there exists a set of relation types of in-
terest R. Given an entity pair (e1, e2), we denote by S =
{r1, ..., rm}(S ⊂ R) the set of gold standard relations
for this entity pair in the knowledge base, and denote by
X = {x1, ..., xn} the set of matched instances for this pair
in the free text. We define a scoring function f , which out-
puts a score f(xj , ri) measuring the likelihood that the in-
stance xj expresses or implicates the relation ri(ri ∈ R).
Then all evidence for a candidate relation ri is combined as
follows:

fi =

n∑
j=1

f(xj , ri) (1)

where fi represents the accumulated score of relation ri
from all matched instances. Then we assume that the m re-
lations in the set S should be ranked in the top m in all can-
didate relations according to the accumulated score fi:

∀ri ∈ S, ∀ri′ ∈ R− S : fi > fi′ (2)

Motivated by the learning-to-rank model (Cao et al. 2007;
Xia et al. 2008), we define the “top m” probability distribu-
tions based on aforementioned scores as follows:

Pm(rl1 , ..., rlm) =
e
∑m

i=1 fli∑
rs1 ,rs2 ,...,rsm∈R e

∑m
i=1 fsi

(3)

which represents the probability that m relations
rl1 , rl2 , ..., rlm are placed at the top m positions. In
practice, each instance-relation pair (xj , ri) is represented
as a feature vector and the scoring function f(xj , ri) is
defined as a simple linear function as follows:

f(xj , ri) = wTΦ(xj , ri) (4)

where w is the parameter vector of function f and Φ(xj , ri)
is the feature vector representation of the instance-relation
pair (xj , ri). More complicated scoring function (say a neu-
ral network) could also be used to further boost the perfor-
mance, yet in this paper we just choose the simple linear
function. The goal of the learning process is to do opti-
mization such that the m gold standard relations in the set
S(S = {r1, ..., rm}) are ranked at the top m positions. To
do that, the probability Pm(r1, r2, ..., rm) is maximized to
estimate the parameter vector w during training.

The main advantage of our model is that it effectively
aggregates valuable information coming from each instance
for final relation prediction, even although the instance does
not directly express a certain relation. For example, both the
sentence S1 and S2 in Table 1 rank the relation Film-director
as one of the top positions, whereas only combining the two
sentences would rank the relation Film-director at the first
position.

Another advantage of our model is the robustness to the
false positive training examples, which could be equally im-
portant in the DS scenario due to the large amounts of mis-
labeled data. Some noisy instances among all instances for
an entity pair are allowed to obtain low scores for all rela-
tions, as long as the overall scores for all relations have a
desired ranking. Therefore, our approach is robust to noise
by relaxing the strong DS assumption.

Algorithm 1 The learning algorithm for RankRE-local
Input:

The training dataset D = {(Xq, Sq)|q = 1, . . . ,M}
consisting of (instance set, relation set) pairs.
A parameter T specifying the number of iterations over
the training set.

Output:
The parameter vector w.

1: For convenience, we define the summed feature vector
Ψq

r =
∑

x∈Xq Φ(x, r)
2: initialize parameter vector w ← 0
3: for t = 1, . . . , T do
4: for q = 1, . . . ,M do
5: m ← |Sq|
6: Sq

� ← top m(Xq) 1

7: for each r ∈ Sq do
8: w ← w +Ψq

r
9: end for

10: for each r ∈ Sq
� do

11: w ← w −Ψq
r

12: end for
13: end for
14: end for
15: return w

Training Method and Implementation Details

Training is fairly challenging, for the probability object is
difficult to optimize. The algorithm would be very time con-
suming to find an exact solution, since the number of terms
in the denominator grows exponentially with the number of
the gold standard labels. We instead use a perceptron-style
additive parameter update schema to indirectly optimize the
object (Collins 2002). This parameter estimation algorithm
is computationally efficient, and also works well in practice.
Specifically, the training algorithm takes T passes over the
training dataset. All parameters are initially set to be zeros.
For each entity pair, the top m scoring relations are predicted
under the current parameter setting. If these m relations do
not match with the m gold standard relations for this en-
tity pair, the parameter vector is updated in a simple additive
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Algorithm 2 The learning algorithm for RankRE-global
Input: D = {(Xq, Sq)|q = 1, . . . ,M}, T
Output: w

1: initialize parameter vector w ← 0
2: for t = 1, . . . , T do
3: for q = 1, . . . ,M do
4: m ← |Sq|
5: Sq

� ← top m(Xq)
6: for each r ∈ Sq do
7: w ← w +Ψq

r
8: end for
9: for each r ∈ Sq

� do
10: w ← w −Ψq

r
11: end for
12: select at random a training pair (Xq′ , Sq′)(|Xq′ | =

|Xq|)
13: for each r ∈ Sq ∧ r /∈ Sq′ do
14: if wTΨq

r < wTΨq′
r then

15: w ← w +Ψq
r

16: w ← w −Ψq′
r

17: end if
18: end for
19: end for
20: end for
21: return w

fashion. The algorithm is detailed in Algorithm 1.
In practice, we adopt the “averaged parameters” method,

which, as reported by Collins (2002), performs significantly
better than the standard one. Formally, the final returned pa-
rameter vector is defined as:

w =
1

TM

T∑
t=1

M∑
q=1

wt,q (5)

where wt,q is the parameter vector after the qth training ex-
ample has been processed in pass t over the training dataset.
The original algorithm in Algorithm 1 can be easily modi-
fied to compute the averaged parameter vector.

Implementation for Multi-label Relation
Extraction

This section describes how to exploit the scoring function f
for multi-label relation extraction.

Given a set of matched instances X = {x1, ..., xn} for
an entity pair (e1, e2), we define the overall likelihood of
assigning a relation ri to this entity pair as:

lik(X, i) =
a · log(n) + 1

n

n∑
j=1

f(xj , ri) (6)

where a·log(n)+1
n is a score used to control the effect of the

number of instances and a is a parameter which can be tuned

1top m(Xq) denotes the set of top m scoring relations for Xq

under the current parameter setting.

in development. Then the relation ri will be assigned to this
pair if lik(X, i) is larger than a threshold:

lik(X, i) > αi (7)

where αi is a relation-specific threshold learned from the
training dataset.

Global Ranking for Predicted Relations

As predicted relations for different entity pairs are finally
ranked together in order to get the precision/recall curve
(ranking is also particularly important for high-quality ex-
traction), it’s necessary to rank the most confident ones at the
highest positions. We therefore impose “global” constraints
on the scoring function. Specifically, given a training dataset
{(Xq, Sq)|q = 1, . . . ,M} consisting of (mention set, rela-
tion set) pairs, the constrains are presented as follows :

∀q1, q2, ∀ri ∈ Sq1 ∧ ri /∈ Sq2 , lik(Xq1 , i) > lik(Xq2 , i)
(8)

These constraints on the likelihood of relations from dif-
ferent entity pairs require that for a given relation, the score
of the entity pair with this relation should be larger than that
of any pair without this relation. This method provides a
global perspective for ranking all predicted relations, and as
we will see, boosts precision significantly. The original algo-
rithm can be easily modified to incorporate these constrains.
The new algorithm is presented in Algorithm 2.

Experiments

In this section, we empirically evaluate our method and com-
pare it with other state-of-the-art methods.

Data

We evaluate our method on the KBP dataset developed by
Surdeanu et al. (2012). The KBP dataset was constructed
by aligning a subset of the English Wikipedia infoboxes
from a 2008 snapshot against a document collection that
merged two distinct sources: (a) a collection of approximate
1.5 million documents provided by the KBP shared task (Ji
et al. 2010; 2011) and (b) a complete snapshot of the En-
glish Wikipedia from June 2010. The KBP dataset contains
183,062 training gold relations and 3334 testing gold rela-
tions from 41 relation types. In practice, we use the same
partition of dataset for tuning and testing as Surdeanu et al.
(2012). That is , 40 queries are used for development and
160 queries are used for formal evaluation.

Baselines

We compare our method against three models:

Mintz++. This is the traditional model originally proposed
by Mintz et al. (2009), yet improved to allow extracting mul-
tiple relations for an entity pair by Surdeanu et al. (2012).

Hoffmann This is a multi-instance multi-label model,
which is based on At-Least-One assumption. Hoffmann uses
perceptron-style additive parameter update approach during
model learning.(Hoffmann et al. 2011).
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MIML-RE. This is also a multi-instance multi-label
model proposed by Surdeanu et al. (2012). MIML-RE is dif-
ferent from Hoffman in two aspects: (1) MIML-RE uses an
object-level classifier to capture dependencies between rela-
tion labels; (2) it trains the model using the EM algorithm in
a Bayesian framework.

Experimental Results

We evaluate our method from two different aspects. One is
the overall performance of relation extraction. The other is
the effectiveness of aggregating information from multiple
matched instances.

Overall Results. For our method, we adopt the same fea-
ture representation for each instance in KBP as Surdeanu et
al. (2012). Recall that our training dataset is represented as
a set of feature vectors Φ(x, r). We simply create each com-
ponent of the feature vector Φ(x, r) as a counting function.
For example, one such component Φs(x, r) might be

Φs(x, r) =

⎧⎪⎪⎨
⎪⎪⎩

c if relation r is employee-of and the word
company occurs c times in the instance x

0 otherwise

During learning the scoring function, we only use posi-
tive training examples, and features appearing less than 5
times in positives are removed. Finally, the remaining neg-
ative training examples are added with positives to tune the
relation-specific thresholds αi.

We evaluate two variants of our approach: one (RankRE-
local) that only ranks relations in the same entity pair (see
Algorithm 1), and another (RankRE-global) which ranks re-
lations across entity pairs (see Algorithm 2).

Our method has two parameters that require tuning: the
number of iterations (T ) and the value (a) used to control
the effect of the number of instances. We tune them us-
ing the development queries, and obtain the optimal values
T = 7, a = 0.2 for RankRE-global and T = 11, a = 0.18
for RankRE-local. For other baselines, we use Mintz++ ,
Hoffmann and MIML-RE implementation from Stanford’s
MIMLRE package publicly released by Surdeanu et al.
(2012).

Following Surdeanu et al. (2012), we evaluate all methods
using the official KBP scorer with two changes: (a) relation
mentions are accepted as correct regardless of their support-
ing document; (b) only the subset of gold relations that have
at least one mention in our sentences is scored. To compute
the precision/recall curve for our method, we rank extracted
relations according to the overall likelihood lik(X, i). Pre-
cision/recall curves are reported in Figure 1.

Note that although RankRE-local is worse than other
methods on the low-recall region of the curve, it is pretty
competitive on the high-recall region (when recall is larger
than 0.25). We believe that the poor performance on the low-
recall region is caused by lacking ranking constraints on re-
lations from different entity pairs. Therefore, the addition
of “global” constrains in RankRE-global successfully ranks
the most confident extractions at the highest positions and
boosts precision on the low-recall region.

Methods RankRE Mintz++ Hoffmann MIML-RE

Training time 6 minutes 3 hours 1 hour 21 hours

Table 2: Training time of all methods on the KBP dataset

Top-N Top-50 Top-100 Top-150

Mintz++ 0.540 0.410 0.333

MIML-RE 0.500 0.470 0.406

RankRE-local 0.580 0.490 0.426

RankRE-global 0.560 0.490 0.433

Table 3: Precision of top-50, top-100 and top-150 extracted
relations on the dataset that contains entity pairs with at least
5 matched instances

For most regions of the curve, especially the low-recall
region of the curve (when recall is less than 0.22), RankRE-
global achieves significantly higher precision for the same
recall point than MIML-RE. The precision improvement can
be as high as 0.14 around the region of 0.05 recall. RankRE-
global is comparable to, but slightly worse than, MIML-
RE when recall is larger than 0.22 (the largest difference
approximates to 4 precision points). This is probably be-
cause we do not use any negative example during learning
the scoring function. It might produce relatively high scores
for some wrong predictions. From Figure 1, we can also see
that RankRE-global achieves significant improvements over
Mintz++ and Hoffmann baselines. We believe these results
verify that it is more appropriate to model relations which
a instance explicitly or implicitly expresses by ranking than
by classifying.

Another advantage of our method is the superior compu-
tational efficiency to all other baselines, as shown in Table 2.
On the KBP dataset, MIML-RE requires approximately 21
hours to train; Hoffmann requires approximately 1 hour to
train; the Mintz++ requires approximately 3 hours to train.
In contrast, the training time of our approach is just around
6 minutes and most of the training time is spent on tuning
the relation-specific thresholds αi. The significant advan-
tage of scalability comes from the fast parameter update of
the perceptron algorithm when feature vectors in the training
dataset are generally very sparse.

Multi-instance Relation Extraction Results. We test the
methods described above on the subset of the original KBP
testing dataset which consists of entity pairs with at least 5
matched instances. Specifically, we still use the KBP scorer
in the same way, yet without extracting any relation for en-
tity pairs associated with less than 5 matched instances. We
compute the precision of top-50, top-100 and top-150 ex-
tracted relations for all methods.2 The result is reported in
Table 3.

From Table 3, we can see that both RankRE-local

2As the Hoffman baseline only extracts 92 relations in this ex-
periment, we do not contain it in the result table.
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Figure 1: Precision/recall curves in KBP dataset

and RankRE-global achieve consistent improvements over
Mintz++ and MIML-RE baselines. The superior perfor-
mance to other baselines on “multi-instance” dataset indi-
cates that our method can better perform aggregate entity-
level relation extraction. Considering that MIML-RE ex-
plicitly deals with the multi-instance problem as well, we
believe that the consistent improvement over MIML-RE
proves the effectiveness of our method for exploiting inter-
sentence information.

Conclusion

In this paper, we show that as relations could be expressed
across multiple sentences, aggregating inter-sentence infor-
mation can be leveraged to enhance distantly supervised re-
lation extraction. With the basic idea that it makes more
sense to model all possible relations in a sentence by ranking
than by classifying, we propose a ranking-based method to
effectively aggregate the inter-sentence information.

We evaluate our model on the large real-world dataset
KBP. The results show that our approach outperforms all the
state-of-the-art baselines. Our approach performs well for
the overall relation extraction, and also achieves significant
improvements in the multi-instance scenario which is very
common in distantly supervised relation extraction.
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