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Abstract

Targeted sentiment analysis classifies the sentiment polarity
towards each target entity mention in given text documents.
Seminal methods extract manual discrete features from au-
tomatic syntactic parse trees in order to capture semantic in-
formation of the enclosing sentence with respect to a target
entity mention. Recently, it has been shown that competitive
accuracies can be achieved without using syntactic parsers,
which can be highly inaccurate on noisy text such as tweets.
This is achieved by applying distributed word representations
and rich neural pooling functions over a simple and intuitive
segmentation of tweets according to target entity mentions.
In this paper, we extend this idea by proposing a sentence-
level neural model to address the limitation of pooling func-
tions, which do not explicitly model tweet-level semantics.
First, a bi-directional gated neural network is used to connect
the words in a tweet so that pooling functions can be applied
over the hidden layer instead of words for better representing
the target and its contexts. Second, a three-way gated neural
network structure is used to model the interaction between
the target mention and its surrounding contexts. Experiments
show that our proposed model gives significantly higher accu-
racies compared to the current best method for targeted sen-
timent analysis.

Introduction

Targeted sentiment analysis investigates the classification
of opinion polarities towards certain target entity mentions
in given sentences (Jiang et al. 2011; Dong et al. 2014;
Vo and Zhang 2015). An example is shown in Figure 1,
where the inputs are a set of tweets, with the entities “mi-
ley ray cyrus”, “taylor swift”, “Windows 7”, “nick cannon”
and “britney spears” being marked as the opinion targets,
respectively. The outputs consist of three way (+, -, 0) senti-
ment labels on each entity.

A very important issue in targeted sentiment analysis is
how to model the association between targets and their con-
texts, which can involve complex syntactic and semantic
structures such as predicate-argument links, negations, co-
references and even sarcasm. Jiang et al. (2011) define rich
features over POS tags and dependency links of a given
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She began to love [miley ray cyrus]+ since 2013 :)
Some chocolate a tup of ice cream and [taylor swift]+
songs. Best remedy to help cure the pain.
Does Vmware fusion support [Windows 7]0 yet?
[nick cannon]− face is annoying!!!!!!
I have no interest in seeing [britney spears]− do any-
thing.

Figure 1: Targeted sentiment analysis.

tweet as well as its context tweets, in order to capture target
sentiment polarities. Dong et al. (2014) use word embed-
dings and neural networks instead of manual features, but
also rely on syntactic dependencies, which are produced by
automatic POS-tagging and parsing.

Compared with discrete manual features, embedding fea-
tures are less sparse, and can be learned from large raw texts,
capturing distributional syntactic and semantic information
automatically. As a result, they offer a potentially more el-
egant and effective solution to complex semantic problems
such as negation and sarcasm. Vo and Zhang (2015) exploit
this advantage by defining rich automatic features via neural
pooling over multifarious word embeddings. Shown in Fig-
ure 2(a), given a target, they divide the enclosing sentence
into three segments, using pooling functions on each seg-
ment to obtain features for the left context, the target and the
right context, respectively. The automatic features are then
fed into a linear classifier for sentiment classification.

The method of Vo and Zhang (2015) avoids the reliance
on automatic syntactic parsers, which can be highly inaccu-
rate on tweets, thereby leading to improved sentiment clas-
sification results compared with Dong et al. (2014). On the
other hand, it does not fully capture semantic information
of the tweet and the given target entity. First, pooling func-
tions can select the most useful features from a sequence of
words, but do not capture underlying tweet-level syntactic
and semantic information. Second, the interaction between
the target and its contexts is modeled only implicitly over the
pooling functions and the linear classifier, but not explicitly.

We address the above two limitations by using gated
neural network structures to model the syntax and seman-
tics of the enclosing tweet, and the interaction between
the surrounding contexts and the target, respectively. Re-
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current neural networks (RNN) have been shown effective
in modeling sentences (Mikolov et al. 2010; Graves 2012;
Cho et al. 2014b; Sutskever, Vinyals, and Le 2014), captur-
ing long-range dependencies between words. Gated recur-
rent neural networks (GRNN) (Cho et al. 2014a) and long-
short-term-memories (LSTM) (Hochreiter and Schmidhuber
1997) facilitate the training of recurrent networks by solv-
ing the diminishing and exploding gradient problem in the
deep structure (Bengio, Simard, and Frasconi 1994). For ef-
ficiency consideration, we use a simple gated recurrent neu-
ral network, which has been shown to give comparable ac-
curacies with LSTMs for several tasks (Chung et al. 2014).

In addition, we explicitly model the interaction between
the left context, the right context and the target, using a
gated neural network layer. For some tweets, such as “I love
[Facebook].”, the left context (i.e. “I love”) indicates the
sentiment class of the target. For tweets such as “I think
[Transformers] is boring.”, the right context dominates
the polarity. For tweets such as “Defeating [Manchester
United] is challenging.”, both contexts interact to express
the sentiment polarity of the target. Accordingly, we design
a gated neural network layer between the left and the right
context (Figure 4), which explicitly interpolates the left con-
text, the right context and a combination of both.

The effect of contexts on target sentiment also depends
on the target entity itself. For example, the sentiment polar-
ity of “[X] dropped” is “[X]+” if X is “cost”, but “[X]−”
if X is “revenue”. Correspondingly, we add the target to
the control gates in the above neural networks. Experi-
ments show that the gated neural network structures lead
to significantly improved sentiment classification accura-
cies compared with the method of Vo and Zhang (2015).
We make our system and source code public under GPL at
https://github.com/SUTDNLP/NNTargetedSentiment.

Related Work
Targeted sentiment analysis is related to fine-grained sen-
timent analysis (Wiebe, Wilson, and Cardie 2005; Jin, Ho,
and Srihari 2009; Li et al. 2010; Yang and Cardie 2013;
Nakov et al. 2013), which extracts opinion expressions,
holders and targets jointly from given sentences. Compared
with fine-grained sentiment, targeted sentiment offers less
operational details, but on the other hand requires less man-
ual annotation. There has also been work on open domain
targeted sentiment (Mitchell et al. 2013; Zhang, Zhang, and
Vo 2015), which identifies both the opinion targets and their
sentiments. The task can be regarded as a joint problem of
entity recognition and targeted sentiment classification.

Other related tasks include aspect-oriented sentiment
analysis (Hu and Liu 2004; Popescu and Etzioni 2007),
which extracts product features and opinions towards them
from user reviews, and topic-oriented sentiment analysis (Yi
et al. 2003; Wang et al. 2011), which extracts features and/or
sentiments towards certain topics or subjects. These tasks
are close in spirit to targeted sentiment analysis, with subtle
variations on the domain and task formulation.

Traditional sentiment analysis systems rely on manual
features (Pang, Lee, and Vaithyanathan 2002; Go, Bhayani,
and Huang 2009; Mohammad, Kiritchenko, and Zhu 2013).
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Figure 2: Baseline model and the model of this paper (She
began to love miley ray cyrus since 2013 :)).

Recently, distributed word representations (Socher et al.
2013; Tang et al. 2014; Vo and Zhang 2015) and deep neural
network structures (Irsoy and Cardie 2013; Paulus, Socher,
and Manning 2014; Kalchbrenner, Grefenstette, and Blun-
som 2014; Zhou et al. 2014; Dong et al. 2014; dos Santos
and Gatti 2014) have been used for the task, giving compet-
itive accuracies. Our work is in line with these methods, us-
ing word embeddings and a deep neural network structure to
automatically exploit the syntactic and semantic structures
of tweets. However, we model targeted sentiment instead of
document-level sentiment, which most prior work does. To
our knowledge, we are the first to use deep neural networks
to model sentences with respect to targeted sentiments.

Baseline

We take the model of Vo and Zhang (2015) as our baseline.
Shown in Figure 2(a), it takes input tweets with target en-
tities, and outputs the sentiment polarity of each target. For
each given target, the model computes the sentiment class in
three steps.

First, each word in a given tweet is mapped to a
low-dimensional, real-valued embedding vector. Second,
element-wise pooling functions are applied to extract use-
ful features from the target entity, the left context and the
right context, respectively. We follow Vo and Zhang (2015),
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using the concatenation of max, min, average, product, and
standard deviation pooling results for automatic features. Fi-
nally, all the features resulted from the pooling functions are
concatenated and used as input to a linear classifier, which
predicts the sentiment polarity of the target.

Our baseline is a much simplified version of Vo and
Zhang (2015), who applied pooling functions over the full
tweet in addition to the target entity, the left and the right
contexts, in order to extract global features over a tweet.
However, we do not include such features because our ex-
tended models explicitly capture global syntactic and se-
mantic information over full tweets. Another source of in-
formation that Vo and Zhang (2015) exploit is sentiment
lexicons. To separately study the influence of network struc-
tures, we do not include lexicons in the baseline model. Our
neural models do not rely on any external resources.

Modeling Tweet-Level Syntactic and Semantic

Information Using Bi-Directional GRNN
The baseline model does not explicitly capture the under-
lying semantic information of input tweets, such as depen-
dency relations, co-references and negation scopes. We ad-
dress this potential disadvantage by using a gated recurrent
neural network layer to model tweet-level syntactic and se-
mantic information of the input, capturing the interactions
between its words.

The difference between our proposed models and the
baseline model is shown in Figure 3, where xi represents
the embedding of the ith word in the input tweet, regardless
whether it belongs to the target, the left context or the right
context. For the baseline model (Figure 3(a)), features are
extracted directly from individual word embeddings.

Recurrent tweet model (RNN). We make two extensions
to the baseline system. First, a relatively simple extension
can be made by adding a recurrent hidden layer over the
input layer (Figure 3(b)). In this layer, each node hi corre-
sponds to the input xi. However, rather than taking infor-
mation from the word xi alone, it is also connected with its
predecessor hi−1. Formally, the value of hi is

hi = tanh
(
W1xi + U1hi−1 + b1

)
,

where the matrices W1 and U1, and the vector b1 are model
parameters, and tanh is the activation function.

The hidden nodes hi indirectly connect words in the tweet
from left to right, thereby collecting information from not
only xi, but also from [x1, · · · , xi−1]. In order to also cap-
ture information from [xi+1, · · · , xn], where n is the size of
the tweet, we add a counterpart of hi in the reverse direction,

h′i = tanh
(
W ′

1xi + U ′1h
′
i+1 + b′1

)

Here W ′
1, U ′1 and b′1 are the counterparts to W1, U1 and b,

respectively.
We apply pooling functions over hi ⊕ h′i rather than xi,

where ⊕ represents vector concatenation, extracting features
from the bi-directional recurrent sequence model.

Gates (GRNN). A second extension is to add gates to the
recurrent hidden layers, which control information flow be-
tween nodes in the hidden and input layers. Gated neural
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xi
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(c) GRNN

Figure 3: Comparisons between baseline, recurrent and
gated recurrent tweet models. (The gate signals zi and ri
are determined by xi and hi−1.)

networks have been shown to reduce informal bias of vanilla
recurrent neural networks towards the ends of a sequence by
better propagation of gradients.

The sub network structure over xi is shown in Figure 3(c).
Two main changes are made compared with Figure 3(b).
First, a new hidden node h̃i is introduced, which represents
a combination of hi−1 and xi. Here h̃i is similar to hi in
Figure 3(b). Second, hi now results from an interpolation of
hi−1 and h̃i, with the weights being controlled by two com-
plimentary gates zi and �1 − zi. The contribution to h̃i from
hi−1 is also controlled by a gate ri. Formally,

h̃i = tanh
(
W1xi + U1(ri � hi−1) + b1

)
,

where

ri = sigmoid
(
W2xi + U2hi−1 + b2

)

Each bit in ri controls the contribution of the corresponding
bit in hi−1 to h̃i. Here � represents the bit-wise product
operation, and sigmoid is the sigmoid activation function.
The interpolation of hi−1 to h̃i for hi can be formulated as

hi = (�1− zi)� hi−1 + zi � h̃i,

where

zi = sigmoid
(
W3xi + U3hi−1 + b3

)

In the above equations, the matrices W1, W2, W3, U1, U2

and U3 and the vectors b1, b2 and b3 are model parameters.
Similar to Figure 3(b), the gated recurrent neural network

is applied in both directions, with the counterpart of hi in
the reverse direction being h′i, and the corresponding pa-
rameters to W1, W2, W3, U1, U2, U3, b1, b2 and b3 being
W ′

1, W ′
2, W ′

3, U ′1, U ′2, U ′3, b′1, b′2 and b′3 respectively. max,
min, average, product and standard deviation pooling
are performed over the hidden node sequence hi ⊕ h′i.

Modeling the Interaction between the Target

and the Surrounding Context

Three-way gate (G3). The baseline in Figure 2(a) does not
explicitly model the interaction between the left context and
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Figure 4: Gated neural network for choosing of left and right
features for target. (The gate signals zl and rl are determined
by hl and ht, zr and rr by hr and ht, and zlr by h̃lr and ht.)

right context in deciding the sentiment polarity of the target.
We address this limitation by connecting the contexts using
a gated neural network structure. As illustrated in Figure 4,
we use hl to represent the output of pooling functions over
the left context, hr to represent the output of pooling func-
tions over the left context, and ht to represent the output of
pooling functions over the target entity span.

We first make a neural combination of hl and hr, denoting
it with h̃lr. Then a three-way bit-wise linear interpolation is
performed to combine hl, hr and h̃lr. The intuition of gates
is similar to that of the gated recurrent hidden layer, where
the gates control the contribution of each source to the tar-
geted sentiment. This is motivated by the fact that sentiment
signals can be dominated by the left context, the right con-
text or a combination of both. Some examples have been
discussed in the introduction. The target entity participates
in the gate control weights, because the sentiment polarity
over the target depends on the contexts and the target itself.

Similar to the gated recurrent neural network layer, in
which the combination of hi−1 and xi to form h̃i, we use
gates to control the combination of hl and hr in forming
h̃lr. Formally,

h̃lr = tanh
(
W1(rl � hl) + U1(rr � hr) + b1

)

where rl and rr are the bit-wise gates to control signal flow
from hl and hr, respectively. Here

rl = sigmoid
(
W2hl + U2ht + b2

)

rr = sigmoid
(
W3hl + U3ht + b3

)

The linear interpolation between hl, hr and h̃lr can be
formulated as

hlr = zl � hl + zr � hr + zlr � h̃lr,

where zl, zr and zlr are the gate control weights, zl + zr +
zlr = �1, and

zl∞ exp
(
W4hl + U4ht + b4

)

zr∞ exp
(
W5hr + U5ht + b5

)

zlr∞ exp
(
W6h̃er + U6ht + b6

)

#Targets #+ #- #0
training 9,489 2,416 2,384 4,689

development 1,036 255 272 509
testing 1,170 294 295 581

Table 1: Experimental corpus statistics.

A final note is that we apply dimensionality reduction to the
pooling result of the left context, the target and the right con-
text in order to derive hl, ht and hr:

hl = tanh
(
pooling(left context) ·W7 + b7

)

ht = tanh
(
pooling(target) ·W8 + b8

)

hr = tanh
(
pooling(right context) ·W9 + b9

)

In the above equations, the matrices W1,W2, · · · ,W9,
U1, U2, · · · , U6 and the vectors b1, b2, · · · , b9 are model pa-
rameters.

Training Method

Given a set of annotated training examples, our models are
trained to minimize a cross-entropy loss objective, with a l2
regularization term, defined by

L(θ) = −
∑
i

log pti +
λ

2
‖ θ ‖2

where θ is the set of model parameters, pti is the probability
of the ith training example as given by the model and λ is
the regularization hyper-parameter.

We apply online training, where model parameters are op-
timized by using Adagrad (Duchi, Hazan, and Singer 2011).
In order to avoid overfitting, we use the dropout technique
(Hinton et al. 2012), randomly dropping some dimensions
of the input word embedding with a fixed probability pdrop.

Experiments

Data

Our experimental data are collected from three sources, in-
cluding Dong et al. (2014), which consists of 6,940 exam-
ples, the MPQA corpus1, from which we collected 1,467 tar-
gets that have been annotated as being positive/negative, and
the corpus of Mitchell et al. (2013)2, which consists of 3,288
entities. We merge the three sources of annotations, shuffle
them randomly, and divide them into training, development
and testing sets. Table 1 shows the corpus statistics.

Evaluation Metrics

We use two evaluation metrics for targeted sentiment anal-
ysis, including the classification accuracy and macro F1-
measure, which is computed by averaged F1-measure over
the three sentiment classes (positive, negative and neutral).

1http://mpqa.cs.pitt.edu/corpora/mpqa corpus/
2http://www.m-mitchell.com/code/index.html
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Type hyper-parameters
Network structure Hrnn = 150, Hcontext = 150

Training λ = 10−8, α = 0.01, pdrop = 0.25

Table 2: Hyper-parameter values in our model.

Model Accuracy F1(macro)
baseline 65.73 60.44
+RNN 68.05 65.94

+GRNN 71.43 69.06
+G3 70.84 67.33

final(+GRNN+G3) 72.49 70.57

Table 3: Development results.

Training of Word Embeddings

We follow Vo and Zhang (2015), using the concatenation
of two types of word embeddings for each word. The first
type of word embeddings is obtained directly from Tang et
al. (2014)3, which incorporates sentiment information. The
size of this type of word embedding is 50.

The second type of word embeddings is obtained by using
the word2vec tool4 over large-scale sentiment-expressing
tweets, which are crawled automatically using TweetAPI5.
We follow Go, Bhayani, and Huang (2009) and use emoti-
cons as sentiment indicators for tweets. We collect 5 million
tweets, and train word embeddings with a dimension size of
100, using the skip-gram algorithm (Mikolov et al. 2013).
Thus, the final combined word embeddings have a dimen-
sion size of 150.

Parameter Settings

There are several hyper-parameters in our neural models.
We tune them according to the development dataset. Table
2 shows the values, where Hrnn denotes the dimension size
of the recurrent neural layers, Hcontext denotes the dimension
reduction sizes for the left context representation, the right
context representation and the target representation, λ de-
notes the regularization hyper-parameter, α denotes the ini-
tial step value of parameter updating, and pdrop denotes the
dropout value. All the matrices in the model are initialized
randomly with a uniform distribution in (-0.01, 0.01).

Development Experiments

The Effect of RNNs We investigate the effectiveness of
RNNs, which are used to automatically extract syntactic
and semantic information from sentences, by comparing the
baseline model with two models that integrate RNN and
GRNN, respectively. Table 3 shows the development results,
which demonstrate an accuracy improvement of 2.32% by
using simple RNN, and a larger improvement of 5.70% by

3http://ir.hit.edu.cn/˜dytang/
4http://word2vec.googlecode.com/
5https://twitter.com/twitterapi

Model Accuracy F1 (macro)
baseline 65.13 58.85

+GRNN 69.65‡ 67.11‡

+G3 67.79‡ 63.31‡

final 71.96‡ 69.55‡

Vo and Zhang (2015) 69.57 65.56

Table 4: Final results on the test dataset, where ‡ denotes a
p-value below 10−5 by pairwise t-test, compared with the
baseline system.

using GRNN. The results by F1-scores are similar. These re-
sults show that RNNs are effective, and the use of gates can
give better performances in targeted sentiment analysis.

The Effect of G3 We study the isolated effectiveness of
our second gated neural network, which is used to model
the interaction between targets and their surrounding con-
texts. The results are obtained by applying G3 directly over
the pooling results of the baseline model ht, hl and hr for
the target and its contexts. As shown in Table 3, G3 gives
an absolute 5.11% accuracy improvement and a 8.62% F1-
score improvement over the baseline model, demonstrating
that the gated structure is highly effective.

Combination of GRNN and G3 We apply both GRNN
and G3 in the final model. As shown in Table 3, the final
model gives an absolute accuracy improvement of 1.06%
over the model with GRNN, and an absolute accuracy im-
provement of 1.64% over the model with G3. The improved
accuracies mainly result from the combination of comple-
mentary information from GRNN and G3.

Final Results

The final results on the test dataset are given in Table 4,
which shows the performances of the baseline, baselines
with separate GRNN and G3, and the final model (baseline
with both GRNN and G3), respectively. We can see that both
GRNN and G3 bring significant improvements, and the com-
bination of the two leads to the best results, which are con-
sistent with the development experiments.

We also compare our system with the system of Vo
and Zhang (2015), which uses more contextual information
and sentiment lexicons. As shown in the Table 4, Vo and
Zhang (2015) gives significantly higher results compared
with our baseline thanks to the additional sources of infor-
mation. On the other hand, our final model gives signifi-
cantly better performances compared with their model (p-
value below 10−5 using t-test). There has been other previ-
ous work on targeted sentiment analysis (Jiang et al. 2011;
Tang et al. 2014; Dong et al. 2014), which we did not include
in Table 4. This is mainly because their results are reported
on a different dataset, on which Vo and Zhang (2015) has
given by far the best reported accuracies.

Discussion

We make more detailed analysis of GRNN and G3 quanti-
tatively and qualitatively by examining the final test outputs
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Figure 5: Targeted sentiment accuracies against sentence
length.

baseline baseline + GRNN
#nowplaying [lady gaga]+ -
let love down

#nowplaying [lady gaga]0 -
let love down

[Michael]0 dislikes to work
with him. I’m very glad to
hear that.

[Michael]+ dislikes to work
with him. I’m very glad to
hear that.

haha youre not obsessed,
you just reaaaaaally love the
[lakers]0.

haha youre not obsessed,
you just reaaaaaally love the
[lakers]+.

Table 5: Example outputs of baseline and GRNN.

of relevant models.

Impact of GRNN The impact of GRNN can be analyzed
by contrasting the outputs of the baseline model and those of
the model by adding GRNN only. Figure 5 shows the accu-
racies of the two models with respect to the sentence length.
We divide the test sentences into eight bins, where the ith bin
contains sentences with length between [5*i-4, 5*i]. GRNN
gives higher accuracies on sentences of all length, showing
that its effectiveness is not negatively affected when the in-
put sentence grows longer.

Table 5 shows some examples that illustrate the useful-
ness of tweet-level information from GRNN. In the first ex-
ample, the baseline assigns a positive sentiment polarity to
“[lady gaga]”, largely because of the positive word “love”
in the right context, which dominates the pooling result. In
contrast, the sentence structure indicates that the phrase af-
ter “-” is a noun phrase, and therefore the sentiment signal
from “love” is rather weak. This is captured by the gated re-
current hidden layer, from which pooling is extracted. The
second example contains both positive (i.e. “glad”) and neg-
ative (i.e. “dislike”) words in the right context, and pool-
ing alone results in an incorrect neutral sentiment label. The
third example demonstrates the effectiveness of the gated
hidden layer in capturing negation, which simple pooling
cannot model.

Impact of G3 The impact of G3 can be analyzed by con-
trasting the outputs of the final model with those of the
model with a GRNN only. Figure 6 shows their accuracies
with respect to absolute size difference between the left and
right contexts. The ith result denotes an absolute size differ-
ence within [2*i-1, 2*i]. Sentences with absolute size differ-
ences above 16 are merged into the eighth result. Intuitively,

1 2 3 4 5 6 7 8
60

65
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A
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baseline+GRNN(-G3) final(+G3)

Figure 6: Targeted sentiment accuracies against the length
difference between the left and right contexts.

baseline + GRNN Final

Did you upgrade to [Win-
dows 7]0? I cannot get a
fresh install installed, stupid
drivers errors

Did you upgrade to [Win-
dows 7]−? I cannot get a
fresh install installed, stupid
drivers errors

Lay on my sofa and lis-
ten to (toxic) by [Britney
Spears]−. Another boring
day. Nothing to do.

Lay on my sofa and lis-
ten to (toxic) by [Britney
Spears]0. Another boring
day. Nothing to do.

Table 6: Example outputs of GRNN and final model.

if one context is significantly longer, it is likely to dominate
the sentiment polarity. Therefore the cases with an equally-
large left and right contexts should be more challenging. As
shown in the Figure, G3 leads to better accuracies on the
challenging sentences, which shows its effectiveness in cap-
turing the interaction between the target and its contexts.

Some examples are shown in Table 6. In the first example,
the sentiment on the targeted is decided by the right context;
in the second example, the sentiment is decided by the left
context. The final model gives correct predictions in both
cases, thanks to G3.

Conclusion

We proposed two gated neural networks for targeted senti-
ment analysis, one being used to capture tweet-level syntac-
tic and semantic information, and the other being used to
model the interactions between the left context and the right
context of a given target. Gates are used in both neural net-
works, so that the target influences the selection of sentiment
signals over the context. Experiments demonstrated that the
two gated neural networks are effective in targeted sentiment
analysis, bringing significant improvements.
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