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Abstract

We propose a semi-supervised learning method for im-
proving why-question answering (why-QA). The key of
our method is to generate training data (question-answer
pairs) from causal relations in texts such as “[Tsunamis are
generated]effect because [the ocean’s water mass is dis-
placed by an earthquake]cause.” A naive method for the gen-
eration would be to make a question-answer pair by sim-
ply converting the effect part of the causal relations into a
why-question, like “Why are tsunamis generated?” from the
above example, and using the source text of the causal rela-
tions as an answer. However, in our preliminary experiments,
this naive method actually failed to improve the why-QA per-
formance. The main reason was that the machine-generated
questions were often incomprehensible like “Why does (it)
happen?”, and that the system suffered from overfitting to the
results of our automatic causality recognizer. Hence, we de-
veloped a novel method that effectively filters out incompre-
hensible questions and retrieves from texts answers that are
likely to be paraphrases of a given causal relation. Through
a series of experiments, we showed that our approach signif-
icantly improved the precision of the top answer by 8% over
the current state-of-the-art system for Japanese why-QA.

1 Introduction

Why-question answering (why-QA) aims to retrieve answers
to such why-questions as “Why are tsunamis generated?”
from a given text archive (Girju 2003; Higashinaka and
Isozaki 2008; Verberne et al. 2008; 2010; 2011; Oh et al.
2012; 2013). Recent works (Verberne et al. 2010; 2011;
Oh et al. 2012; 2013) have taken a machine-learning ap-
proach with a supervised classifier for answer ranking and
successfully improved the why-QA performance. For the
given pairs of a question and an answer candidate passage,
the classifier arranges them into correct pairs and incorrect
pairs, or gives a score indicating the likelihood that the pair
is correct, which is used for ranking the answer candidates.

In this paper, we propose a semi-supervised learning
method that exploits automatically generated training data
for improving the supervised classifier for answer ranking
in our baseline why-QA system, which is actually an imple-
mentation of our previous work (Oh et al. 2013). The key
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A1 ..... Sudden vertical displacements of the seafloor
by earthquakes, disturb the ocean’s surface, dis-
place water, and generate destructive tsunami
waves. This is basically how a tsunami is gener-
ated. .....

A2 ..... It is crucial to provide immediate warn-
ings after a potential tsunami generation because
tsunamis are often unpredictable. .....

Table 1: Answer passages to “Why are tsunamis generated?”
The vocabulary overlap between answer passages and the
expected answer from the CRcause is represented in bold.

of our proposed method is its use of causal relations in texts
for generating training data (question-answer pairs). For this
purpose, we use the causality recognition method of our pre-
vious work (Oh et al. 2013), which uses some pre-defined
cue words such as “because.” The CR shown below is an
example of the recognized causal relations, where its cause
and effect parts are marked with [..]cause and [..]effect. Al-
though our target language is Japanese, for ease of explana-
tion, we use English examples in this paper.

CR: [Tsunamis are generated]effect because [the ocean’s
water mass is displaced by an earthquake.]cause

Note that the cause part (CRcause) can be regarded as an ex-
pected answer to question “Why are tsunamis generated?,”
which can be automatically generated from the effect part
(CReffect). One might think that such a question-answer
pair derived from the source texts of those causal rela-
tions can be used directly as a training instance for why-
QA. However, in our preliminary experiments, this naive
method failed to improve our baseline why-QA system. The
main reason was that it suffered from overfitting to the re-
sults of our automatic causality recognizer, which can only
recognize a limited variation of causal relations expressed
by a limited set of cue words such as “because” and that
the machine-generated questions were often incomprehensi-
ble: “Why does (it) happen?” Hence we developed a novel
method that retrieves answers to a question from web texts
to avoid the overfitting problem and that effectively filters
out incomprehensible questions.

First, we explain our solution to the overfitting problem.
We use our baseline why-QA system for retrieving answers
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to a question from web texts in the following way. Assume
that our baseline why-QA system returned the passages in
Table 1 as answers to “Why are tsunamis generated?,” which
is a question from the CReffect. A1 (a correct answer to the
question) has a large vocabulary overlap with the expected
answer, CRcause, but A2 (an incorrect one) does not. From
this observation, we established the hypothesis shown below
for identifying correct answers:

Hypothesis: Given such a causal relation as CR and a
question generated from its effect part, the correct answer
passage to the question (in the results of our baseline why-
QA system) has and indeed must have a large vocabulary
overlap with the cause part of the causal relation.

Note that A1 can be regarded as another expression of CR or
its paraphrase. An important point is that there is no explicit
clue such as “because” for recognizing the causal relation in
A1 and our automatic causality recognition method actually
fails to detect it. Nevertheless, to improve the why-QA per-
formance, it is important to enable why-QA systems to rec-
ognize a wide range of such indirectly expressed causal rela-
tions as candidates for answers to why-questions. If we give
as a positive training instance a pair of question “why are
tsunamis generated?” and its answer A1, identified by the
hypothesis, to our why-QA system, it should help the system
to deal with a wider range of indirectly expressed causality
and lead to a higher performance. On the other hand, if we
use the naive method and give as a positive training instance
the pair of the same question and CR, which is a directly ex-
pressed causality by “because” so that it is recognizable by
our causality recognition method, it may lead to overfitting
of the why-QA system toward the pattern of causality ex-
pressions recognizable by the causality recognition method.
Of course, the simple hypothesis actually has a negative side
effect that gives false negative labels to a correct answer,
which has a small vocabulary overlap with an expected an-
swer expressed in automatically recognized causal relations.
Despite such a problem, we show that our method using the
hypothesis leads to a significant performance improvement
over a state-of-the-art why-QA system (Oh et al. 2013).

We also found that many incomprehensible questions
were generated from causal relations by the naive method.
Since these questions often included realized anaphors, such
as pronouns, or zero anaphors, which are the omitted argu-
ments of predicates and frequently occur in Japanese (Iida et
al. 2007), they could not be interpreted without contexts in
their original causal relation texts. For instance, incompre-
hensible question “Why was (he) awarded the Nobel Prize?”
was generated from causal relation CR’, where “(he)” rep-
resents a zero anaphor.

CR’: [Because Dr. Prusiner discovered prions]cause, [(he)
was awarded the Nobel Prize.]effect

Actually, new training data obtained from such incompre-
hensible questions degraded the performance of our base-
line why-QA system. Hence we developed a novel method
of judging the comprehensibility of questions using a super-
vised classifier with subset-tree kernels (Moschitti 2006) and
used only the questions judged as comprehensible by the

classifier for our semi-supervised learning. We empirically
validated its effectiveness through our experiments.

The contributions of this work are summarized as follows.

• To the best of our knowledge, this work is the first attempt
to take a semi-supervised learning approach for why-QA.

• We propose a novel method for a non-trivial task, to gen-
erate training data (question-answer pairs) for why-QA
with causal relations in texts.

• Our method generates comprehensible questions from
causal relations and then retrieves from web texts their an-
swers, which are likely to be paraphrases of a given causal
relation, by using our baseline why-QA system and vo-
cabulary overlap between the answers and the causal rela-
tions. These paraphrases of a given causal relation allow
why-QA systems to learn with a wide range of causality
expressions and to recognize such causality expressions
as candidates for answers to why-questions.

• We showed that our proposed method improved the pre-
cision of the top answers by 8% against the current state-
of-the-art system of Japanese why-QA (Oh et al. 2013).

2 System Architecture

Figure 1: System architecture

Figure 1 shows the overall architecture of our proposed
method. We automatically extracted causal relations from
Japanese web texts using the causality recognition method
of our previous work (Oh et al. 2013). We restricted our
causal relation to one whose cause and effect parts were con-
nected by some pre-defined cue phrases1 and identified the
boundaries of the cause and effect parts using sequential la-
beling with conditional random fields (CRFs) (Lafferty, Mc-
Callum, and Pereira 2001). Precision, recall, and F-score of
this method reported in Oh et al. (2013) are 83.8%, 71.1%,

1We used Oh et al. (2013)’s cue phrases that included those
indicating for, as a result, from the fact that, because, the reason
is, and is the cause.
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and 77.0%, respectively (see Oh et al. (2013) for more de-
tails). Using this method, we recognized about 656 million
causal relations from two billion web texts.

Next, we generated why-questions and their expected an-
swers from these causal relations. After removing the in-
comprehensible questions from the generation result, the re-
maining questions were given to our baseline why-QA sys-
tem (described in Section 3) as input to get the top-n answer
passages for each question; we set n to 20 in this work. Then
we made unlabeled examples with a set of triples: a why-
question, its expected answer, and an answer passage to the
why-question. We detail this procedure in Section 4.

Our semi-supervised learning iteratively generates new
training instances from the classifier’s results on the unla-
beled examples and trains a classifier for answer ranking us-
ing the training data enlarged with the new training instances
(see Section 5 for details).

3 Baseline Why-QA System

The baseline why-QA system, which is our implementation
of Oh et al. (2013), is composed of answer retrieval and an-
swer ranking. We use it to obtain unlabeled examples to be
labeled in our semi-supervised learning algorithm for im-
proving the classifier in the answer ranking.

3.1 Answer retrieval

This module provides a set of passages for a why-question
retrieved from two billion Japanese web texts. To make an-
swer retrieval from such large-scale texts efficient, we re-
strict our retrieved passages to those composed of the seven
consecutive sentences and containing at least one cue phrase
for recognizing causal relations used in Oh et al. (2013). We
extracted about 4.2 billion passages that satisfy these condi-
tions from the two billion web texts and indexed them for
keyword search using a Lucene search engine2.

We used two types of queries generated from a given why-
question for answer retrieval. Let a set of nouns and a set of
verbs/adjectives in a why-question be N = {n1, · · · , nj}
and V A = {va1, · · · , vak}, respectively. From our observa-
tion that a correct answer is likely to contain all the nouns
in a why-question, we generated two Boolean queries: “n1

AND · · · AND nj” and “n1 AND · · · AND nj AND (va1
OR · · · OR vak).” Then, for each of the queries, we retrieved
the top-1200 passages that were ranked by a tf-idf scoring
model implemented in the Lucene search engine. We com-
bined the resulting passages of the two queries and passed
them to the next step, which is answer ranking.

3.2 Answer ranking

A supervised classifier (SVMs (Vapnik 1995)) was used to
rank these retrieved passages. We used the same features
employed in our previous work (Oh et al. 2013) for training
the classifier: morpho-syntactic features (n-grams of mor-
phemes and syntactic dependency chains), semantic word
class features (semantic word classes obtained by automatic
word clustering (Kazama and Torisawa 2008)), sentiment

2http://lucene.apache.org

polarity features (word and phrase polarities), and causal re-
lation features (n-grams, semantic word classes, and exci-
tation polarities (Hashimoto et al. 2012) in causal relations
whose effect part is matched with a question). All the pas-
sages passed from the answer retrieval were ranked in de-
scending order by their scores given by the classifier, and
then the top-20 answer passages in the ranked list were cho-
sen as output of the baseline why-QA system.

Note that the classifier in answer ranking uses as features
the causal relations recognized by our automatic causality
recognizer, which is an implementation of Oh et al. (2013)’s
method. As mentioned in the Introduction, if we give the
classifier many question-answer pairs (as new training in-
stances) directly generated from such automatically recog-
nized causal relations and their original texts, it might lead
to such undesirable side effects that the resulting classi-
fier would put excessive weight on the causal relation fea-
tures. In our preliminary experiments, we actually observed
such side effects. Hence, rather than using the source text of
causal relations as answers, we retrieved from texts answers
that tended to be paraphrases of the given causal relations
using our baseline why-QA system.

4 Unlabeled Examples

4.1 Generating comprehensible questions

From causal relations acquired by using our causality rec-
ognizer, we generated why-questions by simply converting
the effect part of the causal relations to their why-question
form using a small set of hand-coded rules: e.g., “Tsunamis
are generated” is converted into “Why are tsunamis gen-
erated?” We found that many incomprehensible questions
such as “Why was (he) awarded the Nobel Prize?” were gen-
erated mainly due to pronouns and zero anaphors, which fre-
quently appear in Japanese (Iida et al. 2007). Especially, the
topics and subjects of the predicates appearing at the begin-
ning of sentences were often missing in the effect part of the
causal relations automatically extracted from sentences like
the CR’ shown in the Introduction. Hence we developed a
novel method of identifying comprehensible questions using
the following procedures: 1) filtering out questions contain-
ing any pronoun and 2) filtering out questions, in which any
essential argument of the predicates, such as subject and ob-
ject, is missing. To the best of our knowledge, this work is
the first attempt to judge the comprehensibility of machine-
generated questions for question-answering. For the second
filtering, we used subset-tree kernels3 implemented in SVM-
Light (Joachims 1999; Moschitti 2006) and trained the ker-
nels using the combinations4 of trees and vectors shown be-
low.
• All the subset-trees of a phrase structure tree (e.g., [NP [N

tsunamis] P])
• All the subset-trees of a phrase structure tree where their

nouns are replaced with their corresponding word class
(the same 500 word classes for five million words as those
in Oh et al. (2013)) (e.g., [NP [N Wdisaster] P], where

3http://disi.unitn.it/moschitti/Tree-Kernel.htm
4We used “-t 5 -C + -S 1 -d 1” as the parameter of the training.
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“tsunamis” is replaced with Wdisaster representing the
word class involving “disaster” )

• Vectors expressing morpheme and POS tag n-grams

For this training, we hand-created 9,500 comprehensi-
ble why-questions and used them as positive examples.
We also automatically generated 16,094 negative exam-
ples by deleting one or two among the topic, the sub-
ject, and the object of the predicates (i.e., topic, subject,
and object words followed by Japanese postpositions ‘-ha’
(topic marker), ‘-ga’ (subject case marker), and ‘-wo’ (ob-
ject case marker), respectively) in the comprehensible ques-
tions. These examples were parsed by a Japanese depen-
dency parser, J.DepP5 (Yoshinaga and Kitsuregawa 2009),
and their dependency trees were converted into phrase struc-
ture trees to generate subset-trees. This conversion was done
by simply introducing NP (if the head word is a noun), VP
(if the head word is a verb or an adjective), and OP (oth-
erwise) to a parent node of a word phrase (bunsetsu6) in the
dependency tree. For the training data, we randomly selected
90% of the positive examples and then selected negative ex-
amples automatically generated from the randomly selected
positive ones. We used the remainder as the test data. In this
setting, the subset-tree kernels achieved 84.5% precision and
88.9% recall. In our why-QA experiments in Section 6 we
used a 90% precision setting to identify the comprehensible
questions (i.e., SVM scores higher than 0.4).

4.2 Obtaining unlabeled examples

If a question is judged comprehensible, we extracted its ex-
pected answer from the cause part of the causal relation from
which the question was generated. We obtained about 3.8
million pairs of questions and expected answers from 656
million causal relations. Then we retrieved the top-20 an-
swer passages for each of these questions using our base-
line why-QA system. Finally, we made unlabeled examples,
U = {(q, e, pj)}, where q is a question, e is an expected
answer to q, and pj is a passage in the top-20 answer pas-
sages {p1, · · · , p20} to question q. For example, let A1 in
Table 1 be a retrieved answer passage to the question, “Why
are tsunamis generated?” Then we can make an unlabeled
example in Table 2 with the answer passage as well as the
question and its expected answer from the CR.

5 Semi-supervised Learning

The pseudo-code of our semi-supervised learning algo-
rithm is given in Figure 2. The algorithm is an iterative pro-
cedure, which takes, as input, unlabeled examples U gener-
ated by the procedure in Section 4, manually labeled training
data L0, and maximum iteration number l. At the i-th itera-
tion, the procedure 1) trains classifier ci using existing train-
ing data Li (ci := Learn(Li)), 2) automatically assigns la-
bels to some unlabeled examples selected from U according

5http://www.tkl.iis.u-tokyo.ac.jp/∼ynaga/jdepp/
6A bunsetsu, which is a syntactic constituent composed of a

content word and several function words such as postpositions
and case markers, is the smallest phrase of syntactic analysis in
Japanese.

q Why are tsunamis generated?
e The ocean’s water mass is displaced by an earth-

quake.
pj ..... Sudden vertical displacements of the seafloor

by earthquakes, disturb the ocean’s surface, dis-
place water, and generate destructive tsunami
waves. This is basically how a tsunami is gener-
ated. .....

Table 2: Example of unlabeled examples

1: Input: Unlabeled examples (U ), initial training data
(L0), and maximum iteration number (l)

2: Output: A classifier (cn)
3: i = 0
4: repeat
5: ci := Learn(Li)
6: Li

U := Label(ci, U)
7: Li+1 := Li ∪ Li

U
8: i = i+ 1
9: until stop condition is met

Figure 2: Our semi-supervised learning algorithm

to their classification results by ci (Li
U := Label(ci, U)),

and 3) enlarges the current training data with new training
instances (Li+1 := Li ∪Li

U ). The iteration terminates when
either of the two stop conditions is satisfied: the procedure
already iterates l times (i = l) or no more new training in-
stances can be added to Li

U (Li
U = φ).

5.1 Automatic labeling of unlabeled examples

This procedure, Label(ci, U) in Figure 2, labels unlabeled
examples based on the hypothesis described in the Introduc-
tion and is composed of candidate selection and automatic
labeling. Recall that unlabeled example u = (q, e, pj) ∈ U
is represented as a triple of why-question q, expected answer
e to q, and answer passage pj that is returned by our baseline
why-QA system with q as its input. Also recall that q and e
were obtained from the same causal relation.

Candidate selection To select candidates for a new
training instance, we took an uncertainty sampling ap-
proach (Lewis and Gale 1994) that has been used in active
learning (Tong and Koller 2001; Zhu et al. 2008; Lughofer
2012; Settles 2012; Zhu and Ma 2012) and semi-supervised
learning with multi-view classifiers (Cao, Li, and Lian 2003;
Gu, Zhu, and Zhang 2009; Oh, Uchimoto, and Torisawa
2009; Oh et al. 2010). At the i-th iteration of the whole
procedure, classifier ci, which is actually SVMs, provides
score value s for each question-passage pair (q, pj). We rep-
resent this by s = ci(q, pj). First, our procedure chooses the
question-passage pair with the highest score s among the
pairs for identical question q. Let the chosen pair for ques-
tion q′ be (q′, p′). Then we check whether classifier ci is un-
certain about its prediction of (q′, p′). We assume that ci’s
prediction of (q′, p′) is uncertain if s′ = ci(q′, p′) is close
enough to the decision boundary for the SVMs, i.e., 0 (Tong
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and Koller 2001). More precisely, (q′, p′) can be selected as
a candidate to be assigned a label and added to the existing
training data, when all the following conditions hold where
e′ is the expected answer to q′ such that q′ and e′ came from
the same causal relation.

• |ci(q′, p′)| < α (α > 0), where α is a threshold value to
determine the uncertainty of the classifier’s prediction.

• Answer passage p′ does not include the causal relations
from which q′ and e′ were extracted.

• (q′, p′) does not appear in current labeled example Li.

Note that the first condition is for uncertainty sampling
and the second is posed to avoid giving a heavy bias to the
causal relation features in training a classifier. The third is
for preventing the same examples from being added to the
training data more than once.

Automatic labeling Once (q′, p′) is selected as a can-
didate for automatic labeling, we compute the vocabulary
overlap between answer passage p′ and expected answer
e′ to question q′. In automatic labeling, we assume that
p′ is likely to be a correct answer, if the overlap between
p′ and e′ is large. The overlap is estimated using function
V O(e′, p′) defined below, where T (x) is a set of terms (i.e.,
content words including nouns, adjectives, and verbs) in x,
and S(p′) is a set of subsequent two sentences extractable
from answer passage p′:

V O(e′, p′) = maxs∈S(p′)
|T (e′) ∩ T (s)|

|T (e′)| (1)

Note that the terms in the subsequent two sentences in an-
swer passage p′ rather than those in whole answer passage
p′ are matched with those in expected answer e′. We use this
scheme because of our observation that the terms in an ex-
pected answer are likely to coherently appear in subsequent
two sentences in a correct answer passage. Using vocabulary
overlap estimation V O(e′, p′), the procedure decides the la-
bel for question-passage pair (q′, p′) as follows. Note that
we pose additional conditions on the overlap between ques-
tion q′ and answer passage p′ (i.e. V O(q′, p′)), based on the
observation that the correct answer/passage should have a
large vocabulary overlap with the question as well:

• If V O(e′, p′) > β and V O(q′, p′) > β, then the label is
“correct,” where 0.5 < β < 1.

• If V O(e′, p′) < 1 − β or V O(q′, p′) < 1 − β, then the
label is “incorrect.”

Finally, all the automatically labeled examples are ranked
by |ci(q′, p′)| in ascending order. The top K examples are
selected from the ranked result and added to Li

U . Intuitively,
the automatically labeled examples, which current classifier
ci classified with lower confidence (i.e., of which current
classifier ci is more uncertain about its prediction) has higher
priority to be selected as new training instances. Note that
we have three parameters, α, β, and K. We determined their
values through experiments using our development data.

6 Experiments

6.1 Data

Why-QA Data Set For the experiments, we used the same
data set as the one used in our previous works (Oh et al.
2012; 2013). This data set is composed of 850 Japanese
why-questions and their top-20 answer passages obtained
from 600 million Japanese web texts by using the answer-
retrieval method of Murata et al. (2007). Three annotators
checked whether an answer passage in the question-passage
pair is a correct answer to the question, and final judgments
were made by majority vote7.

For our experiments, we divided the data set (17,000
question-passage pairs) into training, development, and test
data. For our training data, we first selected 7,000 question-
passage pairs for 350 questions, which we used only as train-
ing data in our previous works (Oh et al. 2012; 2013) and
randomly chose 8,000 question-passage pairs for 400 ques-
tions from the remainders of the first selection. We equally
divided the 2,000 question-answer pairs for 100 questions,
which is the remainder after the selection of the training
data, into development and test data.

The training data was used as the initial training data (L0

in Figure 2) for training the initial classifier (c0 in Figure 2).
The development data was used to determine several pa-
rameters in our semi-supervised learning including α (the
threshold value to determine whether a classifier is uncer-
tain about its classification result), β (the threshold value
to determine the label of an unlabeled example in the au-
tomatic labeling), and K (the maximum number of auto-
matically labeled examples added to the existing training
data at each iteration). All the combinations of α, β, and
K derived from α ∈ {0.2, 0.3, 0.4}, β ∈ {0.6, 0.7, 0.8},
and K ∈ {150, 300, 450} were tested over the development
data, and α = 0.3, β = 0.7, and K = 150, which showed
the best performance, were used for our final experiments.
We also set the maximum iteration number (l in Figure 2) to
40, where the performance converged in the test with these
selected parameters on the development data.

Unlabeled examples (U in Figure 2) We randomly sam-
pled 11 million causal relations (about 1/60 of all of the
causal relations) from the 656 million causal relations that
were automatically acquired from our two billion web texts
by using our causality recognizer (Oh et al. 2013). We gen-
erated questions and their extracted expected answers from
these selected causal relations and identified the comprehen-
sible ones from these questions. We obtained 56,775 com-
prehensible questions and got the top-20 answer passages
by using these questions as input for our baseline why-QA
system. We denote as USC the unlabeled examples obtained
using only these comprehensible questions.

We also prepared another type of unlabeled example to
show the contribution of the comprehensible questions to
our semi-supervised learning. We generated questions from
the 11 million causal relations and used all of the randomly

7Their inter-rater agreement by Fleiss’ kappa reported in Oh et
al. (2012) was 0.634.
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selected 100,000 questions without removing the incom-
prehensible ones for obtaining the unlabeled examples. We
denote these unlabeled examples as UAll. Finally, we had
unlabeled examples such that |USC | = 514,674, |UAll| =
1,548,998 and |USC ∩ UAll| = 17,844.

6.2 Evaluation with Why-QA Data Set

We conducted the experiments with the systems in the fol-
lowing different settings of answer ranking:
• MURATA represents Murata et al. (2007)’s unsupervised

method that was used for creating the Why-QA Data Set.
• INIT represents our implementation of Oh et al. (2013),

the state-of-the-art method for why-QA, that we used as
the initial classifier in our semi-supervised learning.

• ATONCE uses a classifier obtained using all the automati-
cally labeled examples (without the restriction of K=150)
obtained at the first iteration of our semi-supervised learn-
ing algorithm as well as the initial training data as its
training data. Comparison between ATONCE and our pro-
posed method can show the effect of iterations in our
semi-supervised learning.

• OURS(UAll) represents a variation of our method, where
UAll is used as the unlabeled examples for our semi-
supervised learning. Comparison between OURS(UAll)
and our proposed method can show the contribution of
comprehensible questions in our method.

• OURS(CR) is another variation of our method. In this
setting, we used USC as unlabeled examples and allowed
our semi-supervised learning algorithm to select question-
passage pairs as a candidate for new training instances
even when the answer passage contained the same causal
relation as the one from which the question was ex-
tracted. Since such question-passage pairs can cause sys-
tem’s overfitting to the results of an automatic causality
recognizer, OURS(CR) can show its effect in our semi-
supervised learning.

• OURS(USC ) represents our proposed method.
• UPPERBOUND represents a system that always locates all

the n correct answers to a question in top-n ranks if they
are in the test data. This indicates the upper-bound of per-
formance in this experiment.
We used TinySVM8 with a linear kernel for training a

classifier in all the systems except for MURATA and UP-
PERBOUND. Evaluation was done by Precision of the top
answer (P@1) and Mean Average Precision (MAP), both of
which are the same measures used in Oh et al. (2013).

Table 3 shows the performance of the seven systems.
R(P@1) and R(MAP) represent the relative performance
of each system to that of UPPERBOUND. More precisely,
R(P@1) and R(MAP) are P@1 and MAP evaluated using
all the questions that have at least one correct answer in the
test data.

None of ATONCE, OURS(UAll), and OURS(CR) outper-
formed INIT, which used only the manually created ini-
tial training data. On the contrary, our proposed method

8http://chasen.org/∼taku/software/TinySVM/

P@1 MAP R(P@1) R(MAP)
MURATA 30.0 36.1 45.5 54.7
INIT 42.0 46.5 63.6 70.5
ATONCE 42.0 45.4 63.6 68.8
OURS(UAll) 34.0 41.7 51.5 63.2
OURS(CR) 42.0 44.4 63.6 67.3
OURS(USC ) 50.0 48.9 75.8 74.1

UPPERBOUND 66.0 66.0 100 100

Table 3: Performance of systems

OURS(USC ) consistently showed better performance in
both P@1 and MAP than INIT. This implies that 1) the iter-
ative process in our proposed method contributed to the per-
formance improvement; 2) only the new training instances
obtained by the comprehensible questions improved the per-
formance; and 3) the new training instances generated di-
rectly from causal relations negatively affected answer rank-
ing in our experimental setting. Further, we found that the
R(P@1) of OURS(USC ) is about 75.8% (=50.0/66.0). This
indicates that answer ranking by our method can locate a
correct answer to a why-question in the top rank with high
precision if an answer-retrieval module can retrieve at least
one correct answer to the question from web texts.
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Figure 3: P@1 and MAP curves

Figure 3 shows the P@1 and MAP curves of OURS(CR),
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Q1 Why are emissions from diesel vehicles so toxic that plants wither and die?
AQ1 ... Compared with a gasoline engine, a diesel engine has higher fuel efficiency, lower CO2 emissions but higher

NOx emissions. NOx causes air-pollution and is related to acid rain and the destruction of the ozone. This also
kills plants on the ground, leading to subsequent huge environmental problems. ...

Q2 Why wasn’t (the main donjon of) Edo Castle rebuilt after it was destroyed by the 1657 Meireki fire?
AQ2 ... The height of Edo Castle’s main donjon was comparable with that of a 20-story building. ... However, after its

destruction in the big fire in 1657, (the main donjon of Edo Castle) was not rebuilt. Though government elders
proposed rebuilding it, Daimyo Hoshina Masayuki rejected the proposal, insisting that “we must priotize helping
people recover from the damage and suffering caused by this big fire.” ...

Table 4: Examples of answers (translated from Japanese) that only our proposed method could return as the top answer.

OURS(UAll) and OURS(USC ) as the iterations advance to-
ward 50 in our semi-supervised learning. The P@1 and
MAP of OURS(USC ) reached 50% and 49.2%, respectively,
after 50 iterations. On the contrary, OURS(UAll) achieved
the better performance in both P@1 and MAP than its ini-
tial stage only for the first several iterations. We believe
that the noisy labeled examples introduced by incompre-
hensible questions badly affected the performance. Further
OURS(CR) had the better performance than its initial stage
at only the three iteration points and its MAP was consis-
tently worse than that of its starting point. These results in-
dicate that our solutions to the two problems in generating
training data from causal relations (i.e. incomprehensible
questions and system’s overfitting to the results of an au-
tomatic causality recognizer explained in the Introduction)
worked well, and all of our solutions contributed to the per-
formance improvement.

Table 4 shows the top answers returned by our proposed
method OURS(USC ), where the other five systems except
for UPPERBOUND failed to return them as the top answer.
The clause or sentence in italics in answer passages AQ1

and AQ2 represents certain causality related to the answers
to each of questions Q1 and Q2. Note that the causality in
the examples is expressed without such explicit clue words
as “because.” We believe that our proposed method provided
training data with which our answer ranker could learn a
pattern of such causality and, as a result, it returned those
answers as the top answers.

6.3 Evaluation with answer retrieval in our
baseline why-QA system

We performed another evaluation to show that OURS(USC ),
which is the answer ranker trained with our proposed
method, works well under a different answer-retrieval set-
ting from that used for creating the Why-QA Data Set (i.e.,
the answer-retrieval method of Murata et al. (2007) and 600
million web texts). For this purpose, we retrieved answer
passages using all the questions in the development and
test data of the Why-QA Data Set as input to the answer-
retrieval module in our baseline why-QA system, which was
described in Section 3.1. Then, to get the top-5 answer pas-
sages to each of the questions, we ranked the retrieved pas-
sages with INIT and OURS(USC ) in the previous experi-
ment. Three annotators checked the top-5 answer passages
returned by INIT and OURS(USC ), and their final judgement

was given by majority voting9. The evaluation was done
by P@1, P@3, and P@5. P@N measures how many ques-
tions have correct answers in the top-N answer passages re-
turned by a system. Table 5 shows the result. Our proposed
method outperformed INIT in P@1, P@3, and P@5. This re-
sult shows that our proposed method consistently improved
answer ranking in the different settings for answer retrieval
in a why-QA system, at least in our experimental setting.

P@1 P@3 P@5
INIT 43.0 65.0 71.0
OURS(USC ) 50.0 68.0 75.0

Table 5: Performance of systems with answer retrieval in our
baseline why-QA system

7 Conclusion

In this paper, we presented a novel approach to why-QA,
which is semi-supervised learning that exploits automati-
cally generated training data for why-QA. We propose a
novel method for a non-trivial task, to generate training data
(question-answer pairs) for why-QA using causal relations
in texts. Our method generates comprehensible questions
from causal relations and retrieves from web texts answers
to the questions, which are likely to be paraphrases of a
given causal relation, using our baseline why-QA system
and vocabulary overlap between answers and causal rela-
tions. These paraphrases of a given causal relation in the
retrieved answers allow why-QA systems to learn a wide
range of causality expression patterns and to recognize such
causality expressions as candidates for answers to why-
questions. Through our experiments, we showed that our
proposed method achieved 8% improvement in precision
at the top answer over the current state-of-the-art system
for Japanese why-QA, which was actually used as a start-
ing point for our semi-supervised learning. In future work,
we plan to extend our proposed method with event causal-
ity (Hashimoto et al. 2014; 2015), entailment/contradiction
patterns (Kloetzer et al. 2013; 2015), and zero anaphora res-
olution (Iida et al. 2015).

9Their inter-rater agreement by Fleiss’ kappa was 0.722
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