
Joint Inference over a Lightly Supervised Information Extraction Pipeline:
Towards Event Coreference Resolution for Resource-Scarce Languages

Chen Chen and Vincent Ng
Human Language Technology Research Institute

University of Texas at Dallas
Richardson, TX 75083-0688

{yzcchen,vince}@hlt.utdallas.edu

Abstract

We address two key challenges in end-to-end event
coreference resolution research: (1) the error propaga-
tion problem, where an event coreference resolver has
to assume as input the noisy outputs produced by its up-
stream components in the standard information extrac-
tion (IE) pipeline; and (2) the data annotation bottle-
neck, where manually annotating data for all the com-
ponents in the IE pipeline is prohibitively expensive.
This is the case in the vast majority of the world’s nat-
ural languages, where such annotated resources are not
readily available. To address these problems, we pro-
pose to perform joint inference over a lightly super-
vised IE pipeline, where all the models are trained us-
ing either active learning or unsupervised learning. Us-
ing our approach, only 25% of the training sentences in
the Chinese portion of the ACE 2005 corpus need to be
annotated with entity and event mentions in order for
our event coreference resolver to surpass its fully super-
vised counterpart in performance.

1 Introduction

Event coreference resolution is the task of determining
which event mentions in a text refer to the same real-world
event. Compared to entity coreference, event coreference is
not only much less studied but arguably more challenging.

Our goal in this paper is to examine two unaddressed, yet
significant challenges in end-to-end event coreference re-
search. First, event coreference resolvers suffer from the er-
ror propagation problem. Recall that for two event mentions
to be coreferent, both their triggers (i.e., the words realizing
the occurrence of the events) and their corresponding argu-
ments (e.g., the times, places, and people involved in them)
have to be compatible. However, identifying potential argu-
ments (which are typically provided by an entity extraction
system), linking arguments to their event mentions (which
is typically performed by an event extraction system), and
determining the compatibility between two event arguments
(which is the job of an entity coreference resolver), are all
non-trivial tasks. The errors made by any of these upstream
components in the information extraction (IE) pipeline can
propagate to the event coreference resolver. For instance,

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

if the upstream event extraction system fails to extract cer-
tain event mentions, they will not be accessible to the event
coreference resolver, thus harming its recall. Some previous
work sidestepped this error propagation problem by evalu-
ating their event coreference resolvers in a rather unrealistic
setting (Chen, Ji, and Haralick 2009), where they assume
that all but the event coreference system in the pipeline are
implemented by an oracle.

Second, event coreference suffers from the data anno-
tation bottleneck. To date, state-of-the-art end-to-end event
coreference performance has been achieved by training not
only the event coreference resolver but also the other sys-
tems in the IE pipeline in a supervised manner (Chen and Ng
2014). In other words, annotated data needs to be provided
to train each of the systems in the pipeline. Unfortunately,
such annotated data is available only for a handful of lan-
guages (e.g., English, Chinese, and Arabic, as provided by
the ACE corpora). This data annotation bottleneck makes it
challenging to apply existing event coreference resolution
approaches to most of the world’s natural languages.

To address the error propagation problem, we propose
to perform joint inference via Integer Linear Programming
(ILP) (Roth and Yih 2004) over the outputs of the models
trained for the four key tasks in the IE pipeline, namely
entity extraction, entity coreference, event extraction, and
event coreference. To our knowledge, while there has been
previous work on applying ILP to entity coreference (Denis
and Baldridge 2007; Finkel and Manning 2008) and entity
typing and coreference (Durrett and Klein 2014), this is the
first attempt to perform joint inference for four key IE tasks.

To relieve the data annotation bottleneck, we reduce
the amount of labeled data needed to train the systems in
the IE pipeline by employing a combination of unsuper-
vised learning and active learning (Cohn, Atlas, and Ladner
1994). The key idea is to divide the IE tasks in the pipeline
into two groups: domain-independent tasks and domain-
dependent tasks. Entity coreference and event coreference
can be modeled as domain-independent processes once a set
of entity/event mentions is given. Taking advantage of their
domain-independent nature, we design generative models
for these coreference tasks and train them in an unsuper-
vised manner. On the other hand, the remaining tasks are
domain-dependent. For instance, event extraction is by defi-
nition domain-dependent in the sense that the types/subtypes

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

2913



of the events to be extracted and the semantic roles of their
arguments need to be specified a priori. Given their domain-
dependent nature, we train classifiers for these tasks in a su-
pervised manner, but to reduce the amount of manual anno-
tation effort, we train them on informative instances that are
intelligently selected via active learning. Importantly, recall
that while we employ active learning to select instances for
training classifiers for entity and event extraction, our ulti-
mate goal is to use as little data as possible to build state-of-
the-art event coreference models. Hence, we propose to in-
corporate the feedback provided by our unsupervised event
coreference model into the active learning process. This will
allow us to select more informative entity and event extrac-
tion instances to train on, thus enhancing event coreference
performance. This results in our coreference-aware active
learning algorithm.1

Using our active-learning, joint-inference approach, only
25% of the training sentences in the Chinese portion of the
ACE 2005 corpus need to be annotated with entity and event
mentions in order for our event coreference resolver to sur-
pass its fully supervised counterpart in performance. We be-
lieve that our work represents an important step towards
building event coreference resolvers for languages for which
annotated resources for IE tasks are not readily available.

2 Related Work

Almost all existing approaches to event coreference were de-
veloped for English. While early work (e.g., Humphreys,
Gaizauskas, and Azzam (1997)) in MUC was limited to sev-
eral scenarios, ACE takes a further step towards processing
more fine-grained events. Most ACE event coreference re-
solvers are supervised (e.g., Ahn (2006), Chen and Ji (2009),
McConky et al. (2012), Sangeetha and Arock (2012)).

There have also been attempts to evaluate event corefer-
ence resolvers on other corpora. For example, OntoNotes
(Pradhan et al. 2007) was used by Chen et al. (2011); Event-
CorefBank (ECB) (Bejan and Harabagiu 2010) was used by
Lee et al. (2012); ECB+ (Cybulska and Vossen 2014), an
extension to ECB, was used by Yang, Cardie, and Frazier
(2015); and the Intelligent Community (IC) corpus (Hovy et
al.. 2013) was used by Cybulska and Vossen (2013), Goyal
et al. (2013) and Araki et al. (2014). However, as noted by
Liu et al. (2014), OntoNotes and ECB are only partially an-
notated with event coreference links. The IC corpus is not
publicly available at the time of writing.

Compared to English event coreference, there has been
much less work on Chinese event coreference. SinoCorefer-
encer (Chen and Ng 2014), a publicly-available ACE-style
event coreference resolver for Chinese that achieves state-
of-the-art results2, employs a supervised approach where a
pairwise classifier is trained to determine whether two event
mentions are coreferent.

1Note that our coreference-aware active learner is not an ac-
tive learner for coreference resolution (Laws, Heimerl, and Schütze
2012; Miller, Dligach, and Savova 2012). It is an active learner for
entity and event extraction whose results are to be used for unsu-
pervised event coreference resolution.

2www.hlt.utdallas.edu/∼yzcchen/coreference/

Figure 1: Example of ACE IE.

3 ACE IE Tasks

Next, we give an overview of the four key IE tasks defined in
ACE 2005. The ACE event coreference task involves per-
forming coreference on the event mentions that belong to
one of the 33 ACE event subtypes in a document. The ACE
entity coreference task involves performing coreference on
the entity mentions that belong to one of the 7 ACE entity
types. The ACE entity extraction task involves identifying
the entity mentions needed to perform entity coreference.
Finally, the ACE event extraction task involves identifying
the event mentions needed to perform event coreference. An
event mention is composed of a trigger (i.e., the word re-
alizing the event’s occurrence) and a set of arguments (i.e.,
the event’s participants). Each event trigger has a subtype,
while each event argument has a role. Hence, identifying
an event mention involves (1) event trigger identification
and subtype determination (i.e., identifying and assigning
a subtype to its trigger); and (2) argument identification
and role determination (i.e., identifying and assigning a
role to each of its arguments).

To better understand the ACE 2005 IE tasks, consider the
sentence in Figure 1. An entity extraction system should
determine that the four parenthesized phrases are entity
mentions. An entity coreference resolver should determine
that the two entity mentions (scoundrels) and (the insur-
gents) are coreferent. An event extraction system should
identify three event mentions, whose trigger words are
bracketed. Taking the last event mention as an example,
a trigger identification and subtype determination system
should determine that the trigger word is (attack) with sub-
type Die. After that, an argument identification and role de-
termination system should identify (the insurgents) as the
argument of this event mention with role Agent. Finally, an
event coreference resolver should determine that the two
event mentions triggered by (assassinated) and (attack) are
coreferent.

4 Models for the IE Tasks

Recall from the introduction that to minimize reliance on
annotated data, we design generative models for entity and
event coreference resolution, training them in an unsuper-
vised manner. On the other hand, we train classifiers for en-
tity and event extraction in a supervised manner, reducing
the annotation effort via active learning.

Coreference Models

We train three coreference models, one for pronoun reso-
lution, one for name and nominal resolution, and one for
event coreference resolution. The first two models assume
as input a set of entity mentions and output an antecedent

2914



for each anaphoric entity mention. The event coreference
model essentially has the same goal, except that it operates
on event mentions. All three models employ the same under-
lying generative process that we previously used for unsu-
pervised event coreference resolution (Chen and Ng 2015),
differing only w.r.t. the features used.

Our pronoun resolver employs nine features to represent
the pronoun to be resolved, p, and one of its candidate an-
tecedents, c, as described below:
Lexical (1): whether p and c are lexically identical.
Grammatical (5): whether p and c have the same
grammatical role; whether they agree in num-
ber/gender/person/animacy.
Semantic (1): whether c is semantically compatible with p’s
governing verb.
Distance (2): the sentence distance between p and c; the
number of intervening entity mentions.

Our name/nominal resolution model employs 12 features
to represent the name/nominal to be resolved, n, and one of
its candidate antecedents, c, as described below:
Lexical (5): whether n and c are lexically identical; whether
they have the same head word; whether they have differ-
ent modifiers; whether one mention is an abbreviation of the
other; whether n contains all the words appearing in c.
Syntactic (3): whether n and c are in a copular construction;
whether they have an appositive relationship; whether they
are in an i-within-i construct.
Semantic (2): whether n and c have the same semantic type
according to a Chinese lexical database3; whether they have
the same entity subtype according to the entity extraction
model described below.
Distance (2): the sentence distance between n and c; the
number of intervening entity mentions.

Finally, our event coreference model employs six features
to represent the event mention to be resolved, e, and one of
its candidate antecedents, c, as described below:
Trigger-based (2): whether e and c’s triggers have the same
basic verb and compatible verb structures4; whether they are
both nominal and are incompatible w.r.t. number.
Argument-based (3): whether e and c possess two argu-
ments that have the same semantic role but different seman-
tic classes; whether they possess two arguments that have
the same semantic role but are not coreferent; whether they
possess two named entity arguments that both have VALUE
as their NE type but are lexically different.
Distance (1): the number of intervening event mentions.

Entity and Event Extraction Models

We train three classifiers, one for entity extraction and two
for event extraction, using SVMmulticlass (Joachims, Finley,
and Yu 2009).

The entity extraction model extracts and determines the
type of each entity mention in a document. To train this clas-
sifier, we create one training instance for each noun n in the

3The dictionary is available from the Harbin Institute of Tech-
nology NLP Group’s website.

4See Chen and Ng (2015) for details on the definitions of basic
verbs and verb structure compatibility.

training data. If n heads an entity mention whose entity type
belongs to one of the seven ACE entity types, then the class
label is its entity type. Otherwise, we set the class label to
None. Each instance is represented using 17 features, as de-
scribed below:
Lexical (6): n’s string; n’s characters; characters in a win-
dow of five surrounding n.
Wordlist-based (10): We employ 10 Chinese wordlists to
create 10 binary features, each of which encodes whether
n appears in a wordlist. The 10 wordlists are (a) Chinese
surnames; (b) famous geo-political entity (GPE) and loca-
tion names (three wordlists); (c) Chinese location suffixes;
(d) Chinese GPE suffixes; (e) famous international organiza-
tion names; (f) famous company names; (g) famous person
names; and (h) a list of pronouns.
Semantic (1): n’s semantic category according to a Chinese
lexical database.3

The trigger identification and subtyping classifier takes
as input a candidate trigger word (i.e., a word that survives
Li et al.’s (2012) filtering rules) and outputs its event subtype
(if it is a true trigger) or None (if it is not a trigger). To train
this classifier, we create one training instance for each word
w in each training document. If w does not correspond to a
trigger, the class label of the corresponding instance is None.
Otherwise, the class label is the subtype of the trigger. Each
instance is represented by 26 features, as described below:
Lexical (7): w’s string; w’s characters; w’s part-of-speech
(POS) tag; word and POS bigrams formed from w and its
preceding or following word.
Syntactic (6): the depth of w’s node in its syntactic parse
tree; the path from w’s node to the root of the tree; the phrase
type of w’s grandparent node and its phrase structure; the
path from w’s node to its governing IP node; whether a zero
pronoun (ZP) precedes w.
Semantic (7): whether w exists in the list of predicates ex-
tracted from the Chinese PropBank (Xue and Palmer 2005);
w’s entry number in a Chinese lexical database3; whether w
is a predicate according to a semantic role labeler5; if yes,
the entity type and subtype of its Arg0 and Arg1.
Nearest entity (6): the entity type of the entity syntacti-
cally/textually closest to w; the entity types of the left and
right entities syntactically/textually closest to w.

The argument identification and role determination
classifier takes as input a candidate argument link aen, link-
ing (1) a candidate event mention e (i.e., an event mention
whose trigger is identified by the aforementioned trigger
identification and subtyping classifier), and (2) a candidate
argument n of e. It outputs the role of n w.r.t. e (if n is a true
argument of e) or None (if n is not an argument of e). To
train this classifier, we create training instances by pairing
each true event mention e (i.e., event mention consisting of a
true trigger) with each of e’s candidate arguments. If the can-
didate argument n is indeed a true argument of e, the class
label of the training instance is the argument’s role. Other-
wise, its class label is None. Each instance is represented by
19 features, as described below:

5https://code.google.com/p/mate-tools/

2915



Basic (6): the POS of e’s trigger; e’s event subtype; n’s en-
tity type; n’s head word; e’s event subtype + n’s head word;
e’s event subtype + n’s entity subtype.
Neighbors (6): the word to the left/right of n; the word to
the left/right of n + the word’s POS; the word to the left/right
of e’s trigger + the word’s POS.
Syntactic (4): the phrase structure obtained by expanding
the grandparent of e’s trigger in its syntactic parse tree; the
shortest path from n’s head word to e’s trigger; the length of
this shortest path.
Positional (1): whether e appears before or after n.
Dependency-based (1): the dependency path from n’s head
word to e’s trigger.
ZP-based (2): whether a ZP z precedes e’s trigger; if so,
whether n is coreferent with z.

5 Coreference-Aware Active Learning

Recall from the above that annotated data is needed to train
the three entity and event extraction models. To reduce anno-
tation effort, we employ active learning to intelligently select
data for manual annotation.

Our active learning algorithm selects the most informa-
tive sentences to annotate. Since the annotations are only
used to train the entity and event extraction models, when a
sentence s is selected for manual annotation, only the event
mentions and the entity mentions in s will be annotated.6 In
particular, we will not annotate s with any entity coreference
and event coreference information, as we opted to use our
unsupervised generative models to produce entity and event
coreference chains. As mentioned before, since our ultimate
goal is to perform event coreference, our active learning al-
gorithm seeks to select sentences whose annotated entity and
event mentions will likely improve event coreference perfor-
mance. To this end, we propose a coreference-aware active
learning algorithm, which exploits the information provided
by the event coreference model in the learning process.

Our active learning algorithm is shown in Figure 2. In
each iteration, it (1) retrains the entity and event extraction
models on the sentences annotated so far; (2) retrains the
unsupervised entity and event coreference models using the
entity and event mentions extracted by the entity and event
extraction models; (3) applies all these models to the un-
labeled documents; and (4) selects the sentences for man-
ual annotation based on the outputs of the event coreference
model and the event trigger classifier.

Before describing our sentence selection algorithm, re-
call that our active learning algorithm takes as one of its
inputs a set of seed sentences L that are annotated with en-
tity and event mentions. The simplest way to create L is to
select these seeds randomly. However, we hypothesize that
event mentions whose triggers appear more frequently tend
to have a higher impact on improving event coreference, and
as a result, we prefer selecting as seeds those sentences con-
taining these frequently occurring triggers. Specifically, we

6When annotating an event mention, we identify its trigger and
its arguments, and annotate its event type/subtype and the role of
each of its arguments. When annotating an entity mention, we an-
notate its entity type.

Input:
- D, the set of all documents in the training data
- L, the set of all labeled sentences in the docs in D
- U , the set of all unlabled sentences in the docs in D

Output:
- L, the set of all labeled sentences in the docs in D

Repeat:
1. Train entity extraction model SVMentity on L
2. Apply SVMentity to extract entity mentions from U
3. For each document Di, train the unsupervised entity corefer-

ence resolution models on the extracted entity mentions and apply
them to create entity coreference chains

4. Train event trigger classifier SVM trigger and event argument
classifier SVMarg on L

5. Apply SVM trigger and SVMarg to extract event triggers
and event arguments from U respectively

6. For each document Di, train unsupervised event coreference
model Corefevent on the extracted event mentions and apply it to
create event coreference chains

7. Select the sentences A from U based on the outputs of
Corefevent and SVM trigger

8. Annotate sentences in A manually
9. L = L ∪ A, U = U −A

Until: a stopping criterion is reached

Figure 2: Our active learning algorithm.

create L, which is initially empty, by incrementally pop-
ulating it with annotated sentences, as follows. Observing
that the part-of-speech (POS) tags of most trigger words
are NN , V V or P , we first collect the list of words with
these POS tags and then sort them in decreasing order of
frequency of occurrence in the unlabeled set U . We process
each word w in the sorted list as follows. If w never ap-
pears in L, we randomly select and annotate two unlabeled
sentences containing w and add them to L; if w only ap-
pears once in L, we randomly select and annotate one unla-
beled sentence containing w and add it to L; otherwise, we
do nothing. We repeat the above steps until L is populated
with 200 sentences.

Figure 3 shows our sentence selection algorithm, which
proceeds as follows. A, which is initially empty, will be in-
crementally populated with the selected sentences. First, it
divides the set of candidate event triggers (i.e., event trig-
gers annotated by the trigger classifier) into two subsets: T1
contains those that are involved in event coreference chains,
whereas T2 contains those that are singletons (i.e., not in-
volved in any event coreference chains). It considers se-
lecting sentences containing triggers in T1 before consid-
ering selecting any of the sentences containing triggers in
T2. The reason is that annotating the triggers in T1 would
have a larger impact on event coreference performance: by
annotating the event mentions in T1, we can remove the
already-established event coreference links between those
candidate event mentions that turn out not to be true event
mentions, thus potentially improving event coreference pre-
cision. Compared to the triggers in T1, those in T2 have a
lesser impact on event coreference performance: in virtually
all commonly-used coreference scoring programs, all sin-

2916



Input:
- L, the set of all labeled sentences in the docs in D
- U , the set of all unlabled sentences in the docs in D
- C, the set of all event coreference clusters in the docs in D
- T = {tijk}, the set of all candidate event triggers in U (tijk

is the kth candidate trigger in the jth sentence of the ith training
document)

-n, batch size (number of sentences to be selected)
Output:

- A, the set of selected sentences
Initialize:

- A = {}
Steps:

1. Divide T into two disjoint sets T1 and T2 based on C, where
T1 contains those candidate event triggers of non-singleton event
mentions, and T2 contains those candidate event triggers of single-
ton event mentions

2. Sort T1 and T2 in ascending order of the confidence value re-
turned by SVMtrigger

3. For every candidate trigger tijk in T1,
unless (a) the size of A equals n; (b) the lexical string of tijk

has appeared in the sentences in L more than twice; or (c) the sen-
tence sij containing tijk has already been selected,

add the sentence containing tijk to A
4. For every candidate trigger tijk in T2,

unless (a) the size of A equals n; (b) the lexical string of tijk
appears in the sentences in L more than twice; or (c) the sentence
containing tijk has been selected,

add the sentence containing tijk to A

Figure 3: Sentence selection algorithm.

gleton event mentions are removed before the scorers are ap-
plied. In fact, the sentences containing triggers in T2 are con-
sidered only if the batch size (i.e., the number of sentences to
be selected) has not been reached after all the sentences con-
taining triggers in T1 are considered. It is this preference that
makes our sentence selection algorithm coreference-aware.

In addition, the algorithm prefers selecting sentences con-
taining the low-confidence triggers in T1 according to the
event trigger classifier (i.e., candidate triggers that are clos-
est to the SVM hyperplane), unless (1) the low-confidence
trigger has been annotated at least twice in L or (2) the sen-
tence containing the low-confidence trigger has previously
been selected. The algorithm employs the same preference
when selecting sentences from T2.

6 Applying Joint Inference

In this section, we explain how we employ joint inference to
address the error propagation problem.

Notation

Let D be a test document. Let E be the set consisting of
the |E| candidate event mentions in D, e1, ...e|E|, which
are sorted by the order in which they appear in D. We use
EP (D) to denote the set of

(|E|
2

)
candidate event mention

pairs, i.e., EP (D) = {(ei, ej)|1 ≤ i < j ≤ |E|}. Similarly,
N is defined as the set consisting of the |N | entity mentions
in D, n1, ...n|N |, which are sorted by the order in which they

appear in D. We use NP (D) to denote the set of
(|N |

2

)
entity

mention pairs, i.e., NP (D) = {(ni, nj)|1 ≤ i < j ≤ |N |}.
Also, we use aij to denote the candidate argument link con-
necting candidate event mention ei and entity mention nj ,
Role(aij) to denote the role played by nj in ei, and A to
denote the set of all candidate argument links in D.

We define T as the 34-element set consisting of the 33
ACE event subtypes and None, and t as a subtype in T . Sim-
ilarly, we define R as the 36-element set consisting of the 35
ACE argument roles and None, and r as a role in R. Also,
we define S as the 8-element set consisting of the seven ACE
entity types and None, and s as a type in S.

Also, we define five terms. Pec(ei, ej) is the event coref-
erence classifier’s confidence that two candidate event men-
tions ei and ej are coreferent. Pnc(ni, nj) is the entity coref-
erence classifier’s confidence that two candidate entity men-
tions ni and nj are coreferent. Pet(e, t) is the trigger iden-
tification and subtyping classifier’s confidence that the can-
didate event mention e has subtype t. Pns(n, s) is the en-
tity extraction model’s confidence that the candidate entity
mention n has entity type s. Par(a, r) is the argument iden-
tification and role determination classifier’s confidence that
the candidate argument link a involves role r. Since the last
three classifiers are trained using SVMmulticlass, we nor-
malize their confidence values to [0, 1].7

Finally, we define binary indicator variables whose val-
ues are to be determined by an ILP solver. Specifically, the
variable x(ei, ej) takes on the value 1 if and only if the
solver posits ei and ej as coreferent. Similarly, the variable
u(ni, nj) has the value 1 if and only if the solver posits ni

and nj as coreferent. The variable y(e, t) has the value 1 if
and only if the solver determines that e has subtype t. The
variable v(n, s) has the value 1 if and only if the solver de-
termines that n has type s. The variable z(a, r) has the value
1 if and only if the solver decides that a has role r.

ILP Formulation

For each test document D, we create one ILP program. Its
objective function is a linear combination of the five confi-
dence terms from the five classifiers in Section 4:

max
∑

(ei,ej)∈EP (D)

Pec(ei, ej)x(ei, ej)+

∑

(ni,nj)∈NP (D)

Pnc(ni, nj)u(ni, nj)+

∑

e∈E

∑

t∈T

Pet(e, t)y(e, t) +
∑

n∈N

∑

s∈S

Pns(n, s)v(n, s)+

∑

a∈A

∑

r∈R

Par(a, r)z(a, r)

(1)

subject to:
x(ei, ej) ∈ {0, 1}, ∀(ei, ej) ∈ EP (D) (2)

u(ni, nj) ∈ {0, 1}, ∀(ni, nj) ∈ NP (D) (3)

y(e, t) ∈ {0, 1}, ∀e ∈ E, ∀t ∈ T (4)

7For each test instance, we first apply a sigmoid function to the
confidence value assigned by the classifier to each class and then
rescale the resulting values so that they sum to 1.

2917



v(n, s) ∈ {0, 1}, ∀n ∈ N, ∀s ∈ S (5)

z(a, r) ∈ {0, 1}, ∀a ∈ A, ∀r ∈ R (6)
∑

t∈T

y(e, t) = 1, ∀e ∈ E (7)

∑

s∈S

v(n, s) = 1, ∀n ∈ N ;
∑

r∈R

z(a, r) = 1, ∀a ∈ A (8)

Equations (2)−(8) are integrity constraints. Equations (2),
(3), (4), (5) and (6) ensure that x(ei, ej), u(ni, nj), y(e, t),
v(n, s) and z(a, r) are binary values. Equations (7) and (8)
ensure that each candidate event mention e has exactly one
subtype, each candidate entity mention n has exactly one
type, and each candidate argument link a involves exactly
one role.

Next, we define constraints that enforce the consistency
among the outputs of the five classifiers.
Constraint 1. Intuitively, two event mentions ei and ej are
not coreferent if they possess two non-coreferent arguments
that have the same role. To implement this constraint, we
rely on the following definition. We say that two true ar-
gument links aik and ajl are incompatible if Role(aik) =
Role(ajl) �= None and their underlying entity mentions nk

and nl are not coreferent.
To implement this as linear constraints, we first define

an auxiliary binary variable c(aik, ajl, r), which takes on
the value 0 if and only if aik and ajl are incompatible and
Role(aik) = Role(ajl) = r �= None8, as shown below:

3 ∗ c(aik, ajl, r) + z(aik, r) + z(ajl, r)− u(nk, nl) ≥ 2

∀r �= None, (aik, ajl) ∈ V
(9)

c(aik, ajl, r) + z(aik, r) + z(ajl, r)− u(nk, nl) ≤ 2,

∀r �= None, (aik, ajl) ∈ V
(10)

where V = {(aik, ajl)|A×A, i < j}.
Now, we can implement Constraint 1 as follows:

c(aik, ajl, r) ≥ x(ei, ej), ∀aik ∈ Arg(ei), ∀ajl ∈ Arg(ej),

∀r �= None, ∀(ei, ej) ∈ EP (D)
(11)

Constraint 2. If candidate event mention ei is coreferent
with another event mention, then its event subtype cannot be
None. This constraint enforces the consistency between the
output of the event coreference classifier and that of the trig-
ger identification and subtyping classifier. This constraint
can be implemented as follows:

x(ei, ej) + y(ei, None) ≤ 1, ∀(ei, ej) ∈ EP (D)

x(ek, ei) + y(ei, None) ≤ 1, ∀(ek, ei) ∈ EP (D)
(12)

Similarly, if candidate entity mention ni is coreferent with
another entity mention, then its entity type cannot be None.
This constraint can be implemented as follows:

u(ni, nj) + v(ni, None) ≤ 1, ∀(ni, nj) ∈ NP (D)

u(nk, ni) + v(ni, None) ≤ 1, ∀(nk, ni) ∈ NP (D)
(13)

Constraint 3. If two candidate event mentions ei and ej
are coreferent, then they must have the same event subtype.
This constraint also enforces the consistency between the

8Without loss of generality, we assume i < j and k < l.

Documents 633 Sentences 9,967
Event Mentions 3,333 Event Coref. Chains 2,521
Entity Mentions 34,321 Entity Coref. Chains 15,414

Table 1: Statistics on the dataset.

output of the event coreference classifier and that of the trig-
ger identification and subtyping classifier. This can be im-
plemented as the following linear constraints:

x(ei, ej) + y(ei, t)− y(ej , t) ≤ 1, ∀(ei, ej) ∈ EP (D), ∀t ∈ T

x(ei, ej) + y(ej , t)− y(ei, t) ≤ 1, ∀(ei, ej) ∈ EP (D), ∀t ∈ T
(14)

Similarly, if two candidate entity mentions ni and nj are
coreferent, then they must have the same entity type. It can
be implemented as the following linear constraints:

u(ni, nj) + v(ni, s)− v(nj , s) ≤ 1,

∀(ni, nj) ∈ NP (D), ∀s ∈ S

u(ni, nj) + v(nj , s)− v(ni, s) ≤ 1,

∀(ni, nj) ∈ NP (D), ∀s ∈ S

(15)

Constraint 4. If two candidate event mentions ei and ej in a
given document have the same trigger word, then they must
have the same event subtype. This is the well-known ”one
sense per discourse” constraint, which enforces the consis-
tency between different candidate event mentions with the
same trigger word, and can be implemented as follows:

y(ei, t)− y(ej , t) = 0, ∀t ∈ T, ∀(ei, ej) ∈ Q (16)

where Q is the set of candidate event mention pairs that
have the same trigger word. (i.e., Q = {(ei, ej)|(ei, ej) ∈
EP (D) and Trigger(ei) = Trigger(ej)}).
Constraint 5. For each candidate event mention or entity
mention, we should select for it at most one antecedent. As-
suming the best-first antecedent selection strategy (Ng and
Cardie 2002), this constraint can be implemented as fol-
lows: ∑

i<j

x(ei, ej) ≤ 1, ∀1 ≤ j ≤ |E|

∑

i<j

u(ni, nj) ≤ 1, ∀1 ≤ j ≤ |N |
(17)

Equipped with the above constraints, an ILP solver can
determine the values of x(ei, ej), u(ni, nj), y(e, t), v(n, s)
and z(a, r), from which we then infer our final results of all
of our tasks. We solve each ILP program using lpsolve.9

7 Evaluation

Experimental Setup

Dataset. For evaluation, we employ the 633 Chinese doc-
uments of the ACE 2005 training corpus. Statistics on the
dataset are shown in Table 1. We obtain our results via 5-
fold cross-validation. In each fold experiment, we reserve
one fold for testing, and use the sentences in the remaining
four folds as unlabeled data for training the (unsupervised)
coreference models and for active learning.

9http://sourceforge.net/projects/lpsolve/

2918



MUC B3 CEAFe BLANC CoNLL
System R P F R P F R P F R P F F
SinoCoreferencer 42.7 38.3 40.4 41.5 34.7 37.8 39.9 39.2 39.5 28.1 23.7 25.7 39.2
Ours (Before ILP) 41.3 37.3 39.2 40.3 34.7 37.3 40.1 39.2 39.6 25.4 21.3 23.2 38.7
Ours (After ILP) 44.3 39.0 41.5 43.2 35.9 39.2 42.1 40.9 41.5 27.8 22.5 24.9 40.7

Table 2: Event coreference results.

 10
 15
 20
 25
 30
 35
 40

 200  400  600  800 1000 1200 1400 1600 1800 2000

F-
sco

re 
(%

)

(a) Number of labeled sentences

Active Learning
Random

 10
 15
 20
 25
 30
 35
 40

 0  2000  4000  6000  8000  10000  12000

F-
sco

re 
(%

)

(b) Number of labeled entity mentions

Active Learning
Random

 10
 15
 20
 25
 30
 35
 40

 0  200  400  600  800  1000  1200

F-
sco

re 
(%

)

(c) Number of labeled event mentions

Active Learning
Random

Figure 4: Event coreference performance expressed as the learning curves for active learning and random selection.

Evaluation measures. The event coreference tasks are eval-
uated using the commonly-used coreference evaluation mea-
sures, namely MUC, B3, CEAFe, and BLANC, all of which
report results in terms of recall (R), precision (P), and F-
score (F). In addition, we report the CoNLL score (Prad-
han et al. 2011), which is the unweighted average of the
MUC, B3, and CEAFe F-scores. All the coreference results
are obtained using the latest version (v8) of the CoNLL
scorer (Pradhan et al. 2014). Following the official evalua-
tion methodology employed in the CoNLL-2011 and 2012
shared tasks, we remove all singleton clusters from the out-
puts before scoring.

Evaluation setting. We run our active learner as follows.
Starting from the initial set of the labeled data contain-
ing 200 sentences annotated with event mentions and en-
tity mentions, in each iteration we augment the labeled data
with 100 sentences annotated with event mentions and entity
mentions.10 Our active learner stops when the performance
of our unsupervised event coreference model on the test
set approaches that of a state-of-the-art fully supervised re-
solver, SinoCoreferencer, which is trained on all of the avail-
able training documents. After active learning, we perform
ILP-based inference on the outputs of the resulting models.

Results and Discussion

Results of the active learner. We employ a random se-
lection baseline, which randomly selects 100 sentences to
annotate in each iteration. The learning curves of our active
learner and the random selection baseline are shown in Fig-
ure 4. Note that these curves show event coreference perfor-
mance despite the fact that the selected sentences were an-
notated with event mentions and entity mentions. As we can

10In preliminary experiments, we employed different batch sizes
(10, 20, 50, 100, 150, and 200 sentences), but found that none of
them yielded significantly better results than the others.

see in Figure 4(a), our active learner achieves significantly
better event coreference performance than the random selec-
tion baseline throughout.11 After annotating 2,000 sentences
(25% of the training sentences), our active learner achieves a
CoNLL score of 38.7%, which is statistically indistinguish-
able from SinoCoreferencer’s performance, while the ran-
dom baseline only achieves a CoNLL score of 32.0%.

There is a caveat, however. The number of sentences
annotated is not necessarily the same as the number of
event/entity mentions annotated. In other words, the bet-
ter performance achieved by our active learner could be at-
tributed to the possibly larger number of event/entity men-
tions annotated in the selected sentences. To ensure a fair
comparison, we also compare the two selection methods
with respect to the number of event mentions (Figure 4(c))
and the number of entity mentions (Figure 4(b)) annotated so
far. As we can see, our active learner still significantly out-
performs the random selection method throughout in both
figures.

Results of ILP-based inference. To address the error
propagation problem, we apply ILP to the outputs of the
models produced at the end of the active learning process.
Results of event coreference after applying ILP are shown
in row 3 of Table 2. For comparison, we show the re-
sults of SinoCoreferencer and our resolver (before apply-
ing ILP) in rows 1 and 2, respectively. As we can see, be-
fore applying ILP, our resolver is statistically indistinguish-
able from SinoCoreferencer w.r.t. the CoNLL score. Com-
paring rows 2 and 3, we can see that the use of ILP signifi-
cantly improves the F-score of our resolver w.r.t. all scoring
measures, achieving a CoNLL score of 40.7%. More im-
portantly, with ILP our resolver significantly outperforms
SinoCoreferencer. Note that ILP also improves other IE
tasks: the results of entity extraction, entity coreference, trig-

11All significance tests are paired t-tests, with p < 0.05.

2919



ger identification and subtyping, and argument identification
and role determination improve by 0.6% (F), 0.5% (CoNLL
F), 1.3% (F), and 1.1% (F), respectively. These results sug-
gest the effectiveness of our active-learning, joint-inference
approach.12

8 Conclusion

We presented an active-learning, joint-inference approach to
address two major challenges inherent in event coreference
resolution: error propagation and the data annotation bottle-
neck. When used in tandem, active learning and joint infer-
ence enable us to surpass the performance of a state-of-the-
art fully supervised event coreference resolver when only
25% of the sentences in the Chinese portion of the ACE 2005
corpus are annotated with entity and event mentions. We be-
lieve that our approach has the potential to significantly re-
duce the annotation effort needed to develop event corefer-
ence models for languages for which annotated resources for
IE tasks are not readily available.

Acknowledgments

We thank the three anonymous reviewers for their com-
ments. This work was supported in part by NSF Grant IIS-
1219142.

References

Ahn, D. 2006. The stages of event extraction. COLING/ACL
Workshop on Annotating and Reasoning about Time and Events.
Araki, J.; Liu, Z.; Hovy, E.; and Mitamura, T. 2014. Detecting
subevent structure for event coreference resolution. LREC.
Bejan, C., and Harabagiu, S. 2010. Unsupervised event corefer-
ence resolution with rich linguistic features. ACL.
Chen, Z., and Ji, H. 2009. Graph-based event coreference resolu-
tion. TextGraphs-4.
Chen, C., and Ng, V. 2014. SinoCoreferencer: An end-to-end
Chinese event coreference resolver. LREC.
Chen, C., and Ng, V. 2015. Chinese event coreference reso-
lution: An unsupervised probabilistic model rivaling supervised
resolvers. NAACL HLT.
Chen, B.; Su, J.; Pan, S. J.; and Tan, C. L. 2011. A unified event
coreference resolution by integrating multiple resolvers. IJCNLP.
Chen, Z.; Ji, H.; and Haralick, R. 2009. A pairwise event corefer-
ence model, feature impact and evaluation for event coreference
resolution. RANLP Workshop on Events in Emerging Text Types.
Cohn, D.; Atlas, L.; and Ladner, R. 1994. Improving generaliza-
tion with active learning. Machine Learning 15(2):201–221.
Cybulska, A., and Vossen, P. 2013. Semantic relations between
events and their time, locations and participants for event corefer-
ence resolution. RANLP.
Cybulska, A., and Vossen, P. 2014. Guidelines for ECB+ anno-
tation of events and their coreference. Technical report, NWR-
2014-1, VU University Amsterdam.

12To test the utility of ILP independently of active learning, we
retrain all the models on all of the available training data and ap-
ply the same set of ILP constraints to their outputs on the test set.
Results show that ILP improves event coreference performance by
5.6% absolute CoNLL score.

Denis, P.; and Baldridge, J. 2007. Joint determination of
anaphoricity and coreference resolution using integer program-
ming. NAACL HLT.
Durrett, G., and Klein, D. 2014. A joint model for entity analysis:
Coreference, typing, and linking. Transactions of the ACL 2:477–
490.
Finkel, J. R., and Manning, C. D. 2008. Enforcing transitivity in
coreference resolution. ACL.
Goyal, K.; Jauhar, S. K.; Li, H.; Sachan, M.; Srivastava, S.; and
Hovy, E. 2013. A structured distributional semantic model for
event co-reference. ACL.
Hovy, E.; Mitamura, T.; Verdejo, F.; Araki, J.; and Philpot, A.
2013. Events are not simple: Identity, non-identity, and quasi-
identity. NAACL HLT Workshop on Events.
Humphreys, K.; Gaizauskas, R.; and Azzam, S. 1997. Event
coreference for information extraction. ACL/EACL Workshop on
Operational Factors in Practical, Robust Anaphora Resolution
for Unrestricted Texts.
Joachims, T.; Finley, T.; and Yu, C.-N. J. 2009. Cutting-plane
training of structural SVMs. Machine Learning 77(1):27–59.
Laws, F.; Heimerl, F.; and Schütze, H. 2012. Active learning for
coreference resolution. NAACL HLT.
Lee, H.; Recasens, M.; Chang, A.; Surdeanu, M.; and Jurafsky,
D. 2012. Joint entity and event coreference resolution across
documents. EMNLP-CoNLL.
Li, P.; Zhou, G.; Zhu, Q.; and Hou, L. 2012. Employing com-
positional semantics and discourse consistency in Chinese event
extraction. EMNLP-CoNLL.
Liu, Z.; Araki, J.; Hovy, E.; and Mitamura, T. 2014. Supervised
within-document event coreference using information propaga-
tion. LREC.
McConky, K.; Nagi, R.; Sudit, M.; and Hughes, W. 2012. Improv-
ing event co-reference by context extraction and dynamic feature
weighting. CogSIMA.
Miller, T. A.; Dligach, D.; and Savova, G. K. 2012. Active learn-
ing for coreference resolution. BioNLP.
Ng, V., and Cardie, C. 2002. Improving machine learning ap-
proaches to coreference resolution. ACL.
Pradhan, S.; Ramshaw, L.; Weischedel, R.; MacBride, J.; and
Micciulla, L. 2007. Unrestricted coreference: Identifying enti-
ties and events in OntoNotes. ICSC.
Pradhan, S.; Ramshaw, L.; Marcus, M.; Palmer, M.; Weischedel,
R.; and Xue, N. 2011. CoNLL-2011 Shared Task: Modeling
unrestricted coreference in OntoNotes. CoNLL: Shared Task.
Pradhan, S.; Luo, X.; Recasens, M.; Hovy, E.; Ng, V.; and Strube,
M. 2014. Scoring coreference partitions of predicted mentions:
A reference implementation. ACL.
Roth, D., and Yih, W.-T. 2004. A linear programming formulation
for global inference in natural language tasks. CoNLL.
Sangeetha, S., and Arock, M. 2012. Event coreference resolution
using mincut based graph clustering. International Journal of
Computing and Information Sciences.
Xue, N., and Palmer, M. 2005. Automatic semantic role labeling
for Chinese verbs. IJCAI.
Yang, B.; Cardie, C.; and Frazier, P. 2015. A hierarchical
distance-dependent Bayesian model for event coreference reso-
lution. Transactions of the ACL 3:517–528.

2920




