
Approximation Algorithms for Route
Planning with Nonlinear Objectives

Ger Yang
Electrical and Computer Engineering

University of Texas at Austin
geryang@utexas.edu

Evdokia Nikolova
Electrical and Computer Engineering

University of Texas at Austin
nikolova@austin.utexas.edu

Abstract

We consider optimal route planning when the objective func-
tion is a general nonlinear and non-monotonic function. Such
an objective models user behavior more accurately, for exam-
ple, when a user is risk-averse, or the utility function needs
to capture a penalty for early arrival. It is known that as
nonlinearity arises, the problem becomes NP-hard and little
is known about computing optimal solutions when in addi-
tion there is no monotonicity guarantee. We show that an ap-
proximately optimal non-simple path can be efficiently com-
puted under some natural constraints. In particular, we pro-
vide a fully polynomial approximation scheme under hop
constraints. Our approximation algorithm can extend to run
in pseudo-polynomial time under a more general linear con-
straint that sometimes is useful. As a by-product, we show
that our algorithm can be applied to the problem of finding a
path that is most likely to be on time for a given deadline.

Introduction

In this paper, we present approximation algorithms for route
planning with a nonlinear objective function. Tradition-
ally, route planning problems are modeled as linear shortest
path problems and there are numerous algorithms, such as
Bellman-Ford or Dijkstra’s algorithm, that are able to find
the optimal paths efficiently. However, nonlinearity arises
when we would like to make more complicated decision-
making rules. For example, in road networks, the objective
might be a nonlinear function that represents the trade-off
between traveling time and cost. Unfortunately, dynamic
programming techniques used in linear shortest path algo-
rithms no longer apply as when nonlinearity appears, sub-
paths of optimal paths may no longer be optimal.

Applications include risk-averse routing or routing with a
nonlinear objective when we are uncertain about the traffic
conditions (Nikolova, Brand, and Karger 2006; Nikolova et
al. 2006). A risk-averse user tends to choose a route based on
both the speediness and reliability. Such risk-averse attitude
can often be captured by a nonlinear objective, e.g. a mean-
risk objective (Nikolova 2010). On the other hand, the user
might seek a path that maximizes the probability for him to
be on time given a deadline. This objective was considered
by Nikolova (2010) to capture the risk-averse behavior. For

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Gaussian travel times, the latter paper only considered the
case where at least one path has mean travel time less than
the deadline, and consequently the objective function can be
modeled as a monotonic function.

The problem of finding a path that minimizes a monotonic
increasing objective has been studied in the literature (Goyal
and Ravi 2013; Nikolova 2010; Tsaggouris and Zaroliagis
2009). What if there is no monotonicity guarantee? For ex-
ample, consider the deadline problem when we know that all
paths have mean travel time longer than the deadline, or con-
sider the well-known cost-to-time ratio objective (Megiddo
1979; Guérin and Orda 1999) in various combinatorial op-
timization problems. Without the monotonicity assumption,
the problem usually becomes very hard. It has been shown
(Nikolova, Brand, and Karger 2006) that for a general ob-
jective function, finding the optimal simple path is NP-hard.
This is because such a problem often involves finding the
longest path for general graphs, which is known to be a
strongly NP-hard problem (Karger, Motwani, and Ramku-
mar 1997), namely finding a constant-factor approximation
is also NP-hard. This suggests that for a very general class of
functions, including the cost-to-time ratio objective (Ahuja,
Batra, and Gupta 1983), not only is the problem itself NP-
hard but so is also its approximation counterpart.

Therefore, in this paper, we focus on the problem that ac-
cepts non-simple paths, in which it is allowed to visit nodes
more than once. To make this problem well-defined, we con-
sider the problem under either a hop constraint or an addi-
tional linear constraint, where we say a path is of γ hops if it
contains γ edges. We design a fully polynomial approxima-
tion scheme under hop constraints, and show that the algo-
rithm can extend to run in pseudo-polynomial time under an
additional linear constraint. Further, we show how our algo-
rithm can be applied to the cost-to-time ratio objective and
the deadline problem.

Related Work

The route planning problem with nonlinear objective we
consider here is related to multi-criteria optimization (e.g.,
Papadimitriou and Yannakakis 2000). The solutions to these
problems typically look for approximate Pareto sets, namely
a short list of feasible solutions that provide a good approx-
imation to any non-dominated or optimal solution. A fully
polynomial approximation scheme (FPTAS) for route plan-

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

3209

ning with general monotonic and smoothed objective func-
tions was presented by Tsaggouris and Zaroliagis (2009),
based on finding an approximate Pareto set for the feasible
paths. Later, Mittal and Schulz (2013) provided a general
approach for monotonic and smoothed combinatorial opti-
mization problems and showed how to reduce these prob-
lems to multi-criteria optimization.

A special class of nonlinear optimization is quasi-concave
minimization. This class of problems has the property that
the optimal solution is an extreme point of the feasible
set (Horst, Pardalos, and Van Thoai 2000). For quasi-
concave combinatorial minimization problems, Kelner and
Nikolova (2007) proved (log n)-hardness of approximation
and they also gave an additive approximation algorithm for
low-rank quasi-concave functions based on smoothed anal-
ysis. Later, Nikolova (2010) presented an FPTAS for risk-
averse quasi-concave objective functions. In recent work,
Goyal and Ravi (2013) gave an FPTAS for general mono-
tone and smooth quasi-concave functions.

Without assuming monotonicity, the problem was studied
by Nikolova, Brand, and Karger (2006), who proved hard-
ness results and gave a pseudo-polynomial approximation
algorithm with integer edge weights for some specific ob-
jective functions.

Problem Statement and Preliminaries

Consider a directed graph G = (V,E). Denote the number
of vertices as |V | = n, and the number of edges as |E| = m.
Suppose we are given a source node s and a destination node
t. In the nonlinear objective shortest path problem, we seek
an s − t path p, possibly containing loops, that minimizes
some nonlinear objective function f(p).

More precisely, denote the feasible set of all s − t paths
by Pt, and let P =

⋃
v∈V Pv be the set of paths that start

from s. Here we have not yet imposed assumptions that P
contains only simple paths. Let f : P → R+ be a given
objective function. Then we can write the problem as finding
the path p∗ that minimizes this objective function:

p∗ = arg min
p∈Pt

f(p) (1)

We assume that f is a low-rank nonlinear function with
some smoothness condition. Specifically, we say that f is
of rank d if there exists a function g : R

d
+ → R+ and

an m × d weight matrix W = (we,k)m×d, with pos-
itive entries, such that for any path p ∈ P , f(p) =
g(
∑

e∈p we,1,
∑

e∈p we,2, . . . ,
∑

e∈p we,d).
We interpret this as having d criteria, such as for example

length in miles, cost, travel time, etc. so that each edge is
associated with d additive weights, where the k-th weight
for edge e is denoted by we,k. Then, the k-th weights of
all edges can be represented by the column vector wk =
(w1,k, w2,k, . . . , wm,k)

T . For simplicity, we denote the sum
of the k-th weights of the edges along path p as lk(p) =∑

e∈p we,k, and we call it the k-th criterion of path p. Hence,
the objective function f can be rewritten as a function of all
criteria:

f(p) = g(l1(p), l2(p), . . . , ld(p)) (2)

Figure 1: Illustration of a path polytope on a doubly
weighted graph with a hop constraint. Each blue cross and
red dot correspond to an s − t path projected onto W . We
can use polynomially many red dots to approximate the path
polytope and consequently to approximate the optimal path.

Consider the linear space spanned by the d criteria W =
span(w1,w2, . . . ,wd). Then, each feasible s − t path p ∈
Pt has an associated point in this d-dimensional space W
given by l(p) = (l1(p), l2(p), . . . , ld(p)), providing the val-
ues of the d criteria for that path. We shall call the con-
vex hull of such points the path polytope.1 We assume that
the weights matrix W contains only positive entries, and
thus the path polytope is bounded from below: for any path
p ∈ Pt and criterion k ∈ {1, . . . , d}, we have lk(p) ≥
minp′∈Pt

lk(p
′). This lower-bound corresponds to the short-

est path with respect to the k-th criterion. For upper bounds
of the polytope, we defer the discussion to the later sections.

The size of the path polytope is in worst case exponential
in the problem size. The main idea of this paper is to ap-
proximate the path polytope with polynomially many paths,
as illustrated in Figure 1. As we will show in this paper, the
optimal path can be approximated if there are some smooth-
ness conditions on the objective function. The smoothness
assumption we adapt here is as follows: g is assumed to be β-
Lipschitz on the log-log scale with respect to the L1-norm:
that is, for any y,y′ in the path polytope,

| log g(y)− log g(y′)| ≤ β‖ logy − logy′‖1 (3)

where logy is defined as a column vector: logy =
(log y1, log y2, . . . , log yd)

T .
In this paper, we design approximation algorithms for this

problem, formally defined as follows:
Definition 1. An α-approximation algorithm for a mini-
mization problem with optimal solution value OPT and
α > 1 is a polynomial-time algorithm that returns a solu-
tion of value at most αOPT .

1Strictly speaking, it is the projection of the feasible path poly-
tope in R

m onto this d-dimensional subspace but for simplicity we
will just call it the path polytope in this paper.

3210

The best possible approximation algorithms provide solu-
tions that are arbitrarily close to the optimal solution:

Definition 2. A fully-polynomial approximation scheme
(FPTAS) is an algorithm for an optimization problem that,
given desired accuracy ε > 0, finds in time polynomial in
1
ε and the input size, a solution of value OPT ′ that satisfies
|OPT −OPT ′| ≤ εOPT , for any input, where OPT is the
optimal solution value.

Hardness Results

We can categorize the problem on general directed graphs
into two types: one is the problem that accepts only simple
paths, by which we mean each vertex can only be visited
once in any feasible path; the other is the problem that ac-
cepts non-simple paths. Unfortunately, both types of prob-
lems turn out to be hard. In fact, the problem that only ac-
cepts simple paths in general involves finding the longest
simple path, which is strongly NP-hard, namely it is NP-
hard to approximate to within any constant factor (Karger,
Motwani, and Ramkumar 1997).

First, we present a natural objective function that has been
considered in the literature, that is hard to approximate.

Minimum Cost-to-Time Ratio Path Problem

The cost-to-time ratio objective function is a rank 2 function,
defined as follows:

f(p) = g

(∑
e∈p

we,1,
∑
e∈p

we,2

)
=

∑
e∈p we,1∑
e∈p we,2

For simplicity, we assume W has strictly positive entries.
This objective function has been considered previously for
different combinatorial optimization problems (Megiddo
1979; Correa, Fernandes, and Wakabayashi 2010). However,
finding the minimum cost-to-time ratio simple path is known
to be an NP-hard problem (Ahuja, Batra, and Gupta 1983).
Here, we show its hardness of approximation:

Theorem 1. There is no polynomial-time α-approximation
algorithm for the minimum cost-to-time ratio simple path
problem for any constant factor α, unless P = NP .

Proof. To facilitate the presentation of our hardness of ap-
proximation proof, we first show that this problem is NP-
hard. We reduce a longest path problem instance to a min-
imum cost-to-time ratio simple path problem instance. The
longest path problem is known to be NP-hard to approxi-
mate to within any constant factor (Karger, Motwani, and
Ramkumar 1997). First, we choose some λ > 0. For an in-
stance of the longest path problem, which is some graph G
with unweighted edges and a designated source node s and
sink node t, we create an instance of the minimum cost-to-
time ratio path problem with the same graph G, source s and
sink t and the following (cost,time) edge weights:

1. For each edge e incident to s, set we = (λn+ 1, 1).
2. For the remaining edges e, set we = (1, 1).

We can see that a path is optimal under the ratio objective
if and only if it is the longest path with respect to the un-
weighted edges (or, equivalently, with respect to the sec-
ond weight). This shows that the minimum cost-to-time ratio
simple path problem is NP-hard.

To show the hardness of approximation, similarly, we
use the fact that the longest path problem cannot be ap-
proximated to within any constant factor unless P = NP
(Karger, Motwani, and Ramkumar 1997). Suppose the con-
trary, namely that we can find a (1+ ε)-approximation algo-
rithm for the minimum cost-to-time ratio simple path prob-
lem, for some ε ∈ (0, λ). To be precise, since we can choose
λ while ε comes from the assumed approximation algorithm,
we can set λ > ε. For a given instance of longest path, con-
sider the corresponding instance of minimum cost-to-time
ratio path problem above. Let p∗ be the optimal min cost-to-
time ratio path. Then, the (1 + ε)-approximation algorithm
will return a simple path p such that

λn+ l2(p)

l2(p)
≤ (1 + ε)

λn+ l2(p
∗)

l2(p∗)

Rearranging this, we get the inequality:

(λn− εl2(p))l2(p
∗) ≤ λ(1 + ε)nl2(p)

Since l2(p) ≤ n and ε < λ, we get the following:

l2(p
∗) ≤ λ(1 + ε)

λ− ε
l2(p)

This shows that we can approximate the longest path prob-
lem to within a constant factor of λ(1+ε)

λ−ε , a contradiction.
Therefore, the minimum cost-to-time ratio simple path prob-
lem cannot be approximated to within any constant factor
unless P = NP .

General Objective Function

For general objective functions, the following hardness re-
sults were proven by Nikolova, Brand, and Karger (2006):

Fact 1. Suppose function g attains a global minimum at y >
0. Then problem (1) of finding an optimal s − t simple path
is NP-hard.

Fact 2. Consider problem (1) of finding an optimal s − t
simple path with f being a rank-1 function. Let p∗ be the
optimal path, and l∗ = l(p∗). If g is any strictly decreasing
and positive function with slope of absolute value at least
λ > 0 on [0, l∗], then there does not exist a polynomial-
time constant factor approximation algorithm for finding an
optimal simple path, unless P = NP .

Although these facts are proven for rank-1 functions, they
show that for a large class of objective functions, the prob-
lem of finding the optimal simple path is not only NP-hard,
but also NP-hard to approximate within any constant factor.

As a result, we turn our attention to the problem that
accepts non-simple paths. While this problem is also NP-
hard (Nikolova, Brand, and Karger 2006), we are able to
design a polynomial-time algorithm to approximate the op-
timal solution arbitrarily well.

3211

Approximation Algorithms

Consider problem (1) that accepts non-simple paths. For
some cases, it is possible that there does not exist an opti-
mal path of finite length. Consider an example of a rank 1
monotonic decreasing function g(x) = 1/x. Suppose there
is a positive weight loop in any of the s − t paths. Then,
we can always find a better solution by visiting such a loop
arbitrarily many times: the optimal path here is ill-defined.

Naturally, for the problem that accepts non-simple paths,
the path polytope is infinite. Even when the optimal path is
finite, for a large class of problems, including the minimum
cost-to-time ratio path problem, finding a finite subset of the
path polytope that contains the optimal path is difficult, as
shown in our Hardness section above. In this section, we
will show that, under some additional constraints, this prob-
lem becomes well-defined and well-approximable. In what
follows, we identify the additional constraints and present
the algorithms to solve the corresponding problems.

Hop Constraint

Suppose the path contains at most γ hops, then the set of
feasible paths Pt becomes finite and the problem is well-
defined. Denote hop(p) to be the number of hops in path p,
or equivalently, the number of edges in p. Note that an edge
can be counted multiple times if path p contains loops.

To approximate the optimal path, we approximate the path
polytope with polynomially many paths, and then search for
the best one among them. To approximate the path poly-
tope, we first identify a region of weights spaceW that con-
tains all paths starting from s, which are within γ edges.
We can upper- and lower-bound this region as follows: For
each criterion k = 1, . . . , d, define cmin

k = mine∈E we,k

and cmax
k = maxe∈E we,k. Then for any path p that starts

from the source s and contains at most γ edges, we have
lk(p) ∈ [cmin

k , γcmax
k], for each criterion k ∈ {1, . . . , d}.

Next, we partition the region
∏d

k=1[c
min
k , γcmax

k] of the
weights space W into polynomially many hypercubes.
Specifically, for each criterion k ∈ {1, 2, . . . , d}, let ε >
0 be a given desired approximation factor, and Ck =
cmax
k /cmin

k . Define Γk = {0, 1, . . . , �log(1+ε)(γCk)�} as the
set of points that evenly partitions the segment [cmin

k , γcmax
k]

on the log scale. Then, we generate a d-dimensional lattice
Γ = Γ1×Γ2×· · ·×Γd according to these sets. After that, we
define a hash function h = (h1, h2, . . . , hd) : P → Γ that
maps a path to a point on the lattice Γ. Each hk : P → Γk is
defined as hk(p) = �log(1+ε)

lk(p)

cmin
k

�.
The main part of the algorithm iterates over i ∈

{1, 2, . . . , γ}, sequentially constructing s−v sub-paths con-
taining at most i edges, for each vertex v ∈ V . For each
iteration i and each vertex v ∈ V , we maintain at most
|Γ| configurations as a d-dimensional table Πi

v , indexed by
y ∈ Γ. Each configuration Πi

v(y) can be either an s − v
path p of at most i edges and h(p) = y, given there is one,
or null otherwise. The table can be implemented in various
ways. 2 Here we assume that given index y ∈ Γ, both check-

2In practice, we can either allocate the memory of the entire
table in the beginning, or use another data structure that only stores

ing whether the configuration Πi
v(y) is null, retrieving the

path in Πi
v(y), and inserting/updating a path in Πi

v(y) can
be done in TΠ = TΠ(n, |Γ|) time.

At iteration i, for each vertex u, we will construct a set
of s− u sub-paths containing i edges based on (i− 1)-edge
sub-paths we previously constructed. We loop over each ver-
tex v ∈ V and each edge e = (v, u) incident to v, and we
append the edge to the end of each (i−1)-edge s−v path in
Πi−1

v . However, not all generated sub-paths will be stored.
Consider any s − u path p generated with this procedure, it
will be stored in table Πi

u only if Πi
u(h(p)) is empty. With

this technique, we can ensure that the number of sub-paths
we record in each iteration is at most polynomial, because it
is bounded by the size of the lattice Γ times the number of
vertices. This procedure is outlined in Algorithm 1.

Algorithm 1 Nonlinear Objective Shortest Path with Hop-
constraint

1: for each y ∈ Γ, v ∈ V , and i = 1, 2, . . . , γ do
2: Set Πi

v(y) = null
3: Set Π0

s = {s}.
4: for i = 1 to γ do
5: Set Πi

v = Πi−1
v for each vertex v ∈ V .

6: for each vertex v ∈ V do
7: for each path p ∈ Πi−1

v with i− 1 edges do
8: for each edge e = (v, u) ∈ E do
9: Set p′ be the path that appends edge e to the

tail of p.
10: Compute hash y = h(p′).
11: if Πi

u(y) = null then
12: Πi

u(y) = p′.
13: return maxp∈Πγ

t
f(p)

To prove the correctness of this algorithm, we show the
following lemmas:

Lemma 1. Let pu and p′u be two s − u paths such that for
each criterion k ∈ {1, 2, . . . , d},

| log lk(pu)− log lk(p
′
u)| ≤ log(1 + ε). (4)

Suppose there is a vertex v and an edge e such that e =
(u, v) ∈ E. Let pv and p′v be the s − v paths that append
(u, v) to the tails of pu and p′u, respectively. Then, for each
criterion k ∈ {1, 2, . . . , d},

| log lk(pv)− log lk(p
′
v)| ≤ log(1 + ε)

Proof. By (4), it directly follows that

lk(pv) = lk(pu) + lk(e) ≤ (1 + ε)lk(p
′
u) + lk(e)

≤ (1 + ε)(lk(p
′
u) + lk(e)) = (1 + ε)lk(p

′
v)

lk(p
′
v) = lk(p

′
u) + lk(e) ≤ (1 + ε)lk(pu) + lk(e)

≤ (1 + ε)(lk(pu) + lk(e)) = (1 + ε)lk(pv)

Combining the above two inequalities yields the proof.

the used entries of the table. According to our experimental results,
only a small portion of the table Πi

v will be used.

3212

Lemma 2. For any v ∈ V , and for any path s− v that is of
at most i edges, there exists an s− v path p′ ∈ Πi

v such that
for each criterion k ∈ {1, 2, . . . , d},

| log lk(p)− log lk(p
′)| ≤ i log(1 + ε)

Proof. We prove this lemma by induction on the number of
edges in a path. The base case is a direct result from the def-
inition of the hash function h. For the induction step, con-
sider vertex v ∈ V , and we would like to prove the statement
is correct for any s− v sub-paths of at most i∗ edges, given
the statement is true for any i < i∗ and any vertices. Let pv
be any s − v path no more than i∗ edges. If pv is of i′ < i∗
edges, then by the induction hypothesis, there exists an s−v

path p′v in Πi′
v such that | log(lk(pv)/lk(p′v))| ≤ i′ log(1+ε).

The lemma is proved for this case since p′v is in Πi∗
v as well.

Next consider pv to be an s− v path with i∗ edges, and sup-
pose pv is formed by appending the edge (u, v) to an s − u
path pu. By the induction hypothesis, we can see that there
is an s − u path p′u ∈ Πi∗−1

u such that for each criterion
k ∈ {1, 2, . . . , d},

| log lk(pu)− log lk(p
′
u)| ≤ (i∗ − 1) log(1 + ε)

Then, with Lemma 1, as we form s − v sub-paths pv and
p′v by appending (u, v) to the end of pu and p′u respectively,
we have the following relationship for each criterion k ∈
{1, 2, . . . , d}:

| log lk(pv)− log lk(p
′
v)| ≤ (i∗ − 1) log(1 + ε) (5)

Consider any s − v path p′′v such that h(p′′v) = h(p′v). We
must have | log lk(p′v) − log lk(p

′′
v)| ≤ log(1 + ε) for each

criterion k ∈ {1, . . . , d}, according to the definition of the
hash function h. Combining this with (5), we can see that
even for the case that path p′v is not stored in the table Πi∗

v ,
the path p′′v = Πi∗

v (h(p′v)) must satisfy

| log lk(pv)− log lk(p
′′
v)| ≤ i∗ log(1 + ε)

for each criterion k ∈ {1, . . . , d}. This indicates that for any
s − v path pv within i∗ edges, there exists a path p′′v in Πi∗

v

such that their ratio is bounded by (1 + ε)i
∗
. Q.E.D.

Now, we are ready to state and prove the main result:
Theorem 2. Suppose g defined in (2) is β-Lipschitz on
the log-log scale. Then Algorithm 1 is a (1 + ε)βdγ-
approximation algorithm for the γ-hop-constrained nonlin-
ear objective shortest path problem. Besides, Algorithm 1
has time complexity O(γm(log(γC)

log(1+ε))
dTΠ), where C =

maxk∈{1,2,...,d} Ck.

Proof. By Lemma 2, we can see that for any s− t path p of
at most γ edges, there exists an s− t path p′ ∈ Πγ

t such that

| log lk(p)− log lk(p
′)| ≤ γ log(1 + ε), ∀k = 1, 2, . . . , d

It then follows from (3) that our algorithm finds a path p′
such that | log f(p′) − log f(p∗)| ≤ βdγ log(1 + ε). Then,
we have

f(p′) ≤ (1 + ε)βdγf(p∗)
This shows that p′ is an (1 + ε)βdγ-approximation to p∗.

Next, we show the time complexity. It is easy to see that
at each iteration, the algorithm generates at most m|Γ| sub-
paths. Each sub-path requires at most O(TΠ) time to oper-
ate. Since |Γ| = (log(γC)

log(1+ε))
d, we can conclude that Algo-

rithm 1 runs in time O(γm(log(γC)
log(1+ε))

dTΠ).

Note that we can obtain a (1+δ)-approximation algorithm
by setting δ = (1 + ε)βdγ − 1. With this setting, then Algo-
rithm 1 has time complexity O(γm(βdγ log(γC)

δ)dTΠ). If we
assume γ = O(n), then Algorithm 1 is indeed an FPTAS.

Linear Constraint

The hop constraint we considered can be relaxed: we now
consider the more general problem that any returned path p
must satisfy an additional linear constraint

∑
e∈p we,d+1 ≤

b, for some budget b > 0 and some weight vector wd+1 ∈
R

m
++ with strictly positive entries. We define the (d + 1)-th

criterion ld+1(p) =
∑

e∈p we,d+1, which can be interpreted
as having a budget b for a path. To solve this problem, we can
find an upper bound of the number of edges for any feasible
s− t path. A simple upper bound can be given by

γ =

⌈b−∑
e∈p∗

d+1
we,d+1

mine∈E we,d+1
+ hopmin

⌉
(6)

where p∗d+1 = argminp∈P
∑

e∈p we,d+1 is the shortest path
with respect to the weight wd+1, and hopmin is the mini-
mum number of edges for any s − t path. Note that either
hopmin and p∗d+1 can be solved by Dijkstra’s or Bellman-
Ford’s shortest path algorithms efficiently.

Then, we can adapt the techniques discussed for the hop-
constrained problem but with some modifications. Instead of
assigning the least hop path to a configuration, we now as-
sign the path with the least (d+1)-th criterion. Formally, the
modification is to change line 11 and line 12 of Algorithm 1
to : Assign p′ to Πi

u(y) if p′ satisfies both of the following:
• ld+1(p

′) < b

• Πi
u(y) is null or ld+1(p

′) < ld+1(Π
i
u(y))

As a corollary of Theorem 2, we have the following result:
Corollary 1. Algorithm 1 with the modifications stated
above is a (1 + ε)βdγ-approximation algorithm for the
linear-constrained nonlinear objective shortest path prob-
lem, where γ is defined as in Eq. (6).

The proof of this corollary is presented in the full version
of this paper (Yang and Nikolova 2015).

Application: Deadline Problem

With the techniques mentioned in the above section, we are
able to solve various problems, including the minimum cost-
to-time ratio path problem with either a hop or a linear bud-
get constraint. In this section, we discuss a related problem,
which is the deadline problem in a stochastic setting.

The deadline problem is to find a path that is the most
likely to be on time, which is defined as follows: Suppose
each edge is associated with an independent random vari-
able Xe, which we call the travel time of edge e. Given

3213

Table 1: Deadline Problem with Hop Constraint
Network Hops Worst-case Memory Run

Theoretical Usage (time
Accuracy (α) 106 paths) (s)

5× 5 Grid 12 (Exhaustive) 1.63 3.441
12 2.2923 0.67 2.057
15 2.2926 4.30 20.276

10× 10 Grid 15 2.2891 18.05 83.430
Anaheim 15 3.0436 9.60 37.671

a deadline D > 0, we are going to find an s − t path
such that the probability of being on time is maximized:
maxp∈Pt Pr(

∑
e∈p Xe < D). We assume that the random

variables {Xe} are Gaussian. Based on this, we denote the
mean travel time for edge e as μe and variance as σ2

e . For
simplicity, we assume for each edge e ∈ E, its mean μe

and variance σ2
e are bounded by μe ∈ [μmin, μmax], and

σ2
e ∈ [σ2

min, σ
2
max]. The problem can hence be written as:

max
p∈Pt

Φ

(
D −∑

e∈p μe√∑
e∈p σ

2
e

)
(7)

where Φ(·) is the cumulative distribution function for the
standard normal distribution. The objective function in (7)
is a rank 2 function. This problem is studied in (Nikolova et
al. 2006) for a risk-averse shortest path problem, where they
considered the case that the optimal path has mean travel
time less than the deadline: for this case (7) is a monotonic
decreasing function. In this paper, we consider the case that
all feasible s− t paths have mean travel time strictly greater
than the deadline. This means that we assume each path has
poor performance. Then, the objective function in (7) be-
comes monotonic decreasing with respect to the mean but
monotonic increasing with respect to the variance, for which
known algorithms no longer apply. However, we are able to
use techniques presented in this paper to solve this problem
under either a hop or an additional linear constraint.
Theorem 3. Suppose each s − t path p ∈ Pt satisfies∑

e∈p μe > D and
∑

e∈p σ
2
e > S. For the deadline prob-

lem with a hop constraint γ, if Algorithm 1 returns some
path p′ such that f(p′) > Φ(−3) ≈ 0.0013, then p′ is
an α-approximation for the deadline problem, where α =

min{384.62, (1 + ε)
6.568(3+ D√

S
)γ
)}. Similarly, if p′ is such

that f(p′) > Φ(−2) ≈ 0.023, then α = min{21.93, (1 +

ε)
4.745(2+ D√

S
)γ}.

Note that this theorem does not guarantee Algorithm 1
admits FPTAS for the deadline problem, since given α, the
running time is polynomial in the factor D/

√
S.

Experimental Evaluations

We tested our algorithm on a grid graph and a real trans-
portation network. The algorithm is implemented in C++.
Experiments are run on an Intel Core i7 1.7 GHz (I7-4650U)
processor. Due to memory constraints, the table {Πi

v|v ∈ V }
is implemented as a binary search tree, where query, in-
sertion, and update operations can be done in time TΠ =

Figure 2: Memory usage for running our algorithm on a 5×5
grid graph to the number of iterations.

O(log(n|Γ|)). Memory turns out to be the limiting factor for
the problem size and accuracy available to our experiments.
In this section, memory usage refers to the total number of
sub-paths maintained in the table {Πi

v|v ∈ V }.
We tested the deadline problem with a hop constraint on

a 5 × 5 grid graph, 10 × 10 grid graph, and the Anaheim
network (416 vertices, 914 edges) from the real world data
set (Bar-Gera 2002). The grid graphs are bi-directional, and
the mean and the variance for each edge are randomly gener-
ated from [0.1, 5]. We routed from node (0, 0) to node (4, 4)
on the 5 × 5 grid, and from (1, 1) to (8, 8) on the 10 × 10
grid. The Anaheim dataset provides the mean travel time.
The variance for each edge is randomly generated from 0 to
the mean. The source and destination are randomly chosen.

Table 1 summarizes the results on the datasets, which are
the average of 20 experiments. Even though theoretically the
algorithm can be designed for arbitrary desired accuracy, it is
limited by the memory of the environment.3 However, com-
paring with exhaustive search, we found that the practical
accuracy is 100% on 5 × 5 grid graphs.4 This means that
our algorithm is far more accurate than its theoretical worst
case bound. We explain this phenomenon through Figure 2,
which shows the number of sub-paths generated up to each
iteration. We see that the number of sub-paths generated in
the initial iterations grows exponentially, just as in exhaus-
tive search, but levels off eventually. Recall Lemma 2, which
tells us that an error is induced when a sub-path is eliminated
due to similarity to a saved sub-path, and Figure 2 suggests
that this rarely happens in the initial iterations.

Conclusion

We investigated the shortest path problem with a general
nonlinear and non-monotonic objective function. We proved
that this problem is hard to approximate for simple paths and

3It takes about 3GB physical memory usage for the 18M paths
in the 10× 10 grid network.

4Exhaustive search becomes prohibitive for paths with more
than 12 hops on 5× 5 grid graphs.

3214

consequently, we designed and analyzed a fully polynomial
approximation scheme for finding the approximately opti-
mal non-simple path under either a hop constraint or an ad-
ditional linear constraint. We showed that this algorithm can
be applied to the cost-to-time ratio problem and the dead-
line problem. Our experiments show that our algorithm is
capable of finding good approximations efficiently.

Acknowledgement

This work was supported in part by NSF grant numbers
CCF-1216103, CCF-1350823, CCF-1331863, and a Google
Faculty Research Award.

References

Ahuja, R.; Batra, J.; and Gupta, S. 1983. Combinatorial
optimization with rational objective functions: A communi-
cation. Mathematics of Operations Research 8(2):314–314.
Bar-Gera, H. 2002. Transportation network test problems.
Correa, J.; Fernandes, C. G.; and Wakabayashi, Y. 2010.
Approximating a class of combinatorial problems with ratio-
nal objective function. Mathematical programming 124(1-
2):255–269.
Goyal, V., and Ravi, R. 2013. An fptas for minimizing a
class of low-rank quasi-concave functions over a convex set.
Operations Research Letters 41(2):191–196.
Guérin, R. A., and Orda, A. 1999. Qos routing in net-
works with inaccurate information: theory and algorithms.
IEEE/ACM Transactions on Networking (TON) 7(3):350–
364.
Horst, R.; Pardalos, P. M.; and Van Thoai, N. 2000. Intro-
duction to global optimization. Springer Science & Business
Media.
Karger, D.; Motwani, R.; and Ramkumar, G. 1997. On
approximating the longest path in a graph. Algorithmica
18(1):82–98.
Kelner, J. A., and Nikolova, E. 2007. On the hardness
and smoothed complexity of quasi-concave minimization.
In Foundations of Computer Science, 2007. FOCS’07. 48th
Annual IEEE Symposium on, 472–482. IEEE.
Megiddo, N. 1979. Combinatorial optimization with ra-
tional objective functions. Mathematics of Operations Re-
search 4(4):414–424.
Mittal, S., and Schulz, A. S. 2013. An fptas for optimizing
a class of low-rank functions over a polytope. Mathematical
Programming 141(1-2):103–120.
Nikolova, E.; Kelner, J. A.; Brand, M.; and Mitzenmacher,
M. 2006. Stochastic shortest paths via quasi-convex maxi-
mization. In Algorithms–ESA 2006, 552–563. Springer.
Nikolova, E.; Brand, M.; and Karger, D. R. 2006. Optimal
route planning under uncertainty. In ICAPS, volume 6, 131–
141.
Nikolova, E. 2010. Approximation algorithms for offline
risk-averse combinatorial optimization.
Papadimitriou, C. H., and Yannakakis, M. 2000. On the
approximability of trade-offs and optimal access of web

sources. In Foundations of Computer Science, 2000. Pro-
ceedings. 41st Annual Symposium on, 86–92. IEEE.
Tsaggouris, G., and Zaroliagis, C. 2009. Multiobjective op-
timization: Improved fptas for shortest paths and non-linear
objectives with applications. Theory of Computing Systems
45(1):162–186.
Yang, G., and Nikolova, E. 2015. Approximation algorithms
for route planning with nonlinear objectives. arXiv preprint
arXiv:1511.07412.

Appendix: Proof of Theorem 3

In order to prove Theorem 3, we need the following lemma:
Lemma 3. The function Φ(D−x√

y) is 3.284(3 + D√
S
)-

Lipschitz on log-log scale with respect to L1 norm on the
region C = {(x, y)|x > D, y > S, x−D ≤ 3

√
y}.

The proof of the lemma is omitted here and will be pre-
sented in the full version of this paper. With this lemma, we
are ready to prove Theorem 3:

Proof of Theorem 3. Let l1(p) denote the mean traveling
time for path p, and l2(p) denote the variance for path p.
Further denote l(p) = (l1(p), l2(p)). By Lemma 2, we can
see that for the optimal s − t path p∗, there exists an s − t
path p′′ ∈ Πγ

t such that

| log lk(p∗)− log lk(p
′′)| ≤ γ log(1 + ε)

Denote the region C = {(x, y)|x > D, y > S, x − D ≤
3
√
y}. We can see that (x, y) ∈ C if and only if Φ(D−x√

y) ∈
[Φ(−3), 0.5) and y > S. The optimal path must satisfy
l(p∗) ∈ C since f(p∗) ≥ f(p′) > Φ(−3).

First consider the case that l(p′′) is in the region C. Then
we can adapt the same technique as in the proof of Theo-
rem 2 and the smoothness condition we showed in Lemma 3
to claim that the path p′ returned by the algorithm satisfies

f(p∗) ≤ (1 + ε)
2×3.284×(3+ D√

S
)γ
f(p′)

Now consider the case that l(p′′) is not in the region C,
then there must exist a point (x0, y0) ∈ C on the line L =
{x−D = 3

√
y} such that

| log x0 − log l1(p
∗)| ≤ γ log(1 + ε)

| log y0 − log l2(p
∗)| ≤ γ log(1 + ε)

It then follows from Lemma 3 that∣∣∣∣ log
Φ(D−x0√

y0
)

f(p∗)

∣∣∣∣ ≤ 2× 3.284×
(
3 +

D√
S

)
γ log(1 + ε)

Since the algorithm returns some other path p′ such that
f(p′) > Φ(−3) = Φ(D−x0√

y0
), we must have

f(p∗) < (1 + ε)
6.568(3+ D√

S
)γ
f(p′)

However, the approximation ratio is upper-bounded by
0.5/Φ(−3) ≈ 384.62, so this shows that p′ is an
min{384.62, (1+ε)

6.568(3+ D√
S
)γ}-approximation to p∗. We

can apply the same technique for the case that f(p′) >
Φ(−2) or any other values.

3215

