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Abstract

Goal recognition design involves the offline analysis of goal
recognition models by formulating measures that assess the
ability to perform goal recognition within a model and find-
ing efficient ways to compute and optimize them. In this work
we relax the full observability assumption of earlier work by
offering a new generalized model for goal recognition design
with non-observable actions. A model with partial observabil-
ity is relevant to goal recognition applications such as assisted
cognition and security, which suffer from reduced observabil-
ity due to sensor malfunction or lack of sufficient budget. In
particular we define a worst case distinctiveness (wcd) mea-
sure that represents the maximal number of steps an agent
can take in a system before the observed portion of his trajec-
tory reveals his objective. We present a method for calculating
wcd based on a novel compilation to classical planning and
propose a method to improve the design using sensor place-
ment. Our empirical evaluation shows that the proposed solu-
tions effectively compute and improve wcd.

Introduction

Goal recognition design (grd) (Keren, Gal, and Karpas
2014; 2015) provides an offline analysis of goal recognition
models, which are also known as plan recognition (Kautz
and Allen 1986; Lesh and Etzioni 1995; Pattison and Long
2011). Goal recognition design formulates measures to as-
sess the ability to understand the goal of an agent by the
online observation of his behavior and finds efficient ways
to compute and optimize them.

Goal recognition design consists of two main stages. The
calculation stage finds the worst case distinctiveness (wcd)
of the model, representing the maximal number of steps an
agent can take in a system before the observed portion of
his trajectory reveals his objective. wcd serves as an upper
bound on the number of actions an agent can perform before
his goal can be recognized. The second stage involves mod-
ifying the system (hence, goal recognition design) to mini-
mize wcd.

Goal recognition design is applicable to any domain for
which quickly performing goal recognition is essential and
in which the model design can be controlled. In particu-
lar, goal recognition design is relevant to goal and plan
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recognition applications such as assisted cognition (Kautz
et al. 2003) and security (Jarvis, Lunt, and Myers 2004;
Kaluza, Kaminka, and Tambe 2011; Boddy et al. 2005) that
suffer from reduced observability due to sensor malfunc-
tion, deliberate sabotage, or lack of sufficient budget. In a
safe home setting, for example, reduced coverage means less
control over access to sensitive areas such as a hot oven.

Earlier work on goal recognition design (Keren, Gal,
and Karpas 2014; 2015) assumed fully observable models.
In this work we relax this assumption and offer innovative
tools for a goal recognition design analysis that accounts
for a model with non-observable actions and a design pro-
cess that involves sensor placement. The partially observ-
able setting partitions the set of actions into observable and
non-observable actions, reflecting, for example, partial sen-
sor coverage. The proposed analysis relies on a partial in-
coming stream of observations. A key feature of this setting
is that it supports a scenario where the system has no infor-
mation regarding the actions of agents beyond what is ob-
served. Therefore, in the absence of an observation, the sys-
tem cannot differentiate unobserved actions from idleness
of an agent. An example of such a scenario can be found in
Real Time Location Systems (RTLS) where the last known
location of an agent is taken as its current position.

The partially observable setting provides three contribu-
tions to the goal recognition design state-of-the-art. The key
novelty lies in the differentiation it creates between an exe-
cution sequence and the observation sequence it emits. The
fact that an observation sequence includes only the observ-
able actions performed by an agent means that the same ob-
servation sequence may be generated by more than one exe-
cution sequence. In previous settings an execution sequence
was considered non distinctive if it represented a prefix of le-
gal plans to more than one goal. Here this condition is gener-
alized to include execution sequences for which the emitted
observation sequence is shared by prefixes of paths to more
than one goal. The worst case distinctiveness (wcd) is then
the length of the maximal execution that produces a non-
distinctive observation sequence.

Second, despite the partial observability and the asymme-
try of the model, attributed to the difference between an ob-
servation sequence and an execution sequence, we propose a
method for calculating wcd that is based on a compilation to
a fully observable classical planning framework. This com-
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Figure 1: A partially observable goal recognition design
problem

pilation allows us to exploit existing efficient tools for cal-
culating wcd. Our empirical analysis shows that the compi-
lation allows efficient computation of wcd.

The third contribution of this work involves finding an
optimal set of modifications that can be introduced to
the model in order to reduce wcd. We introduce a new
design-time modification method that involves exposing
non-observable actions, e.g., by (re)placing sensors. This
modification method is used, in addition to removing actions
from the model (Keren, Gal, and Karpas 2014), to minimize
wcd while respecting restrictions on the number of allowed
modifications. The empirical analysis reveals that the com-
bination of these two types of modifications leads to greater
improvements than each of the measures separately.

Example 1 To illustrate the objective of calculating and
optimizing wcd of a goal recognition design model, con-
sider Figure 1, which demonstrates a simplified setting from
the logistics domain. There are 3 locations, Loc1, Loc2 and
Loc3, a single truck that is initially located at Loc1, and 3
objects that are initially placed such that O1 and O2 are at
Loc1, and O3 is at Loc2. Objects can be moved by loading
them (L) onto the truck and unloading them (UL) in their
destination after the truck reaches it using a drive action
(D). There are two possible goals, g0: O1 at Loc2 and O2

and O3 at Loc3, and g1: O1 at Loc3 and O3 at Loc1. Opti-
mal plans are the only valid plans in this example.

In the fully observable setting (see Figure 1(left)) wcd = 1
since O1 needs to be loaded on the truck for both goals to
be achieved. The goal is revealed by the next action, which
can either be L(O2) for g0 or D(Loc1, Loc2) for g1.

In Figure 1(right)), the loading depot is covered. There-
fore, all load and unload actions are non-observable and
the only observable actions are those that relate to the move-
ments of the truck. Since the truck needs to travel from Loc1
to Loc2 and then to Loc3 for achieving both goals, the goal
is revealed only if D(Loc3, Loc1) is performed. This means
that g0 can be achieved without the system being aware of it
(wcd = 8). Exposing L(O2), by placing a sensor on the ob-
ject, changes the situation dramatically by reducing wcd to
its value in the fully observable setting.

Background

The basic form of automated planning, referred to as clas-
sical planning, is a model in which the actions of agents
are fully observable and deterministic. A common way to
represent classical planning problems is the STRIPS formal-
ism (Fikes and Nilsson 1972): P = 〈F, I,A,G,C〉 where
F is a set of fluents, I ⊆ F is the initial state, G ⊆ F rep-
resents the set of goal states, and A is a set of actions. Each

action is a triple a = 〈pre(a), add(a), del(a)〉, which rep-
resents the precondition, add, and delete lists respectively,
all are subsets of F . An action a is applicable in state s if
pre(a) ⊆ s. If action a is applied in state s, it results in a
new state s′ = (s \ del(a))∪ add(a). C : A → R

+
0 is a cost

function that assigns each action a non-negative cost.
The objective of a planning problem is to find a plan π =

〈a1, . . . , an〉, a sequence of actions that brings an agent from
I to a goal state. The cost c(π) of a plan π is Σn

i=1(C(ai)).
Often, the objective is to find an optimal solution for P , an
optimal plan, π∗, that minimizes the cost. We assume the
input of the problem includes actions with a uniform cost of
1. Therefore, plan cost is equivalent to plan length, and the
optimal plans are the shortest ones.

Model

A model for partially observable goal recognition design
(grd-po) is given as D = 〈PD,GD,Πleg(GD)〉 where:
• PD = 〈FD, ID, AD〉 is a planning domain where AD =
Ao

D ∪ Ano
D is a partition of AD into observable and non-

observable actions, respectively.
• GD is a set of possible goals, where each possible goal
g ∈ GD is a subset of FD.

• Πleg(GD) =
⋃

g∈GD
Πleg(g) is the set of legal plans to

each of the goals. A plan is an execution of actions that
take the agent from I to a goal in GD. A legal plan is
one that is allowed under the assumptions made on the
behavior of the agent.

The grd-po model divides the system description into three
elements: system dynamics, defined by PD and GD, agent
strategy defined by Πleg(GD), and observability defined by
the partition of AD into Ao

D and Ano
D . Whenever D is clear

from the context we shall refrain from adding the subscript.
Whereas a plan π is a full execution, a path is a prefix

of a legal plan. We denote the set of paths in D as �Π(GD)
and the set of paths that are prefixes of plans achieving goal
g ∈ GD as �Π(g). In the partially observable setting the ob-
servation sequence that is produced by a path includes only
the observable actions that are performed. Accordingly, an
observation sequence �o = 〈a1, · · · , an〉 is a sequence of ac-
tions aj ∈ Ao. For any two action sequences 〈a1, · · · , an〉
and 〈a′

1, · · · , a
′
m〉 the concatenation of the action sequences

is denoted by 〈a1, · · · , an〉 · 〈a′
1, · · · , a

′
m〉.

The relationship between a path and an observation se-
quence is formally defined next.

Definition 1 Given a path �π, the observable projection of �π
in D, denoted opD(�π) (op(�π) when clear from the context),
is recursively defined as follows:

opD(�π) =

⎧⎪⎪⎨
⎪⎪⎩

〈〉 if �π = 〈〉
〈a1〉 · opD(〈a2 · · · an〉) if �π = 〈a1, · · · , an〉 and a1 ∈ Ao

D

opD(〈a2, · · · , an〉) if�π = 〈a1, · · · , an〉 and a1 ∈ Ano
D

It is worth noting that the fully observable setting (Keren,
Gal, and Karpas 2014; 2015) is a special case in which the
entire action set is observable. In this case, Ano = ∅, Ao =
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A, and the observable projection of any action sequence is
equivalent to the action sequence itself.

The relation between a path and a goal and an observation
sequence and a goal are defined as follows.

Definition 2 A path �π satisfies a goal g if �π ∈ �Π(g).
An observation sequence �o satisfies a goal g if ∃�π ∈ �Π(g)
s.t. �o = op(�π).

For example, 〈L(O1), L(O2), D(Loc1, Loc2)〉 in Exam-
ple 1, hereon referred to as �πex1, satisfies only g0. However,
its observable projection op(�πex1) = 〈D(Loc1, Loc2)〉 sat-
isfies both go and g1.

We let GA
D(�π) and GO

D(op(�π)) represent the set of goals
that are satisfied by the executed path �π and its observ-
able projection op(�π), respectively. The distinction the grd-
po model creates between GA

D(�π) and GO
D(op(�π)) is a key

element of the proposed framework. More generally, we ex-
amine the effect of concealing an action by making it non-
observable (that is, moving it from Ao to Ano) on the num-
ber of goals the observable projection of a path satisfies. The
fact that concealment may only increase the number of goals
will be fundamental in our analysis of the grd-po model.
Theorem 1 Let D and D′ be two grd-po models that are
identical except that Ano

D ⊆ Ano
D′ . For any �π ∈ �Π(GD),

GO
D(op(�π)) ⊆ GO

D′ (op(�π))

Proof: According to Definition 1, the observation sequence
generated by the execution of a path �π is op(�π) =
〈a1, ..., an〉 where ai ∈ Ao. If ∀a ∈ �π, a �∈ Ano

D′ \
Ano

D then opD(�π) = opD′(�π) since none of the ac-
tions in �π changed their observability property. Therefore,
GO
D(op(�π)) = GO

D′(op(�π)). Otherwise, ∃ai ∈ �π, 1 ≤ i ≤ n
s.t. ai ∈ Ano

D′ \Ano
D . According to Definition 1,

opD(�π) = opD(〈a1, ..., ai−1〉 · ai · opD(〈ai+1, ..., an〉)
whereas
opD′ (�π) = opD′ (〈a1, ..., ai− 1〉 · opD′ (〈ai+1, ..., an〉).
For any path �π

′
that is identical to �π except that ai is replaced

by a possibly empty sequence of non-observable actions,
opD(�π) �= opD(�π

′
) but opD′ (�π) = opD′ (�π

′
). Since �π

′
may

lead to a different goal than �π, GO
D(op(�π)) ⊆ GO

D′ (op(�π)).
Our analysis is based on the discovery of paths whose ob-
servable projection does not reveal the goal of the execut-
ing agent, i.e., of paths whose observable projection satisfies
more than one goal. Accordingly, we define non-distinctive
observation sequences and paths as follows.

Definition 3 �o is a non-distinctive observation sequence if
it satisfies more than one goal. Otherwise, it is distinctive.
�π is a non-distinctive path if its observable projection �o =
op(�π) is non-distinctive. Otherwise, it is distinctive.

The path �πex1 (Example 1) is non-distinctive since its ob-
servable projection satisfies both g0 and g1. Lemma 1, given
next, sets the relationship between a path and its prefixes
(The proof is omitted due to space restrictions).

Lemma 1 Any prefix of a non-distinctive path is non-
distinctive.

Next, we define the measure by which we evaluate a
model. The worst case distinctiveness (wcd) of a grd-
po model represents the maximal number of steps an agent
can advance in a system without revealing his goal. We mark
the set of non-distinctive paths in D as �Πnd(D) and define
wcd as maximal length of paths in �Πnd(D).
Definition 4 The worst case distinctiveness of a model D,
denoted by wcd(D) is:

wcd(D) = max
�π∈�Πnd(D)

|�π|

The distinction the grd-po model creates between the set of
goals a path satisfies and the set of goals satisfied by its ob-
servable projection affects the way wcd can be calculated. To
find the wcd of a model D one needs to account for all paths
�π ∈ �ΠD(G) that satisfy at least one goal (1 ≤ |GA

D(�π)|)
and whose observable projection satisfies at least two goals
(2 ≤ |GO

D(op(�π))|). This requirement promotes an analy-
sis that partitions the set of valid paths according to the
goals they satisfy, and examines each group separately be-
fore combining the results. We let �Πnd(gi) represent the
non-distinctive paths of gi, i.e., the non-distinctive paths that
are prefixes of legal plans to gi. We define wcd-gi as the
maximal wcd shared by goal gi and any other goal.

Definition 5 The worst case distinctiveness of a goal gi in
model D, denoted by wcd-gi(D) is:

wcd-gi(D) = max
�π∈�Πnd(gi)

|�π|

The wcd of the entire model can be found by taking the max-
imum over individual results for wcd-gi(D).

Theorem 2 Given a grd-po model D,

wcd(D) = max
i

(wcd-gi(D)).

Proof: Assume to contrary that ∃�π ∈ �Πnd(D) s.t. |�π| >
max

i
(wcd-gi(D)). According to Definition 5, ∃gi ∈ G s.t.

�π ∈ �Πnd(gi) but |�π| > wcd-gi(D), which serves as a con-
tradiction to the definition of wcd-gi(D).

A key issue to notice is that in the partially observ-
able setting we lose the convenient symmetry that ex-
isted in the fully observable setting in which wcd-g0 =
wcd-g1 = wcd for any pair of goals 〈g0, g1〉. In Exam-
ple 1, wcd(D) = wcd-g0(D) = wcd-g1(D) = 1 for
the fully observable setting since �π = 〈Load(O1)〉 is
both in �Πnd(g0) and �Πnd(g1). In the partially observable
setting, wcd(D) = wcd-g0(D) = 8 > wcd-g1(D) =
5 since the maximal non-distinctive path �πwcd-ex1 =
〈L(O1), L(O2), D(Loc1, Loc2), L(O3), UL(O1),
D(Loc2, Loc3), UL(O2), UL(O3)〉 satisfies g0 but not g1.

Calculating wcd
The baseline method for wcd calculation is a breadth first
search through the space of paths. A search node (path) is
pruned if it does not represent a prefix of a legal plan, or if it
is distinctive. In order to determine if a path �π is distinctive
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we can solve a goal recognition problem and remove a node
whose observable projection satisfies more than one goal.

While the BFS method supports any possible set of legal
plans, the need to solve a separate goal recognition prob-
lem for each node makes this method inefficient. Next, we
present a classical planning compilation used to calculate the
wcd more efficiently in the case of optimal and boundedly
suboptimal (reaching a goal with a bounded cost beyond op-
timal) legal plans. The compilation finds the maximal non-
distinctive path shared by a goal pair. We use it to calculate
wcd-gi by pairing gi to each of the other goals. Relying on
Theorem 2 we find the wcd of the model by combining in-
dividual results to find the maximal value over wcd-gi. For
the sake of clarity, the following description focuses on set-
tings where the set of legal plans is the set of optimal plans.
The extension to boundedly suboptimal case (Keren, Gal,
and Karpas 2015) will follow the compilation description.

The wcd of each goal pair G = {g0, g1}, denoted by
wcd-g0,1, is found by solving a single planning problem
P ′ involving two agents (agent0 and agent1) each with a
copy fi of F . Both agents start at the same initial state (I ′)
but each aim at a goal gi. The solution to the problem is
a plan (for both agents), divided into two parts by a com-
mon exposure point. The prefix of the plan up to the expo-
sure point represents a non-distinctive path, one that does
not reveal the goal of both agents and may consist of actions
performed by both agents simultaneously (denoted A0,1) in
addition to non-observable actions performed by one of the
agents (Ane

i ). The exposure point is represented by exposed,
which is a fluent representing the no-cost action DoExpose
has occurred. After the exposure point the goal of the agent
is recognized. The actions, either observed or non-observed,
performed by a single agent after the exposure point are de-
noted by Ae

i . Since our objective is to reveal the maximal
non-distinctive path of the model, we discount the cost of
actions that belong to unexposed prefixes of plans, encour-
aging the agents to extend the unexposed prefix.

The use of the exposure point is similar to the use of
split (Keren, Gal, and Karpas 2014; 2015), where agents are
encouraged to act together. However, the addition of non-
observable actions to the unexposed prefix breaks the sym-
metry that existed in the fully observable setting. The ob-
jective is no longer to find a path that maximizes the num-
ber of steps both agents share (actions in A0,1). Rather, one
of the agents seeks a path that keeps the agent unrecog-
nized by combining non-observable actions (actions in Ane

i )
and observable actions that are on legal paths to a different
goal (actions in A0,1). To reflect this asymmetry we change
the objective to allow only one agent (arbitrarily chosen as
agent0) to benefit from the discount assigned to performing
non-observable actions.

The latest-expose compilation (Definition 6) finds
wcd-g0,1 for optimal agents for each pair of goals {g0, g1}.

Definition 6 For a grd-po problem D = 〈P,G =
{g0, g1},Πleg(G)〉 where P = 〈F, I,A = Ao ∪ Ano〉 we
create a planning problem P ′ = 〈F ′, I ′, A′, G′〉, with ac-
tion costs C ′, where:
• F ′ = {f0, f1 | f ∈ F} ∪ {exposed} ∪ {done0}

• I′ = {f0, f1 | f ∈ I}}
• A′ = A0,1 ∪ Ane

i ∪ Ae
i ∪ {DoExpose} ∪ {Donei}

– A0,1 = {〈{f0, f1 | f ∈ pre(a)} ∪ {¬exposed},
{f0, f1 | f ∈ add(a)},
{f0, f1 | f ∈ del(a)}〉 | a ∈ A}

– Ane
i = {〈{fi | f ∈ pre(a)} ∪ {¬exposed},

{fi | f ∈ add(a)},
{fi | f ∈ del(a)}〉 | a ∈ Ano}

– Ae
0= {〈{f0 | f ∈ pre(a)} ∪ {exposed} ∪ {¬done0},

{f0 | f ∈ add(a)},
{f0 | f ∈ del(a)}〉 | a ∈ A}

– Ae
1= {〈{f1 | f ∈ pre(a)} ∪ {exposed} ∪ {done0},

{f1 | f ∈ add(a)},
{f1 | f ∈ del(a)}〉 | a ∈ A}

– Done0 = 〈exposed, done0, ∅〉
– DoExpose = 〈∅, exposed, ∅〉

• G′ = {f0|f ∈ g0} ∪ {f1|f ∈ g1}

• C′(a) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 − ε if a ∈ A0,1

1 − ε if a ∈ Ane
0

1 if a ∈ Ane
1 , Ae

i

0 if a ∈ {DoExpose} ∪ {Done0}

Note that after agent 0 accomplishes its goal, Done0 is per-
formed, allowing the application of actions in Ae

1 until g1 is
achieved. We force agent 1 to wait until agent 0 reaches its
goal before starting to act to make the search for a solution
to P ′ more efficient by removing symmetries between dif-
ferent interleaving of agent plans after DoExpose occurs.

Accounting for the bounded-non optimal agent setting
(with a cost Bi) requires constraining the path lengths of
each agent to be C∗(gi)+Bi (Keren, Gal, and Karpas 2015).
This is achieved by adding an action counting mechanism
to the model such that each action aki advances the counter
of the corresponding agent. Both counters are initialized to
0 and each agent’s goal requires performing C∗(gi) + Bi

actions. We also add idlei actions, which only advance the
counter, to support settings in which an agent cannot reach
the goal in exactly C∗(gi) + Bi steps. The cost of idlei is
the same as regular actions and can only be performed after
exposed becomes true as to not effect the wcd value.

Given a solution πP ′ to P
′
, we mark the projection of

πP ′ on each agent i as πP ′ (gi), which includes all actions
in A0,1, Ane

i , and Ae
i that appear in πP ′ . Accordingly, the

projection of the optimal solution π∗
P ′ to P

′
on each agent

is marked as π∗
P ′ (gi). We guarantee that π∗

P ′ (gi) yields a le-
gal plan for both agents in D by bounding ε, the discount
that may be collected for performing actions before DoEx-
pose occurs, to be lower than the smallest possible diversion
from a legal path to any of the agents. Accordingly, when-
ever ε < 1

min(C∗
D(g0+B0),C∗

D(g1+B1))
, both agents act opti-

mally in P
′

(Keren, Gal, and Karpas 2015).
Next, we show that the observable projection of the paths

prior to the exposure point is non-distinctive. Given a solu-
tion πP ′ , unexposed(πP ′ (gi)) denotes the prefix of πP ′ (gi)
prior to the exposure point.
Lemma 2 unexposed(πP ′ (gi)) is non-distinctive.
Proof: To show that unexposed(πP ′ (gi)) is non-distinctive
we need to show that it satisfies both g0 and g1.
The compilation guarantees that for any action a ∈
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unexposed(πP ′ (gi)), a ∈ A0,1 or Ano
i . According to

Definition 1, op(unexposed(πP ′ (gi))) = {〈a1...an|a ∈
A0,1〉}. This means that op(unexposed(πP ′ (g0))) =
op(unexposed(πP ′ (g1)) and according to Definition 3,
op(unexposed(πP ′ (gi)) is non-distinctive.
Finally, Theorem 3 shows that the optimal solution to P ′
yields the wcd-g0, thus concluding our proof of correctness.
Theorem 3 Given a grd-po model D with two goals
〈g0, g1〉 and a model P ′, created according to Definition 6,
wcd-g0(D) = |unexposed(π∗

P ′ (g0))|.
Proof: We have described the bound on ε that guarantees
that, apart from the no-cost operation DoExpose and Done0,
the solution to P ′ consists solely of actions that form a
pair of legal paths to each of the goals. Therefore, among
the solutions that comply with this condition, π∗

P ′ is the
one that maximizes the accumulated discount. The com-
pilation guarantees that the only way to accumulate dis-
count is by maximizing the number of actions agent0 per-
forms before the exposure point, therefore π∗

P ′ is the solu-
tion to P ′ that maximizes |unexposed(πP ′ (g0))|. Therefore
|unexposed(π∗

P ′ (g0))| = wcd-g0(D).
In Example 1, �πwcd-ex1 sets the wcd to be 8. Using our cal-
culation, �πwcd-ex1 is represented by unexposed(π∗

P ′ (g0))

in which L(O1) is performed by both agents (and belongs
to A0,1), L(O2) is unobserved (Ane

0 ), D(Loc1, Loc2) and
L(O3) are performed together (A0,1), UL(O1) is unob-
served, D(Loc2, Loc3) is performed together(A0,1), and fi-
nally UL(O2) and UL(O3) are both unobserved (Ane

0 ).

Reducing wcd
Having formulated the wcd measure, we turn to our second
objective of finding ways to optimize wcd by redesigning
the model. Optimization can be achieved using two possi-
ble modifications, namely action removal and exposure. The
former disallows actions from being performed while the lat-
ter exposes actions by moving them from Ano to Ao, e.g., by
placing a new sensor.

wcd reduction is performed within a modification bud-
get that represents the constraints to be respected by the re-
duction method. Given the two possible modifications of a
model, we can either provide an integrated budget, Btotal,
or separate budgets Bsep = 〈Brem, Bsen〉, where Brem and
Bsen are the bounds on the number of actions that can be
removed and exposed, respectively.

Our objective is to minimize the wcd value of the model,
subject to a budget constraint. We mark the modifications
by a pair 〈Arem, Asen〉, where Arem and Asen are the dis-
allowed and exposed actions in the transformed model, re-
spectively. In our exploration we assume a uniform cost for
the removal and exposure of all actions. In addition, we force
the cost of achieving any of the goals to not increase. Both
simplifying assumptions can be easily relaxed without major
modification to the reduction algorithm.

The reduction is performed using a BFS search that itera-
tively explores all possible modifications to the model. The
initial state is the original model and each successor node
introduces a single modification, either exposure or reduc-
tion, that was not included in the parent node. A node in the

search tree is therefore represented by a pair 〈Arem, Asen〉.
A node is pruned from the search if any of the constraints
have been violated or if there are no more actions to add.

The key question remaining is what are the modifications
that should be considered at each stage. A naı̈ve approach
would be to consider all possible modifications, which is
impractical and wasteful. Instead, we focus our attention on
modifications that have the potential of reducing wcd by ei-
ther eliminating the wcd path (action removal) or by reduc-
ing the length of its non-distinctive prefix (exposure). Ac-
cording to Definition 4, we let �Πwcd(D) represent the path
set �π s.t. �π = argmax

�π∈�Πnd(D)

|�π|. In addition, Πwcd(D) represents

the set of plans that have a path in �Πwcd(D) as their prefix. It
was already shown that the only actions that need to be con-
sidered for elimination are the actions that belong to plans in
Πwcd(D) (Keren, Gal, and Karpas 2014). We show that the
only actions that need to be considered for exposure are the
non-observable actions that appear in paths in �Πwcd(D).

Theorem 4 Let D and Dt be two grd-po models that are
identical except that Ano

Dt
⊆ Ano

D . If ∀a ∈ Ano
D \ Ano

Dt
, a �∈

�Πwcd(D) then wcd(D) = wcd(Dt).

Proof: Theorem 1 assures that any distinctive path in D re-
mains distinctive in Dt and �Πnd(Dt) ⊆ �Πnd(D). Since the
wcd value of a model is determined by the maximal length of
the paths in �Πnd then wcd(Dt) ≤ wcd(D). We need to show
that under the specified conditions, the wcd cannot decrease
in Dt. Assume to the contrary that wcd(Dt) < wcd(D).
This means that there is a non distinctive path �π ∈ �Πnd(D)
s.t. �π is a maximal non-distinctive path in D and is distinc-
tive in Dt (i.e., �π ∈ �Πwcd(D) and �π ∈ �Πnd(D) \ �Πnd(Dt)).
Definition 1 guarantees that since ∀a ∈ Ano

D \ Ano
Dt

, a �∈
�Πwcd(D) then ∀�π ∈ �Πwcd(D), the observable projection did
not change opD(�π) = opDt(�π) and therefore �π ∈ �Πnd(Dt),
which serves as a contradiction.
The reduction algorithm creates, for each node, one succes-
sor for disallowing each action that appears in Πwcd(D) and
one successor for exposing each non-observable action in
the path �π ∈ �Πwcd(D) found by the calculation performed at
the parent node. To avoid redundant computation, we cache
computed actions combination.

In Example 1, disallowing actions is impossible without
increasing the optimal costs. However, by exposing L(O2)
by placing a sensor on O2, wcd is reduced to 1, the same as
in the fully observable setting.

Empirical Evaluation

Our empirical evaluation has several objectives. Having
shown that reduced observability may increase wcd we first
examine empirically the extent of this effect. In addition,
we compare the efficiency of methods proposed for the
fully observable (Keren, Gal, and Karpas 2014) and par-
tially observable settings. Finally, we evaluate the reduc-
tion process as well as the effectiveness of action reduc-
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latest-split 0% 5% 10% 20%
Time wcd Time wcd Time wcd Time wcd Time wcd

GRID 0.32 10.36 0.32 10.36 0.36 10.41 0.35 10.46 0.36 11.1
GRID+ 3.53 3.45 8.75 3.45 9.56 3.55 9.64 3.67 9.96 3.84
BLOCK 3.03 2.06 29.2 2.06 33.2 2.12 25.89 2.14 31.01 2.82
LOG 238.5 3.51 165.2 3.71 153.26 3.71 155.48 3.78 191.56 4.1

(0.9) (0.6) (0.31) (0.29) (0.2)

Table 1: Average running time and values for wcd calcula-
tion over solved problems for varying non-observable ac-
tions ratio

5 % 10 % 20 %
0 4 4:0 0:4 0 4 4:0 0:4 0 4 4:0 0:4

GRID 10.41 9.64 9.71 10.36 10.46 9.34 9.76 10.36 11.1 10.91 11.1 10.91
GRID+ 3.55 2.01 2.01 3.55 3.67 1.75 1.87 2.93 3.84 2.6 2.92 3.35
BLOCK 2.12 1.78 1.83 2.12 2.14 1.58 1.64 2.1 2.82 2.15 2.45 2.67
LOG 3.71 3.37 3.44 3.56 3.78 3.26 3.42 3.51 4.1 3.47 3.8 3.67

Table 2: Average wcd after reduction for each ratio and bud-
get allocation achieved within allocated time

tion vs. exposure. We describe the datasets and the exper-
iment setup before presenting and discussing the results.
Datasets We use 4 domains of plan recognition (Ramirez
and Geffner 2009), namely GRID-NAVIGATION(GRID),
IPC-GRID+(GRID+), BLOCK-WORDS(BLOCK), and LO-
GISTICS(LOG). Each problem description contains a do-
main description, a template for a problem description with-
out the goal, a set of goals and a set of non-observable ac-
tions. For each benchmark we generated a separate grd prob-
lem for each pair of hypotheses and randomly sampled ac-
tions to form the non-observable set creating 3 instances
with 5%, 10% and 20% randomly chosen non-observable
actions. We tested 216 GRID instances, 660 GRID+ in-
stances, 600 BLOCK instances, and 300 LOG instances.
In addition, we created a hand crafted benchmark for the
LOGISTICS domain dubbed LOG-Generated, which corre-
sponds to Example 1 where packages load and unload ac-
tions are non-observable. This corresponds to real-world set-
tings where satellite imaging can easily track movement of
vehicles between locations, but the actual actions performed
are obscured from view.
Setup For each problem instance we calculate wcd and run-
time for the fully observable and partially observable set-
tings. For wcd reduction we examine the partially observ-
able setting with 3 bound settings: an integrated bound of
Btotal = 4 and 2 separate bounds 〈0, 4〉 and 〈4, 0〉, where
the first element of each pair represents Brem and the sec-
ond Bsen. We used the Fast Downward planning system
(Helmert 2006) running A∗ with the LM-CUT heuristic
(Helmert and Domshlak 2009). The experiments were run
on Intel(R) Xeon(R) CPU X5690 machines, with a time
limit of 30 minutes and memory limit of 2 GB.
Results Table 1 summarizes the impact the ratio of non-
observable actions has on execution time and wcd. The par-
tially observable setting is partitioned into the various ra-
tios examined, including a problem with no non-observable
actions, which is compared against the values collected for
the fully observable setting solved using latest-split. For
each setting we compare average run time (in seconds) over
solved problems. Whenever some of the problems timed-

out, we mark in parentheses the ratio of solved instances.
For all domains, wcd increases with the increase in the ra-
tio of non-observable actions. As for running time, latest-
split outperforms the equivalent partially observable setting
for all domains except GRID, for which performance is sim-
ilar. However, the overhead for adding non-observable ac-
tions is negligible. For the LOG-Generated domain the in-
crease in wcd was more noticeable, with the average wcd in-
creasing from 3.77 in the fully observable setting to 4.87 in
the partially observable setting.

Table 2 summarizes the results for wcd reduction for the
partially observable setting for each ratio, showing for each
budget allocation the average wcd reduction achieved within
the allocated time (for the LOG domain results refer only to
the problems that were successfully solved in the wcd cal-
culation stage). The evaluation shows that for all domains
wcd can be decreased by applying at least one of the modifi-
cation methods separately, but the most substantial reduction
is achieved by combining the methods. Note that this obser-
vation is relevant to the entire domain, while individual in-
stances used one modification form. We intend to investigate
this phenomenon in future work. For the LOG-Generated
domain the results for the reduction went from 4.87 in the
original partially observable setting to 3.34, 3.9 and 3.8 for
the 4,〈0, 4〉,〈4, 0〉 bound allocations, respectively.

Related Work

Goal recognition design was first introduced by Keren et
al. (2014; 2015), offering tools to analyze and solve the
grd model in fully observable settings. This work relaxes
the full observability assumption.

The first to establish the connection between the closely
related fields of automated planning and goal recognition
were Ramirez and Geffner (2009), presenting a compilation
of plan recognition problems into classical planning prob-
lems. Several works on plan recognition followed this ap-
proach (Agotnes 2010; Pattison and Long 2011; Ramirez
and Geffner 2010; 2011) by using various automated plan-
ning techniques. We follow this approach as well and intro-
duce a novel compilation of goal recognition design prob-
lems with non observable actions into classical planning.

Partial observability in goal recognition has been modeled
in various ways (Ramirez and Geffner 2011; Geib and Gold-
man 2005; Avrahami-Zilberbrand, Kaminka, and Zarosim
2005). In particular, observability can be modeled using a
sensor model that includes an observation token for each ac-
tion (Geffner and Bonet 2013). Note that the grd-po model,
presented for the partially observable setting, can be thought
of as one in which the set of observation tokens O includes
an empty observation sequence o∅ and A includes a no-cost
action aidle by which an agent remains at his current posi-
tion.

Conclusions

We presented a goal recognition design model that accounts
for partial observability by partitioning the set of actions
to observable and non-observable actions. We extend the
wcd measure and proposed ways to calculate and reduce it.
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By accounting for non-observable actions, we increase the
model’s relevancy to a variety of real-world settings.

Our empirical evaluation shows that non-observable ac-
tions typically increases the wcd value. In addition, we
showed that for all of the domains, wcd reduction using both
disallowed and exposed actions is preferred over each of the
methods separately.
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