
Computing Contingent Plans Using Online Replanning

Radimir Komarnitsky and Guy Shani
Information Systems Engineering

Ben Gurion University, Israel
{radimir,shanigu}@bgu.ac.il

Abstract

In contingent planning under partial observability with
sensing actions, agents actively use sensing to dis-
cover meaningful facts about the world. For this class
of problems the solution can be represented as a plan
tree, branching on various possible observations. Re-
cent successful approaches translate the partially ob-
servable contingent problem into a non-deterministic
fully observable problem, and then use a planner for
non-deterministic planning. While this approach has
been successful in many domains, the translation may
become very large, encumbering the task of the non-
deterministic planner.
In this paper we suggest a different approach — us-
ing an online contingent solver repeatedly to construct
a plan tree. We execute the plan returned by the online
solver until the next observation action, and then branch
on the possible observed values, and replan for every
branch independently. In many cases a plan tree can be
exponential in the number of state variables, but still, the
tree has a structure that allows us to compactly repre-
sent it using a directed graph. We suggest a mechanism
for tailoring such a graph that reduces both the compu-
tational effort and the storage space. Furthermore, un-
like recent state of the art offline planners, our approach
is not bounded to a specific class of contingent prob-
lems, such as limited problem width, or simple contin-
gent problems. We present a set of experiments, show-
ing our approach to scale better than state of the art of-
fline planners.

Introduction
Agents operating in a partially observable environment gain
important information using sensing actions. For example,
a robot navigating in a hallway may use its proximity sen-
sors to alert it about the nearby walls. When the agent must
achieve some goal, it often takes different actions given dif-
ferent observations it senses. In this case, the agent’s deci-
sion problem can be modeled as contingent planning under
partial observability with sensing actions, and the solution to
the problem can be represented as a plan tree, where nodes
are labeled by actions, and outgoing edges are labeled by
possible observations resulting from the action.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The size of the plan tree can be exponential in the num-
ber of unknown variables, where each different sequence of
observations leads to a different sequence of actions. Thus,
offline planners that compute the complete tree often met
scaling up difficulties (Albore, Palacios, and Geffner 2009;
Bryce, Kambhampati, and Smith 2006). Recently, Muise,
Belle, and McIlraith (2014) translated a partially observ-
able problem into a fully observable non-deterministic plan-
ning (Bonet and Geffner 2011), and then ran the non-
deterministic planner PRP. A disadvantage of this approach
is that the translation either becomes large as the problem
size increases, or is restricted to certain classes of problems,
such as simple contingent problems, or bounded width.

In this paper we take a different approach. Instead of
translating the entire problem into a non-deterministic one,
we compute a solution directly over the contingent prob-
lem, leveraging an online contingent planner. Online plan-
ners avoid computing a complete plan tree offline, by taking
into account a concrete state of the system, making decisions
throughout the plan execution (Shani and Brafman 2011;
Brafman and Shani 2012; Albore, Palacios, and Geffner
2009; Bonet and Geffner 2011). These planners often plan
for the next action (or until the next sensing action) observe
its output, and then plan again (replan) given the newly ob-
tained information(Maliah et al. 2014). As such, these plan-
ners traverse a single branch of a complete plan tree.

Our method uses repeated calls to such an online replan-
ner, capable of receiving the current partially observable
state, i.e., the system description and a sequence of actions
and observations that were already obtained, and computing
a sequence of actions that will lead to the goal, if possible,
or to a sensing action, producing more information, other-
wise. We begin at the initial state, asking the planner to pro-
duce a plan to a sensing action, then call the planner again
for each of the possible observations that the sensing action
has produced. This process continues until all branches end
at goal leaves. Given a sound and complete online replan-
ner, and limiting ourselves to deterministic domains with no
deadends, this approach provides a sound and complete con-
tingent planner for computing contingent plan trees.

Plan trees may be exponential, requiring a different se-
quence of actions for every possible initial state. In many
cases, however, the environment allows for a structured so-
lution, allowing us to represent the plan tree more compactly

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

3159



as a directed acyclic graph, avoiding the repeated computa-
tion of identical sub-plans. Indeed, PO-PRP uses the PRP
planner which is able to identify such structures, and create
plan graphs, which may be more compact than plan trees.

Following their footsteps, we augment our approach us-
ing a mechanism to identify branches of the tree where an
already computed plan can be applied. Given useful prob-
lem structure, this mechanism helps us to create a directed
acyclic graph representation rather than a plan tree, avoid-
ing an explicit exploration of an exponential number of
branches. This mechanism is applicable only for the lim-
ited class of simple contingent problems, yet our general ap-
proach is applicable to all contingent problems.

We experiment with well known contingent benchmarks.
For simple benchmarks that allow for structured solutions,
our planner scales well beyond the reach of state-of-the-art
planners. In other cases our planner may be significantly
slower, but does not suffer as much from memory consump-
tion problems. We further show that on non-simple prob-
lems, although we compute a plan tree rather than a graph,
we scale much better than previous approaches.

The main contribution of this paper is in constructing con-
tingent plan trees using repeated calls to an online contingent
replanner after every sensing action. A second contribution
is the identification of plan structure, allowing a compact
plan graph representation instead of a plan tree.

Background
Partially observable contingent planning problems are char-
acterized by uncertainty about the initial state of the world,
partial observability, and the existence of sensing actions.
Actions may be non-deterministic, but much of the litera-
ture focuses on deterministic actions, and in this paper we
will assume deterministic actions, too.

Problem Definition
A contingent planning problem is a quadruple: π =
〈P,A, ϕI , G〉. P is a set of propositions, A is a set of ac-
tions, ϕI is a formula over P that describes the set of pos-
sible initial states, and G ⊂ P is the goal propositions. We
often abuse notation, treating a set of literals as a conjunc-
tion of the literals in the set, as well as an assignment of the
propositions in it. For example, {p,¬q} will also be treated
as p ∧ ¬q and as an assignment of true to p and false to q.

A state of the world, s, assigns a truth value to all elements
of P . A belief-state is a set of possible states, and the initial
belief state, bI = {s : s |= ϕI} defines the set of states
that are possible initially. An action a ∈ A is a three-tuple,
{pre(a),effects(a),obs(a)}. pre(a) is a set of literals denoting
the action’s preconditions. effects(a) is a set of pairs (c, e)
denoting conditional effects, where c is a set (conjunction)
of literals and e is a single literal. Finally, obs(a) is a set of
propositions, denoting those propositions whose value is ob-
served when a is executed. We assume that a is well defined,
that is, if (c, e) ∈ effects(a) then c∧pre(a) is consistent, and
that if both (c, e), (c′, e′) ∈ effects(a) and s |= c ∧ c′ for
some state s then e ∧ e′ is consistent. In current benchmark
problems, either the set effects or the set obs are empty. That

is, actions either alter the state of the world but provide no
information, or they are pure sensing actions that do not alter
the state of the world, but this is not a mandatory limitation.

We use a(s) to denote the state that is obtained when a is
executed in state s. If s does not satisfy all literals in pre(a),
then a(s) is undefined. Otherwise, a(s) assigns to each
proposition p the same value as s, unless there exists a pair
(c, e) ∈ effects(a) such that s |= c and e assigns p a different
value than s. We assume throughout that all observations are
deterministic and accurate, and reflect the state of the world
prior to the execution of the action. Thus, if p ∈obs(a) then
following the execution of a, the agent will observe p if p
holds now, and otherwise it will observe ¬p. Thus, if s is the
true state of the world, and b is the current belief state of the
agent, then ba,s, the belief state following the execution of a
in state s — ba,s = {a(s′)|s′ ∈ b, s′ and s agree on obs(a)}
— corresponds to the progression through a of all states in
the old belief state b that assign the propositions in obs(a)
the same values as s does.

A contingent problem is simple if the hidden propositions
are static, i.e., do not change throughout the execution, and
no hidden variable appears in the condition c of a conditional
effect (c, e) of any action. Simple contingent problems are
easier to solve (Bonet and Geffner 2011).

Contingent Plans
A plan for a contingent planning problem is an annotated
tree τ = (N,E). The nodes, N , are labeled with actions,
and the edges, E, are labeled with observations. A node la-
beled by an action with no observations has a single child,
and the edge leading to it is labeled by the null observation
true. Otherwise, each node has one child for each possible
observation value. The edge leading to this child is labeled
by the corresponding observation.

A belief state n.b can be associated with each node n in
the tree, i.e., the set of possible states when n is reached dur-
ing run-time. bI is the belief state associated with the root.
If n.b is the belief state associated with node n labeled by
a, and n′ is a child of n connected with an edge labeled
by ϕ, then the belief state n′.b associated with n′ will be
{a(s) : s ∈ b, s |= ϕ}.

We illustrate this using a 4× 4 Wumpus domain (Albore,
Palacios, and Geffner 2009). Figure 1(a) illustrates this do-
main, where an agent is located on a 4 × 4 grid. The agent
can move in all four directions, and if moving into a wall, it
remains in place. The agent is initially in the low-left corner
and must reach the top-right corner. There are two monsters
called Wumpuses hidden along the grid diagonal, the agent
knows that each Wumpus is hiding in one of two possible
locations, but must observe its stench, which carries to all
adjacent locations, in order to deduce its whereabouts. The
possible states can be characterized by the whereabouts of
the Wumpuses — in both lower locations (denoted dd for
down-down), in both upper locations (denoted uu for up-up),
lower location first and then upper location (du), and upper
location first and then lower location (ud). Figure 1(b) shows
a possible plan tree for the Wumpus domain.

A contingent plan may be exponential in the number of
hidden state variables, requiring a different branch for every

3160



Figure 1: The 4×4 Wumpus domain. A plan tree, with arrows denoting movement actions, S for sensing a stench, and outgoing
edges marked by T or F (stench was observed or not). Branches are associated with a belief — the set of possible states.

possible start state. Indeed, classical planning problems may
also have an exponential solution, but in the contingent case
this is not a theoretical worst case, but rather a feature of
many well-known benchmark domains, such as the Wum-
pus plan tree that we present above. Moreover, it may be
that although there is a polynomial path to the goal given
any start state, the complete plan tree is exponential in the
number of hidden variables. This is the main advantage of
online solvers that traverse only a polynomial single branch
of the tree, avoiding the exponential plan representation.

Online Contingent Replanning
Often, the agent must respond rapidly to new observations,
and one must pre-compute a complete plan tree before start-
ing to act in the world. In some real world problems, how-
ever, it is acceptable for the agent to pause acting at an ar-
bitrary time to compute its future actions. In such cases one
can take an approach where the agent does not compute a
complete plan before acting (“offline”) but instead repeat-
edly pauses to recompute plan fragments (“online”).

A branch in a contingent plan can be viewed as a se-
quence of sensing actions, separated by sequences of non-
sensing actions. In the Wumpus example, each branch is a
sequence of smell actions, separated by sequences of move
actions. A common strategy to online planning is to com-
pute a sequence of non-sensing actions that will lead to the
next sensing action (Maliah et al. 2014). Following the sens-
ing action the agent receives an observation that modifies
its knowledge of the world, and needs to replan — com-
pute a new plan given the new observation, that would ei-
ther reach the goal, or allow it to execute a new sensing ac-
tion, obtaining additional useful information. This strategy
is known as online replanning, and is key to most state-of-
the-art contingent planners (Albore, Palacios, and Geffner
2009; Bonet and Geffner 2011; Shani and Brafman 2011;
Brafman and Shani 2012; Maliah et al. 2014).

In this paper we use a contingent replanner as a subrou-
tine. Hence, we require a contingent replanner that can take
as input the current knowledge of the agent concerning the
state of the world, and produce a sequence of actions that
would either reach the goal, or achieve the preconditions of
a sensing action that provides new information.

We choose here SDR (Shani and Brafman 2011) for the

replanning subroutine. SDR operates by choosing a possible
current state s, assuming it to be the true state of the system.
Then, SDR plans to reach the goal as if s was the true state.
If SDR learns, as a result of a sensing action, that s is not the
true state, it chooses a new state and replans.

An online planner is complete if it produces a plan leading
to the goal (through multiple replanning episodes) for every
valid sequence of observations. Shani and Brafman show
that for deterministic domains without deadends, SDR is
sound and complete, as in every replanning iteration it elim-
inates at least one possible state. Eventually only one possi-
ble state remains, and one could use a sound and complete
classical planner. In the presence of deadends, an online al-
gorithm may make an early decision from which it cannot
recover. There are currently no known sound and complete
online solvers for contingent planning with deadends.

Belief Maintenance
(Brafman and Shani 2014) suggest to avoid the computation
of new formulas representing the updated belief, by main-
taining only the initial belief formula, and the history —
the sequence of executed actions and sensed observations.
When the agent needs to query whether the preconditions of
an action or the goal hold at the current node, the formula is
regressed through the action-observation sequence back to-
wards the initial belief. Then, one can apply SAT queries to
check whether the query formula holds.

In addition, they maintain a cached list of facts F (n) that
are known to hold at node n, given the action effects or ob-
servations. All propositions p such that p /∈ F (n) ∧ ¬p /∈
F (n) are said to be unknown at n. The cached list is useful
for simplifying future regressed formulas.

Contingent Planning using Online Replanning
We now describe our CPOR (Contingent Planning using On-
line Replanning) algorithm, which uses repeated calls to a
contingent replanner to construct a plan tree. We then de-
scribe a mechanism for identifying nodes from which an al-
ready computed solution can apply.

Algorithm 1 describes CPOR. The algorithm computes a
plan tree, represented as nodes labeled by actions, and edges
labeled by observations resulting from executing the node

3161



actions. Each node is also associated with a belief, using the
regression mechanism (Brafman and Shani 2014).

We begin by initializing the root node, with the associated
initial belief state of the world. The initial node is inserted
into a stack. At each iteration the algorithm pops a node n
out of the stack. If n has not yet been handled (the mech-
anism for identifying already handled nodes is described
later), then we call the online replanning subroutine. This
results in a sequence of actions, starting at the belief state
associated with n, that either reaches the goal, or ends with
a sensing action. This plan is then simulated over the envi-
ronment. If the plan ends with a sensing actions, the children
of the sensing action are pushed onto the stack. This process
explores the contingent plan tree in a DFS manner, until the
stack is empty.

The algorithm uses a data structure for representing the
plan tree nodes. Each node maintains: n.h: the action-
observation history sequence leading to n, n.a: the ac-
tion to execute at n, n.children: single child for non-
observation actions, and multiple children for observation
actions, n.parents: its parent nodes (for plan graphs), and
n.closed: denoting whether all paths from n to the goal were
already computed, that is, whether n satisfies the goal, or all
child nodes of n are closed.

We write a(n) to denote the execution of a in the belief
state (maintained using bI and n.h) associated with a node
n. The result is either a single node n′ in the case of non-
sensing actions where n′.h = n.h+a, or multiple nodes N ′
where each node n′ ∈ N ′ corresponds to a single observa-
tion o and n′.h = n.h+ ao.

During plan computation goal conditions are checked us-
ing the regression belief mechanism. In addition, as cer-
tain online replanners (Shani and Brafman 2011; Brafman
and Shani 2012) may include an inapplicable action in their
plans, due to sampling, we also use regression to ensure than
all action preconditions are met prior to executing them. If
this validation process fails, the replanner is called again on
the current node. For ease of exposition this validation phase
is not presented in Algorithm 1.

We call a node closed when a plan for this node was al-
ready computed. For non-simple problems, GetClosedNode
simply checks whether n is a goal state, and Update-
ClosedNodes does nothing. We later suggest a different im-
plementation for GetClosedNode and UpdateClosedNodes
which allows us to create plan graphs for simple problems.

CPOR is trivially sound and complete — its soundness
flows naturally from the soundness of the belief mainte-
nance mechanism, ensuring that actions are executed only
when their preconditions are met, and that goal conditions
are properly verified. Its completeness stems from the com-
pleteness of the online replanner. Every branch in the plan
tree that we compute corresponds to a single execution of an
online planner with multiple replanning episodes. A com-
plete online planner, which reaches a goal given any possible
sequence of observations, will produce branches that end at
goal nodes. Currently complete online replanners exist only
for deterministic problems with no deadends, and as such,
CPOR is currently complete only for such domains.

Algorithm 1 CPOR
S ← the empty stack
n0 ← the plan tree node corresponding to bI
S.Push(n0)
while S not empty do

n = S.Pop
n′ ←GetClosedNode(n)
if n′ �= ⊥ then

Replace n with n′ in n.parent
UpdateClosedNodes(n′)

else
plan ← OnlineP lan(n)
for Action a ∈ plan do

n.a ← a
if a is a sensing action then

Push all nodes of a(n) into S
else

n ← a(n)
end if

end for
end if

end while
return n0

Identifying Closed Nodes in Simple Domains
While CPOR is sound and complete, it can be inefficient.
This is because plan trees are often exponential in the num-
ber of hidden state variables. Still, in many domains the
plans can be compactly represented by directed graphs,
reusing many already computed portions of a plan. To con-
struct such a graph we must be able to determine whether
there is an already closed node n for which a plan graph has
been computed, which is also applicable for the currently ex-
plored node n′. If such a node n exists, we can simply link
the parent of n′ directly to n and stop the tree expansion. In
general, identifying whether a plan for node n′ is applicable
for node n is difficult. Of course, one can simply try to exe-
cute the plan in n′, validating action preconditions and goal
conditions at the leaves, but this process can be time con-
suming. We now describe a more efficient mechanism for
simple domains.

Algorithm 2 identifies whether a plan for a given node n
already exists. First, for goal nodes there is always a plan be-
cause the null plan applies in all goal nodes. Next, we check
for a closed node n′ whose plan is applicable for n. Intu-
itively, the plan of n′ is applicable at n, if all the precondi-
tions of the actions in the plan will be applicable when exe-
cuted from n, and the plan achieves the goal. We call these
the relevant facts for the execution of the plan.

After a plan graph is computed for a node n′, we regress
the goal and plan preconditions backwards from the goal
leaves towards n′. Some of these relevant facts are already
known at n′ (denote n′.known ⊆ F (n)), and some of them
are revealed only while executing the plan rooted at n′ (de-
noted n′.hidden). In simple domains, known variables can-
not become unknown. Thus, the known variables at n will
remain known throughout the execution of the plan. When
regressing back from the goal, however, a known precondi-
tion p may become unknown. This happens when one ob-

3162



Algorithm 2 GetClosedNode(n)
if n is a goal state then

return n
end if
for n′ ∈ C do

match ← false
if n′.known ⊆ F (n) ∧ ∀p ∈ n′.hidden, p /∈ F (n) ∧ ¬p /∈
F (n) then

match ← true
for p ∈ n′.hidden do

for (oi,1, ..., oi,ki) ∈ Rp,n′ do
if (oi,1, ..., oi,ki) → p does not hold in n then

match ← false
end if

end for
end for
if match = true then

return n′

end if
end if

end for
return ⊥

servation of a sensing action results in concluding p, while
another observation results in concluding ¬p, that is, p holds
in one branch of the plan from n, while in another branch ¬p
holds. When regressing, by using the set F (n′) of known
variables at node n′, we can easily identify the known and
unknown regressed preconditions at n.

For the plan of n′ to hold for n, all facts in n′.known
must also be known at n, and all the facts in n′.hidden must
also be unknown at n. However, only checking n′.known
and n′.unknown is insufficient. Some facts in n′.unknown
would become known during the plan execution not follow-
ing a direct observation of their value, but rather by rea-
soning about their value from other observations. For exam-
ple, in Wumpus, one never directly observes the location of
the Wumpus, but rather reasons about its whereabouts given
stench observations in nearby cells.

One must also ensure that the reasoning made throughout
the execution of the plan starting at n′ will also hold if the
plan is executed at n. Hence, for each relevant hidden fact
p, we maintain the set of observations leading to the reason-
ing that p holds in the context of the plan. As the plan may
require p to hold in a number of branches, there can be dif-
ferent sequences of observations leading to reasoning that p
holds. We hence maintain a set Rn,p = {< o1,1, ..., o1,k1 >
, ..., < om,1, ..., om,km >}, where each < oi,1, ..., oi,ki > is
a set of observations leading to reasoning that p holds.

These sets can be restricted to contain only observations
relevant to p. In simple contingent problems, an observation
over a variable p′ is relevant for a hidden variable p if: (1)
p′ = ¬p, (2) p′ and p both appear in a clause in the initial
state formula, or (3) p′ appears in a clause in the initial belief
together with another variable which is relevant for p (tran-
sitive closure). The set of relevant variables for p is often
much smaller than the entire set of observations, although in
domains such as Wumpus, all observations are relevant.

For a hidden relevant fact p ∈ n′.hidden, we check

Algorithm 3 UpdateClosedNodes(n)
if n.closed = true then

return
end if
if n is goal state then

n.known ← G, n.hidden ← ∅
n.closed ← true

else
if All child nodes of n are closed then

n.hidden ← ⋃
nc∈n.children nc.hidden

n.known ← ⋃
nc∈n.children nc.known

∀p ∈ n.hidden,Rp,n =
⋃

nc∈n.children Rp,nc

if n.a is a sensing action with observation o then
∀p ∈ n.hidden s.t. o is relevant to p, add o to all obser-
vation sequences in Rp,n

end if
for p s.t. p ∈ n.known ∧ ¬p ∈ n.known do

Remove p,¬p from n.known
Add p to n.hidden
Add the empty sequence to Rn,p

end for
n.closed ← true

else
return

end if
end if
if n.parent �= ⊥ then

∀n′ ∈ n.parents UpdateClosedNodes(n′)
end if

whether given the observations of every observation se-
quence in Rn,p, we can conclude that p holds. We do so
by regressing (oi,1 ∧ ... ∧ oi,ki) → p through n.h, checking
its consistency with the initial belief. This step can only be
applied in simple domains, where the hidden variables are
static and do not change. While there can be an exponen-
tial number of such regression queries, in many domains,
given the restriction to relevant variables only, this valida-
tion phase is very fast.

The identification of closed nodes is sound and complete
for simple contingent problems. It is sound because we ver-
ify that all known regressed preconditions hold, and all hid-
den preconditions can be reasoned about given the obser-
vation sequences. It is complete because a node that does
not meet our matching criterion, fails because either some
known precondition does not hold, and thus some action in
the plan will not be applicable, or because some sequence
of observations does not entail a required precondition p,
which will also cause some action along one branch in the
tree, corresponding to those observations, to be inapplicable.

Once a closed node n has been identified, we compute its
data structures — n.known, n.hidden, Rn,p. Furthermore,
when a node in the tree has only closed children it is also
closed. Algorithm 3 illustrates the process of updating the
closed node and its parents. When identifying that the parent
of the closed node is also closed, the process updates also the
parent, and so forth, until the root node has been reached, or
a parent with at least one unclosed child.

3163



Table 1: Comparing CPOR to CLG and PO-PRP (best re-
ported variant). Doors, CTP, and Wumpus are simple.

Time Size
Problem CPOR CLG PO-PRP CPOR CLG PO-PRP
Doors-7 1.73 3.5 0.04 105 2492 770
Doors-9 3.25 187.6 1.07 181 50961 28442
Doors-11 5.68 FAIL FAIL 277 FAIL FAIL
Doors-13 9.37 FAIL FAIL 393 FAIL FAIL
Doors-15 15.8 FAIL FAIL 529 FAIL FAIL
ctp-10 0.95 2.2 0.02 32 4093 31
ctp-15 1.43 133.24 0.07 47 131069 46
ctp-20 2.01 FAIL 0.22 62 FAIL 61
ctp-25 2.52 FAIL 0.55 77 FAIL 76
ctp-35 3.94 FAIL 2.2 107 FAIL 106
ctp-50 6.74 FAIL 12.3 152 FAIL 151
ctp-100 33.45 FAIL 449.1 302 FAIL 301
Wumpus 5 2.19 0.44 0.14 102 854 233
Wumpus 7 16.9 9.28 1.14 900 7423 770
Wumpus 10 157.1 1379.6 7.56 3971 362615 2669
Wumpus 15 FAIL FAIL 51.06 FAIL 15628
Wumpus 20 FAIL FAIL FAIL FAIL FAIL
localize5 3.8 0.72 X 121 137 X
localize7 10.8 3.80 X 266 314 X
localize9 23.9 17.96 X 542 602 X
localize11 51.5 FAIL X 712 FAIL X
localize13 123.5 FAIL X 1194 FAIL X
RockSample 4,3 1.6 X X 54 X X
RockSample 8,3 2.46 X X 81 X X
RockSample 8,5 13.13 X X 281 X X
RockSample 8,7 71.19 X X 1563 X X

Experiments
We now provide a set of experiments comparing CPOR to
state of the art contingent planners, CLG (Albore, Palacios,
and Geffner 2009) and PO-PRP (Muise, Belle, and McIlraith
2014) on several benchmarks, both simple and non-simple.
The statistics for CLG and PO-PRP are taken from the cor-
responding papers. CPOR is implemented in C#, and the
experiments were executed on a Windows 7 machine with
16GB of RAM, and an i7 Intel CPU. CPOR uses the node
matching algorithm for the simple domains only and SDR
as the online replanner.

Table 1 compares CPOR, CLG, and PO-PRP. As can be
seen, CPOR is typically faster than CLG for larger problems,
but sometimes slower than PO-PRP. On the other hand,
CPOR has very minor memory requirements, allowing it to
scale to much larger domains. In our experiments, CPOR
never exceeded 100MB of memory. In domains where the
plan tree has a very strong structure in that many identi-
cal subtrees appear in different parts of the plan tree, such
as doors and ctp, CPOR easily scales to very large prob-
lem sizes. In domains where the tree is less structured, that
is, the plan graph has an exponential size, such as Wum-
pus, CPOR is less effective. CPOR created much smaller
policies on the doors benchmark, almost identical plan tree
size for ctp problems, and somewhat larger policies for the
Wumpus domains, which require the most complex solu-
tions. In the larger Wumpus domains, although CPOR had
no memory issues, it did not terminate within 2 hours. Look-
ing more closely at the time spent on the various components
of CPOR, we see that the classical planner requires almost
99% of the runtime (tested both on Wumpus and Doors in-
stances). Thus, the identification of closed nodes is not a bot-
tleneck in our implementation.

The localize domains are the non-simple. PO-PRP is re-
stricted to simple problems, and cannot be run on localize.
On these domains, CPOR scales much better than CLG. The

RockSample domains are non-simple, and also have prob-
lem width higher than 1, making CLG inapplicable. For
these domains only CPOR is applicable. This domain also
exhibits the exponential growth in tree size and runtime.

Comparing CPOR to PO-PRP is interesting. PO-PRP
is built on the PRP planner (Muise, McIlraith, and Beck
2012), which uses a similar approach to CPOR, running
an underlying classical planner on every possible child of
a non-deterministic action. Non-deterministic planning is
in general much harder than deterministic contingent plan-
ning, which contains no cycles in its plan graph. Thus,
the task of identifying already explored parts of the graph,
and tailoring the plan graph is probably more difficult in
non-deterministic planning. It might thus be, that using a
general purpose non-deterministic planner is perhaps an
overkill for contingent planning, and a specially created
search algorithm can work better, even on the translation.
On the other hand, for non-deterministic contingent prob-
lems, CPOR cannot be easily adjusted to produce finite plan
trees or graphs. PO-PRP, however, can probably handle non-
determinism because its underlying planner PRP is designed
for non-determinism. By slightly modifying its translation
to allow for non-deterministic effects, PO-PRP may provide
very good plan graphs and scale to similar problem sizes.

PO-PRP and CPOR construct different policies. First, the
construction techniques are different – PRP is designed for
fully observable planning, and maintains no data structures
for knowns, unknowns, and reasoning, as we do. Even over
the translation, PRP uses node matching rules that are more
restrictive than us, due to the need to capture cycles. As such,
our method is more general, identifying identical nodes that
PRP would not identify. This is obvious from the policy
size results on doors. Of course, our approach is not appli-
cable without significant modifications to the case of non-
determinism and cycles.

The above results shed some light on the limitations of
computing complete plan trees offline. While a plan com-
puted offline allows the agent to reduce the computational
resources needed online, and to respond faster to observa-
tions, in some cases even the minimal offline plan has an ex-
ponential size. In such cases any effort to compute complete
plans is futile, and we have no choice but to resort to online
planning. We suspect that this is the case for the Wumpus do-
main. Even if we can’t prove that the minimal plan graph for
Wumpus is exponential in the grid size, the observed growth
in runtime and size certainly hints to that. When exploring
offline contingent planning, it is perhaps best to avoid such
domains, and focus our attention on domains that allow for
non-exponential conditional plan graphs. In order to further
develop offline contingent planning, it is needed to identify
more such interesting benchmark domain.

Conclusion
In this paper we suggested to repeatedly use an online re-
planner for creating complete contingent plan graphs. In ad-
dition, we suggest a mechanism for simple contingent prob-
lems, allowing us to identify already computed plans that
are suitable for the current node, thus creating a plan graph,
rather than a complete tree. We experiment with several

3164



benchmark domains, both simple and non-simple, showing
CPOR to produce smaller policies, and scale to larger prob-
lems, when the solution plan tree exhibits structure.

In the future we can explore more efficient mechanisms
for identifying applicable plans, and methods for forcing the
plan graphs to provide more structure that can later be ex-
ploited, encouraging the online planner to reach already ex-
plored nodes.

Acknowledgments
This work was supported by ISF Grant 933/13. We thank
Chrisitan Muise for his generous help with the PO-PRP
planner.

References
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In IJ-
CAI, 1623–1628.
Bonet, B., and Geffner, H. 2011. Planning under partial ob-
servability by classical replanning: Theory and experiments.
In IJCAI, 1936–1941.
Brafman, R. I., and Shani, G. 2012. A multi-path compila-
tion approach to contingent planning. In Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence.
Brafman, R. I., and Shani, G. 2014. On the properties of
belief tracking for online contingent planning using regres-
sion. In ECAI 2014 - 21st European Conference on Artificial
Intelligence, 147–152.
Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Plan-
ning graph heuristics for belief space search. JOURNAL OF
AI RESEARCH 26:35–99.
Maliah, S.; Brafman, R. I.; Karpas, E.; and Shani, G. 2014.
Partially observable online contingent planning using land-
mark heuristics. In Proceedings of the Twenty-Fourth Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS.
Muise, C. J.; Belle, V.; and McIlraith, S. A. 2014. Comput-
ing contingent plans via fully observable non-deterministic
planning. In Proceedings of the Twenty-Eighth AAAI Con-
ference on Artificial Intelligence.
Muise, C. J.; McIlraith, S. A.; and Beck, J. C. 2012. Im-
proved non-deterministic planning by exploiting state rel-
evance. In Proceedings of the Twenty-Second International
Conference on Automated Planning and Scheduling, ICAPS.
Shani, G., and Brafman, R. I. 2011. Replanning in do-
mains with partial information and sensing actions. In IJ-
CAI, 2021–2026.

3165




