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Abstract

Many planning methods rely on the use of an imme-
diate reward function as a portable and succinct rep-
resentation of desired behavior. Rewards are often in-
ferred from demonstrated behavior that is assumed to be
near-optimal. We examine a framework, Distance Min-
imization IRL (DM-IRL), for learning reward functions
from scores an expert assigns to possibly suboptimal
demonstrations. By changing the expert’s role from a
demonstrator to a judge, DM-IRL relaxes some of the
assumptions present in IRL, enabling learning from the
scoring of arbitrary demonstration trajectories with un-
known transition functions. DM-IRL complements ex-
isting IRL approaches by addressing different assump-
tions about the expert. We show that DM-IRL is ro-
bust to expert scoring error and prove that finding a
policy that produces maximally informative trajectories
for an expert to score is strongly NP-hard. Experimen-
tally, we demonstrate that the reward function DM-IRL
learns from an MDP with an unknown transition model
can transfer to an agent with known characteristics in a
novel environment, and we achieve successful learning
with limited available training data.

Introduction

Real-world planning tasks in unstructured domains require
agents that are adaptable to their settings. Hand-designing
reward functions to induce desired behavior is often ex-
tremely difficult; improperly specified reward functions can
lead to unexpectedly poor results. Furthermore, in situa-
tions where there is no naturally occurring immediate reward
feedback, applying traditional Reinforcement Learning (RL)
algorithms is not feasible. In Learning from Demonstra-
tion (LfD), the agent learns from an expert who repeatedly
demonstrates how to perform a task well. This is a natu-
ral way to transfer knowledge to the learning agent without
programming task behavior explicitly. Furthermore, in these
situations, LfD provides a compelling approach to specify-
ing the agent’s behavior.

LfD is commonly implemented using Markov Decision
Processes (MDPs), in which an agent follows a behavior
policy resulting in state-space trajectories that accrue max-
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imal reward. One option is to learn the expert’s policy di-
rectly, allowing the learner to imitate the expert under simi-
lar circumstances. An alternative option, termed Inverse Re-
inforcement Learning (IRL), learns the expert’s reward func-
tion and then computes a policy that maximizes accrued re-
ward. This approach often offers advantages in portability
in that the reward function can transfer to parts of the state
space with different dynamics and different optimal actions.

We examine a learning method, Distance Minimization
(DM-IRL) (El Asri, Laroche, and Pietquin 2013), that es-
timates the expert’s reward function from single scores an
expert assigns demonstrated trajectories upon their comple-
tion. Demonstration scoring has a strong precedent in hu-
man learning and performance evaluation. It is common for
experiences to be judged on a 1-10 scale, for athletic perfor-
mances to be scored, and for scores to be assigned to demon-
strations based on empirical outcomes. In all these cases, the
judge need not be good at the desired task or familiar with its
intricacies at each step; The judge must simply be able to as-
sign a reliable numerical score to demonstration trajectories
performed by herself, the learner, or others. This also avoids
estimating the transition function of a (human) expert, re-
quiring only the robot’s transition function be known. DM-
IRL models the expert’s hidden reward function as a linear
combination of state features, and estimates its coefficients
by (regularized) linear regression.

We provide a theoretical analysis of DM-IRL’s perfor-
mance when scoring noise is introduced, a proof of the
strong NP-hardness of generating policies with a specific
target feature expectation, an empirical examination of DM-
IRL’s behavior in a terrain navigation setting under a variety
of conditions, and an analysis of the relation of DM-IRL to
previous IRL approaches. We show that DM-IRL is robust to
suboptimal demonstration and noisy scoring, even with few
demonstrations, and that the rewards DM-IRL learns from
MDPs with unknown dynamics can be transferred to other
MDPs.

Related Work

Many influential approaches to IRL (Ng and Russell 2000;
Abbeel and Ng 2004; Ramachandran and Amir 2007;
Kolter, Abbeel, and Ng 2007; Syed and Schapire 2007;
Syed, Bowling, and Schapire 2008; Ziebart et al. 2008;
Boularias et al. 2011) assume that the reward function is lin-
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ear in a set of features assigned to states and seek to match
the expert’s policy in feature expectation. Since rewards
are a function of features, matching feature expectations
implies matching expert performance. Other approaches
learn a mapping from features to reward function directly—
without going through feature expectations—by minimizing
some measure of loss (Ratliff, Bagnell, and Zinkevich 2006;
Ratliff et al. 2007; Levine, Popovic, and Koltun 2011). Ei-
ther way, although some formulations of IRL model noise
in expert demonstrations (Ratliff, Bagnell, and Zinkevich
2006), suboptimal demonstrations may lead to suboptimal
behavior, potentially dramatically suboptimal behavior de-
pending upon the IRL method being employed.

In active IRL, the learner queries the expert for the opti-
mal action to take from a given state (Lopes, Melo, and Mon-
tesano 2009; Akrour et al. 2013), thereby reducing the num-
ber of demonstrations required for learning. Closely related
to DM-IRL in its setting, Daniel et al. (Daniel et al. 2014)
propose an active learning method that produces trajectories
for an expert to score and learns a function that predicts the
score for a whole trajectory. They then search for a policy
directly, without computing the reward function. In contrast,
and like conventional IRL, DM-IRL (El Asri, Laroche, and
Pietquin 2013) learns an immediate state reward function.

A fundamental difference exists between DM-IRL and
traditional IRL approaches. While most IRL methods at-
tempt to learn a reward function that explains observed be-
havior, DM-IRL directly attempts to regress the expert’s ac-
tual reward function. A learned reward function may per-
fectly explain observed behavior, but still fail to generalize;
this is not an issue if the expert’s actual reward function is
learned. Table 1 provides more comparisons of DM-IRL and
traditional IRL.

Method

A discrete, finite MDP is a tuple (S,A, T,D, γ,R) where
S is a finite set of states and A is a finite set of actions.
T (s, a) is the state transition function which, given a current
state and an action, returns a probability distribution over
possible next states. D is a probability distribution over pos-
sible starting states, s0, which we assume to be fixed, and
γ ∈ [0, 1) is the discount factor which causes future rewards
to be weighted less. R(s) �→ R is the immediate reward for
being in state s.

The feature function φ : S → R
k maps a state to a k-

dimensional feature vector. We assume that there exist un-
known, true reward weights w̆ ∈ R

k and a true reward func-
tion linear in the features, R̆(s) = w̆Tφ(s) .

A policy π maps states to distributions over actions. Its
expected value with respect to w̆ is

Vπ = E

[ ∞∑
t=0

γtR̆(st) | π
]

(1)

= w̆T
∞∑
t=0

γt E[φ(st) | π] .

We can simplify this expression further by defining the dis-

counted feature expectations

μ(π) =
∞∑
t=0

γtE[φ(st) | π] ∈ R
k (2)

so that Vπ = w̆Tμ(π) .

The optimal policy with respect to reward vector w is

π∗w = argmax
π

wTμ(π).

Distance Minimization Inverse RL (DM-IRL)

Rather than requiring an expert to perform a desired task
optimally, DM-IRL assumes that the expert is capable of
assigning numerical scores to demonstrations. These trajec-
tory returns, similar in concept to scores a judge might as-
sign an Olympic performance or a food critic might assign
to a dish, constitute the signal from which DM-IRL infers
the reward function. We also assume that the learner has ac-
cess to the trajectories for each demonstration—sequences
of state-action pairs.

The goal is to infer the weights ŵ of a plausible reward
function R̂(s) = ŵTφ(s) to explain the expert’s scores. Let

ψ(τi) =

|τi|−1∑
t=0

γtφ(st(τi))

be the discounted accrued features for trajectory τi where
st(τi) denotes the state occurring at time t in τi. We assume
the true trajectory scores to be

vi =

|τi|−1∑
t=0

γtw̆Tφ(st(τi))

= w̆T

|τi|−1∑
t=0

γtφ(st(τi))

= w̆Tψ(τi).

Since the same reward weight vector appears in the immedi-
ate reward function and in the trajectory score function, we
can determine the former if we can estimate the weights for
the latter.

Scores produced by human judges may be noisy for rea-
sons including intrinsic inconsistency, judging bias, or score
quantization. Such quantization may derive from scoring
rules imposed on the judges, such as food ratings of one to
five stars. This rounding introduces additive error bounded
by half the width of the quantization bins. We collect the
scores ṽi = vi + ηi from the expert—marred by noise ηi
from the aforementioned causes—into a vector ṽ. For the
remainder of this paper, we denote true (non-noisy) scores
v̆.

We note that DM-IRL requires the score provided by the
expert to approximate the sum of the expert’s (hidden) im-
mediate rewards. This is the natural counterpart to the as-
sumption made in RL and IRL, that the quantity we wish to
maximize is the (discounted) sum of rewards in an MDP. If

3331



traditional IRL is applied to an expert who is not maximiz-
ing their internal sum of rewards, it will fail to learn an ap-
propriate policy. This is easy to see as solving an MDP for
π∗ explicitly finds the policy that maximizes the expected
discounted sum of rewards. Similar to existing RL and IRL
methods that make use of MDPs, DM-IRL assumes that the
performance criterion for the MDP depends upon the dis-
counted sum of rewards. Unlike most other methods, how-
ever, it does not make any assumptions about whether the
reward should be maximized or minimized when learning
the reward.

Given r input trajectories and k features, define an r × k
matrix M whose rows mT

i = ψ(τi)
T hold discounted tra-

jectory feature sums. We compute the estimate ŵ by linear
regression:

ŵ = argmin
w

||Mw − ṽ||,
where ‖ · ‖ could be the 2-norm for noisy problems, or ∞-
norm for deterministic domains.

Learning from Noisy Scores

We now examine the effects of scoring noise on the learned
solution. Because DM-IRL does not make any assumptions
on the distribution from which demonstration trajectories are
drawn, finite sample analysis is not practical. Since the ex-
pert may not be performing the trajectories herself and may
not have any control over the policy executed by the demon-
strator, there are not many plausible assumptions that could
be made that would lead to a satisfying finite sample analy-
sis. Instead, we bound the suboptimality (with respect to the
true value function) of the policy that is optimal with respect
to the learned reward function. Three things contribute to
this bound: 1) the maximum norm of the empirical regres-
sion error, 2) the maximum noise in the reviewer score, and
3) the proximity of the optimal policy’s feature distribution
to the convex hull of the training data. This provides a use-
ful a posteriori bound since all but the expert scoring noise
are easily calculated after the algorithm is run. We could use
L∞ regression to couple the regression perfectly with the
analysis. In our experiments, however, we take the typical
approach of using L2 regression for its computational effi-
ciency and greater robustness to outliers than L∞.

The true evaluation function ĕ(p) maps a point, p, in k
dimensional feature space to a score corresponding to the
desirability of p,

ĕ(p) = w̆Tp , (3)

and the learned evaluation function is

ê(p) = ŵTp. (4)

We use (3) to rewrite the state reward function, trajectory
score function, and value function:

R̆(s) = w̆Tφ(s) = ĕ(φ(s)) (5)

v(τ) = w̆Tψ(τ) = ĕ(ψ(τ)) (6)

Vπ(D) = w̆Tμ(π) = ĕ(μ(π)). (7)

Let δ = ||v̆− ṽ||∞ be the largest magnitude scoring noise
introduced by the expert and ε = ||Mŵ − ṽ||∞ be the L∞

regression error. Any point p in the row space of M may
be written as a linear combination of the rows of M , and if
rank (M) > r there are infinitely many choices of combi-
nation coefficients for any such p. One choice that facilitates
the derivation of bounds is a solution to the following LP:1

min
α1,...,αr

r∑
i=1

αi (8)

such that

p =
r∑

i=1

αimi
T and αi ≥ 0 ∀i ∈ {1, ..., r} .

Theorem 1. Let p be a point in the row space of M . Let
α =
∑r

i=1 αi as determined by solving problem (8). The
learner’s evaluation error of p is bounded as 2

|ĕ(p)− ê(p)| ≤ α(δ + ε).

Proof: The true score for p is

ĕ(p) = w̆Tp = w̆T
r∑

i=1

αimi
T

=

r∑
i=1

αiw̆
Tmi

T =

r∑
i=1

αiv̆i.

By definition, the learner’s score for point p is

ê(p) = ŵTp = ŵT
r∑

i=1

αimi
T .

Furthermore, by the definition of regression error, ε

ṽi − ε ≤ ŵTmi
T ≤ ṽi + ε ∀i ∈ {1, ..., r}

and thus
r∑

i=1

αi(ṽ − ε) ≤ ŵT
r∑

i=1

αimi
T ≤

r∑
i=1

αi(ṽ + ε).

We want to recover a bound on the error |ĕ(p)− ê(p)| so

|ĕ(p)− ê(p)| =

∣∣∣∣∣
r∑

i=1

αiv̆i − ŵT
r∑

i=1

αimi
T

∣∣∣∣∣
≤
∣∣∣∣∣

r∑
i=1

αiv̆i −
r∑

i=1

αiṽi

∣∣∣∣∣+
r∑

i=1

αiε

≤
r∑

i=1

αiδ +

r∑
i=1

αiε =

r∑
i=1

αi(δ + ε)

= α(δ + ε).

1The constraint on the sign of each αi is without loss of gen-
erality if for every discounted trajectory feature sum and score we
also add the negation of both feature sum and score to the training
set. In practice, features are often constrained to have only positive
values in which case this is not required.

2L∞ regression can also be employed to explicitly minimize ε
when solving for ŵ.
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Table 1: Conceptual Comparison of Approaches

DM-IRL TRADITIONAL IRL

EXPERT REQUIREMENTS SCORES TRAJECTORIES PERFORMS TRAJECTORIES

OPTIMALITY ASSUMPTION NEAR-OPTIMAL SCORER NEAR-OPTIMAL DEMONSTRATOR

MDP REQUIREMENTS SOLVE ONCE AFTER R(s) IS FOUND SOLVE TO FIND R(s), THEN SOLVE TO FIND π∗

TRANSITION FUNCTIONS NEEDED LEARNER’S LEARNER’S AND EXPERT’S

LEARNED REWARD FUNCTION THE EXPERT’S INDUCES EXPERT’S BEHAVIOR

Theorem 2. Let π∗w̆ denote the optimal policy with respect
to the true reward vector w̆ and let π∗ŵ denote the optimal
policy with respect to the learned reward vector ŵ. Ifμ(π∗w̆)
and μ(π∗ŵ) both lie inside the convex hull of the rows of M ,
then

Vπ∗
w̆
− Vπ∗

ŵ
≤ 2(δ + ε).

Proof: We apply Theorem 1, noting that α ≤ 1 due to the
assumption that π∗w̆and π∗ŵlie in the convex hull of the rows
of M . Thus,

|ĕ(μ(π∗w̆))− ê(μ(π∗w̆))| ≤ δ + ε

and
|ĕ(μ(π∗ŵ))− ê(μ(π∗ŵ))| ≤ δ + ε.

Due to the optimality of π∗ŵwith respect to ŵ,

ê(μ(π∗w̆)) ≤ ê(μ(π∗ŵ)).

And so, from equation (7),

Vπ∗
w̆
− Vπ∗

ŵ
= ĕ(μ(π∗w̆))− ĕ(μ(π∗ŵ))

≤ [ê(μ(π∗w̆)) + (δ + ε)]− [ê(μ(π∗ŵ))− (δ + ε)]

≤ [ê(μ(π∗ŵ)) + (δ + ε)]− [ê(μ(π∗ŵ))− (δ + ε)]

= 2(δ + ε).

Learning from Limited Trajectories

With k features, DM-IRL requires at least k linearly inde-
pendent trajectories to ensure rank M ≥ k and a unique
solution. In complex domains, k may be large, and it may
not be clear a priori exactly which subset of all features is
informative. It may thus be desirable to include a large pool
of features but still require few trajectories to be scored. In
our experiments, we use LASSO (Tibshirani 1996),

ŵ = argmin
w

||Mw − ṽ||2 + λ||w||1 ,

to infer ŵ when rank M ≤ k. By using L1 regularization
as a computationally efficient proxy for L0 regularization,
LASSO tends to sharply reduce the number of non-zero ele-
ments in the solution vector. While in general the parameter
λ may have to be set by cross-validation, we obtained good
results in our experiments by manually setting λ to a small
value3 relative to the expert scores.

3In our experiments, λ = 10−3.

Hardness of Targeted Policy Feature Expectations

Because the demonstrator and scorer are decoupled, DM-
IRL allows the learner to create trajectories for the ex-
pert to score. This ability seems particularly compelling in
trajectory-limited situations in which the demonstrator may
wish to create trajectories with feature expectations unlike
those previously seen. Unfortunately, it has been previously
shown that finding a policy such that μ(π) = x, where
x ∈ R

k is a specific feature target, is weakly NP-Complete
by reduction from the subset-sum problem (Chatterjee, Ma-
jumdar, and Henzinger 2006). We strengthen this result and
prove that

Theorem 3. Finding a policy such thatμ(π) = x is strongly
NP-Hard.

Proof: We show that 3-SAT reduces to finding μ(π) = x
on some MDP. Given an instance of 3-SAT (Karp 1972)
with n clauses and m variables, create an MDP as follows:
1) Define m features with feature i corresponding to the ith
variable in the 3-SAT instance.
2) Create a starting state, s0, with all 0 features.
3) For each clause ci, create state sci , all with all 0 features
and P (sci |s0) = 1

n .
4) Create 3 states for each clause, 1 for each variable
occurring in that clause, svjci , s

vk
ci , s

vl
ci . For each such state,

if the variable is negated in that particular clause, set the
corresponding feature for that variable equal to 1, otherwise
set the corresponding feature to −1. Set all other features to
0. Each sci has three actions defined that deterministically
transition to one of {svjci , svkci , svlci}.
5) Create a state, svh, for each variable h ∈ {1, ...,m}. Each
such state has all 0 features. Each svhci ∀i ∈ {1, ..., n} ∀h ∈
{1, ...,m} has a single deterministic transition to svh.
6) Create 2 more states, s+vh and s−vh, for each variable
h ∈ {1, ...,m}. For each positive state, set the feature
corresponding to variable h to 1 and for each such negative
state set the corresponding feature to −1. Each svh has 2
actions which deterministically transition to s+vh and s−vh.
7) Create a single absorbing state, sE , with all 0 features
that transitions to itself with probability 1 regardless of the
action taken.
8) Let γ = 1.

Given such a construction, finding a solution to the re-
sulting MDP such that μ(π, s0) = 0̄ yields a solution to
the 3-SAT instance. Furthermore, any solution to the 3-SAT
instance yields a policy π such that μ(π, s0) = 0̄. Thus,
3-SAT reduces to finding a policy such that μ(π, s0) = 0̄.
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The reduction also works for other target values of μ(π)
and/or γ < 1 by adjusting the feature values for the states.
See Figure 2(d) for the MDP construction for a simple 2
clause instance.

Experimental Results

Inferring a reward function from demonstration is often an
ill-posed problem; there can be many (even infinitely many)
reward functions consistent with a given set of demonstra-
tions (Ng, Harada, and Russell 1999). Comparing learned
reward weights directly is often uninformative as very differ-
ent weight vectors may induce the same policy. Instead, we
define a scoring function that evaluates estimated rewards
through the values of their induced optimal policies:4

f(ŵ) =
ĕ(μ(π∗ŵ))

ĕ(μ(π∗w̆))
.

This scoring function yields values from 0 to 1 inclusive,
with 1 indicating performance equivalent to that of the true
reward weights w̆. In our evaluations, we set the initial state
distribution D to the uniform distribution over all states.

A direct comparison of DM-IRL to existing methods is
problematic. DM-IRL requires judging trajectories, not per-
forming them, it is relatively agnostic to the distribution
from which trajectories are drawn, makes no assumption of
knowledge about the demonstrator’s transition function or
initial state distribution, and approximates the expert’s actual
reward function. Because DM-IRL is applicable to a unique
set of circumstances, an apples to apples comparison with
existing work is not possible. Instead, our experimental sec-
tion is intended to serve as a proof of concept for DM-IRL.
We apply DM-IRL to a variety of circumstances to charac-
terize its behavior when available trajectories are limited, the
number of features becomes large, and expert scoring noise
grows.

Satellite Imagery Terrain Navigation

To evaluate DM-IRL in a real-world domain, we learn ter-
rain navigation in satellite imagery. We discretize an over-
head image into a 45 × 30 grid of 25-by-25-pixel squares,
each square corresponding to a state in the MDP. The result-
ing 1350 states were manually labeled with rewards to pro-
vide evaluation ground truth and as the basis for a synthetic
expert.5 As in Daniel et al. (Daniel et al. 2014), we produce
trajectory scores by computing v̆ and then adding noise to
obtain ṽ. The use of a synthetic expert allows for careful
control of the amounts of noise present in the scoring, mak-
ing it clear how DM-IRL responds as noise increases allow-
ing for better characterization of DM-IRL’s performance.

4This scoring function assumes that the evaluation function
e(x) returns non-negative values. To ensure this, we compute
R̆(s) = w̆Tφ(s) ∀s ∈ S and then subtract the minimum reward in
R̆ from all rewards. This is not a limitation of DM-IRL, but simply
allows for a more convenient evaluation of learned rewards.

5The scoring scheme was as follows: patches dominated by
road have a reward of 10, grass a reward of 1, dirt a reward of
0, shrubs a reward of -5, and trees a reward of -10. States with a
mixture of elements received an approximate average by area.

Small Feature Pool We compute 5 features for each state,
with each feature corresponding to a terrain type of either
grass, tree, road, dirt, or shrub. We assign values to these fea-
tures by manually segmenting small portions of the terrain
corresponding to each feature type and then fitting a mixture
of Gaussians with two components each for each terrain type
to the pixel colors in YCbCr color space in the segment. By
combining the outputs of all 5 mixture models, we obtain
the probability that a given pixel in the image belongs to
each of the 5 terrain types. We denote these probabilities the
pixel features. The features for each state are the mean of
the pixel features across pixels in that state. Non-regularized
DM-IRL was used for this experement.

Figure 1(b) illustrates DM-IRL performance when the ex-
pert is forced to quantize scores. This can occur when a
judge is asked to rate on a fixed scale. Learning utilized
30 randomly produced trajectories, as in the experiment
for Figure 1(c). While performance decreases as the num-
ber of scoring bins shrinks, even with only 5 bins DM-IRL
achieves a mean f(ŵ) score of over 0.8.

Figure 1(c) shows the performance of DM-IRL on the
satellite terrain domain with varying levels of expert scor-
ing noise. Each trajectory was generated by selecting a start
state uniformly at random and then executing πrand, a pol-
icy that selects an action at random with uniform probability.
Even with each trajectory score perturbed up to 100 percent
(η = 2), DM-IRL produces a policy almost 0.8 times as
good as optimal after observing only 9 demonstrations.

Expanded Feature Pool When the number of features
is much larger, the problem is “trajectory-limited” and
rank (M) 
 k, the dimensionality of the feature space. To
explore this case, we use the same domain as above but with
k ≈ 63, 000. Features consist of Gabor filter (Fogel and Sagi
1989) outputs (8 orientations and 5 scales), color histograms
at multiple granularities, and 512 GIST features (Oliva and
Torralba 2001). This overcomplete feature set illustrates a
case where good features are not known a priori; we use
this scenario to examine the Lasso varient of DM-IRL.

Figure 1(d) shows the results of regularized DM-IRL
across varying levels of expert score noise. Because the
learner had access to very few scores compared to num-
ber of features, the learner was not able to recover a per-
fect reward vector, even without expert noise. Nonetheless,
the learner achieved f(ŵ) > 0.88 after only 30 noiselessly
scored demonstrations. With moderate amounts of noise in
the expert scores, η ≤ 0.25, the learner was still able to
achieve good performance. As noise increases further per-
formance begins to drop off noticeably.

Transfer Experiment We examine the ability of DM-IRL
to transfer learning from demonstrators with unknown tran-
sition functions to a new MDP with novel states and transi-
tion function. We split the terrain from section 4.2 into two
halves (Figure 2 (a), (b)). On the left half, demonstrations
are acquired, in a round robin fashion, from three demon-
strators executing a suboptimal policy under three differing
transition functions. Demonstrator 1 becomes irrecoverably
stuck in areas of trees with probability 1, demonstrator 2 can
escape areas of trees with probability 0.5 at each attempt,
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Figure 1: a) Satellite Terrain. b) Learning performance over 10 trials f(ŵ) for DM-IRL when ṽ is created by quantizing v̆ into
a finite number of evenly spaced bins; red area is 1 standard deviation. c) Learning performance, f(ŵ), of DM-IRL with small
feature set. d) Learning performance, f(ŵ), of LASSO regularized DM-IRL with ≈ 63, 000 features. In c) and d), noise was
added to the synthetic expert scores as ṽi = v̆i +

1
2Uiv̆i ∀i ∈ {1, ..., r} where Ui is a random variable with value uniformly

distributed between −η and η. 20 trials were performed, bars indicate standard error.
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(d) 3-SAT Example

Figure 2: c) Transfer performance f(ŵ) of LASSO regularized DM-IRL with ≈ 63, 000 features. Noise was added to the
synthetic expert scores using the procedure from section 4.4.2. d) Example MDP for a 2 clause 3-SAT instance (v1 ∨ ¬v2 ∨
¬v4)∧ (¬v2 ∨¬v3 ∨ v4). Black transition arrows indicate no choice, multiple black arrows from a single state indicate uniform
probability of taking any transition. Red transition arrows indicate a deterministic choice. φ(s) is indicated in each state.

and demonstrator 3 has a 0.5 probability to move in a ran-
dom direction at every time step. Demonstrators have a uni-
form distribution over starting states, execute the true, opti-
mal policy at each time step with probability 0.75, and take
the action 90 degrees clockwise from optimal with proba-
bility 0.25. The learner’s transition function is deterministic
(allowing up, down, left, and right movement) and perfor-
mance is evaluated on the right half of the terrain. This is
a very challenging learning scenario with noisy trajectory
scores, suboptimal demonstrations, an extremely small num-
ber of trajectories relative to the number of features, and re-
quires transferring the learned reward to a new MDP. Even
so, DM-IRL is performs well on the unseen right terrain with
a reasonable number of trajectories (Figure 2 (c)).

Discussion and Conclusions

IRL approaches to LfD generally require a nearly optimal
expert and often assume knowledge of the expert’s transition
function. DM-IRL bypasses these requirements by instead
requiring an expert to score example trajectories, enabling
learning from scored arbitrary trajectories in tasks that are

difficult for humans to execute optimally. Unlike traditional
approaches to IRL, the expert scorer need not actually per-
form the demonstrations, which may be generated by the
learner or even a third party. This can significantly reduce the
teaching burden on the expert (Cakmak and Thomaz 2012).
Many tasks exist that are easy for humans to judge but diffi-
cult to perform, such as athletic performance or food prepa-
ration. By using an explicit scoring signal from the expert,
DM-IRL does not require the demonstrator’s transition func-
tion, which may be difficult to estimate. For instance, Inter-
net or crowd sourced data sets could be scored by an expert
and used to provide training data.

Given enough linearly independent trajectories, learned
reward quality degrades gracefully as noise in the expert’s
scoring increases and, in practice, simple L1 regularization
can be an effective tool when the size of the feature space
is much larger than the number of available trajectories.
While DM-IRL is not a silver bullet for reward learning from
demonstration, it is simple, fast, versatile, and is well suited
for situations where traditional methods are not appropriate.

This material is based upon work supported by the NSF under
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