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Abstract

Robotic tactile recognition aims at identifying target objects
or environments from tactile sensory readings. The advance-
ment of unsupervised feature learning and biological tactile
sensing inspire us proposing the model of 3T-RTCN that per-
forms spatio-temporal feature representation and fusion for
tactile recognition. It decomposes tactile data into spatial and
temporal threads, and incorporates the strength of random-
ized tiling convolutional networks. Experimental evaluations
show that it outperforms some state-of-the-art methods with
a large margin regarding recognition accuracy, robustness,
and fault-tolerance; we also achieve an order-of-magnitude
speedup over equivalent networks with pretraining and fine-
tuning. Practical suggestions and hints are summarized in the
end for effectively handling the tactile data.

Introduction and Related Work

Recent advances of machine learning techniques and lower-
cost sensors have propelled the multidisciplinary research
of robotic recognition. The sensory input plays an essential
role in hotspot research areas of robotic recognition and dex-
terous manipulation; tactile sensation is crucial in particular
if visual perception is impaired or non-discriminative. The
tactile sensor is a device for measuring spatial and temporal
property of a physical contact event (Tegin and Wikander
2005). For example (Figure 1), when a robotic hand with
tactile sensitivity grasps an object, its tactile sensors out-
put tactile data (a.k.a. tactile sequences), whose consecu-
tive frames are correlated over time. Tactile data have been
explored extensively in object identification (e.g. Madry et
al. 2014), stability estimation (e.g. Bekiroglu et al. 2011),
slip detection (e.g. Teshigawara et al. 2010), and material
awareness (e.g. Chitta, Piccoli, and Sturm 2010). In this pa-
per, we will emphasize tactile object recognition, which is
to identify target objects from tactile data.

As the foundation of tactile recognition, spatio-temporal
tactile feature representation and fusion is an active research
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Figure 1: The tactile sequences obtained by a robotic hand.

branch in the domain of information fusion (Khaleghi et al.
2013) that has 4 categories (Kokar, Tomasik, and Weyman
2004): data fusion, feature fusion, decision fusion, and rela-
tional information fusion; the spatio-temporal tactile recog-
nition is actually a practice of the last category, on which re-
searchers have put increasing emphasis recently, attempting
to improve recognition ratio and robustness. With a thorough
literature survey, we suggest that nearly any spatio-temporal
tactile recognition methods could fall into either category of
micro-fusion or macro-fusion. The micro-fusion approaches
(Schneider et al. 2009; Taylor et al. 2010; Le et al. 2011;
Bekiroglu et al. 2011; Pezzementi, Reyda, and Hager 2011;
Liu et al. 2012; Soh, Su, and Demiris 2012; Ji et al. 2013;
Drimus et al. 2014; Madry et al. 2014; Xiao et al. 2014; Ma
et al. 2014; Yang et al. 2015b) strive to build spatio-temporal
joint representation, while macro-fusion approaches (Pezze-
menti et al. 2011; Simonyan and Zisserman 2014) often
construct spatial and temporal features separately, and fuse
them in later phases. However, as summarized in (Cao et al.
2015), existing models may suffer from problems such as
task-specific settings, variance sensitiveness, scale-up limi-
tations, manual selection of feature descriptors and distance
measures, and inferior robustness/fault-tolerance ability. To
address these problems (at least in part), we propose a hybrid
architecture that is universal for tactile recognition tasks and
has the following advantages over previous work:

• spatio-temporal decomposition: considering the nature of
tactile data, we invent spatial (individual frames) and tem-
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poral (tactile flow and intensity difference) threads to de-
scribe raw signal efficiently from different perspectives;

• random feature projection: to efficiently generate invari-
ant and universal tactile feature maps, we build Random-
ized Tiling Convolution Network (RTCN) to convolve and
pool each spatial/temporal thread;

• hierarchical fusion strategy: for fast recognition, we em-
ploy ridge regression for temporal feature fusion, extreme
learning machine for spatio-temporal decision fusion, and
2-layer random majority pooling for frame-label fusion.

We formally refer to our approach as “3-Thread RTCN”
(3T-RTCN), which has no prior assumption on target-object
varieties or hardware settings; hence we intuitively expect it
to be more universal than a task-specific solution. In RTCN,
the pooling and weight-tiling mechanisms allow complex
data invariances in various scales, while its orthogonal ran-
dom weights prevent manual selection of feature descrip-
tors and distance measures. The non-iterative property of
3T-RTCN, together with RTCN’s concepts of local recep-
tive fields and weight-tying, improves the training efficiency
and scale-up capacity significantly. Largely, the strategies of
spatio-temporal decomposition and hierarchical fusion may
exhibit the robustness and fault-tolerance ability. The fol-
lowing sections will present RTCN, 3T-RTCN, and our ex-
perimental evaluations respectively in detail.

Randomized Tiling ConvNet (RTCN)

RTCN is an extension of ConvNet (Convolutional Network)
that consists of two basic operations (convolution and pool-
ing) and two key concepts (local receptive fields and weight-
tying). As in Figure 2, the convolution layer may have F ≥2
feature maps to learn highly over-complete representations;
the pooling operation is performed over local regions to re-
duce feature dimensions and hardcode translational invari-
ance to small-scale deformations (Lee et al. 2009). Local re-
ceptive fields make each pooling node only sees a small and
localized area to ensure computational efficiency and scale-
up ability; weight-tying additionally enforces convolutional
nodes to share the same weights, so as to reduce the learn-
able parameters dramatically (Ngiam et al. 2010). RTCN is a
ConvNet that adopts mechanisms of convolutional weights-
tiling and orthogonalized random weights.

Convolutional Weights-Tiling and Invariance

The invariance to larger-scale and more global deformations
(e.g. scaling and rotation) might be undermined in ConvNet
by its constraint to pool over translations of identical invari-
ance. Ngiam et al. (2010) addressed this problem by devel-
oping the weights-tiling mechanism (parametrized by a tile
size s in Figure 2) which leaves only nodes that are s steps
apart to be shared. Weights-tiling is expected to learn a more
complex range of invariances because of pooling over con-
volutional nodes with different basis functions.

In RTCN, we adopt the widely used valid convolution (the
weights/filter f is only applied to receptive fields where f
fits completely) and square-root pooling. For the t-th tactile
frame x(t)∈R

d×d, each pooling node views a local receptive

Figure 2: A demonstration of RTCN that transforms input
frames (d× d) to feature maps [(d− r + 1)× (d− r + 1)].

field x̂(t)∈R
r×r, r≤d, as shown in Figure 2. With tile size

s≥2, we calculate each pooling node p(x̂(t)) by convolving
M different filters f1, f2, . . . , fM ∈ R

k×k, k ≤ r with x̂(t):

p
(
x̂(t)

)
=

[∑M

m=1

∑
i,j∈Lm

(fm ∗v x̂(t))2〈i,j〉
] 1

2
, (1)

where Lm denotes the set of fields (in form of subscription
pairs 〈i, j〉) where filter fm should be applied; ∗v represents
valid convolution operations. By varying s [cf. Figure 5 in
(Cao et al. 2015)], we obtain a spectrum of models which
trade off between enabling complex invariances and having
few filters. A straightforward choice of s would be setting it
to the pooling size (i.e. s=r−k+1), so that each pooling node
always combines untied convolutional nodes. But a larger s
allows more freedom, making it vulnerable to overfitting.

Orthogonalized Random Weights

Tiled ConvNets might require long time to pretrain and fine-
tune filters (i.e. weight-tuning); this difficulty is further com-
pounded when the network connectivity is extended over the
temporal dimension. We noticed several interesting research
results (Jarrett et al. 2009; Pinto et al. 2009; Saxe et al. 2011;
Huang et al. 2015), which have shown that certain networks
with untrained random filters performed almost equally well
comparing to the networks with careful weight-tuning. Since
any filter fm in RTCN is shared within the same feature map
while distinct among different maps, the initial value of fm
over multiple maps is noted as f̂ init

m ∈R
k2×F , (m=1, . . . ,M),

which is generated obeying standard Gaussian distribution.
As is suggested in (Ngiam et al. 2010; Huang et al. 2015),

f̂ init
m has to be orthogonalized to extract a more complete set

of features. However in RTCN, we only need to decorrelate
filters (i.e. columns of f̂m) that convolve the same field, be-
cause 1) the filters for any two convolutional nodes with non-
overlapping receptive fields are naturally orthogonal; and 2)
Ngiam et al. (2010) empirically discovered that “orthogonal-
izing partially overlapping receptive fields is not necessary
for learning distinct, informative features”. Hence this local
orthogonalization is computationally cheap using SVD: the
columns of f̂m are the orthonormal basis of f̂ init

m .
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(a) 3T-RTCN: we only use xi for explanation; but it does not distinguish different sequences until majority pooling.

Robotic hand grasping
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h

(b) Tactile flow

Figure 3: The illustration of (a) 3T-RTCN architecture and (b) tactile flow between two neighbouring frames x(t) and x(t+1).

The Proposed Architecture: 3T-RTCN

3T-RTCN is built on the decomposition of tactile sequences
into spatial and temporal parts. Probably owing to relatively
lower dimensionality and less diversity of tactile frames
than videos, we empirically found that using multiple layers
of RTCN basically adds no positive contribution to recogni-
tion ratio; thus as illustrated in Figure 3a, one-layer RTCN
is employed in each thread. With the same notations defined
previously, the spatial thread is parameterized by a quadru-
plet (Fs, ks, rs, ss); and two temporal threads are parameter-
ized by (Ftf , ktf , rtf , stf) and (Fid, kid, rid, sid). In the up-
coming sections, tactile frames for training are formalized
as ℵ = {(x(t),y(t))|x(t) ∈ R

d×d,y(t) ∈ R
l, t = 1, . . . , N}.

Spatial Thread: Individual Frames

Based on the belief that the static tactile force distribution is
an informative cue by itself, the spatial thread is designed
to operate on individual tactile frames. The output of spatial
RTCN forms a spatial feature space Ps:

Ps =

⎡
⎣p(x(1))

:

p(x(N))

⎤
⎦ =

⎡
⎣ p1(x

(1)) · · · pF (x
(1))

: : :

p1(x
(N)) · · · pF (x

(N))

⎤
⎦ . (2)

The frame x(t) is fed to an RTCN with F maps to generate
a joint pooling activation p(x(t)) = [p1(x

(t)), . . . , pF (x
(t))],

which is a row vector concatenating pooling outputs. pi(x(t))
is also a row vector with (d−r+1)2 pooling activations for the
i-th feature map. The row vectors of Ps are in full connec-
tion (weighted by Ws in Figure 3a) with l output nodes rep-
resenting l object classes. Principally, Ws∈R

[F×(d−r+1)2]×l=
[w1, . . . ,wF×(d−r+1)2 ]

T can be learned with any supervised

learning algorithm such as Ridge Regression (RR). We fol-
low (Huang et al. 2012) to tune Ws because of its fast train-
ing speed and good generalization ability:

Ws=

{
PT

s

(
I
C
+PsPs

T
)−1

Y, N ≤ F×(d−r+1)2(
I
C
+PT

s Ps

)−1
PT

s Y, N > F×(d−r+1)2
, (3)

where Y is defined as [y(1), . . . ,y(N)]TN×l; small positive val-
ues I/C is added to improve result stability; when the train-
ing set is very large (N� size of feature space), the second
solution should be applied to reduce computational costs.

Temporal Thread: Tactile Flow Stacking

The term of tactile flow was initially introduced by Bicchi et
al. (2008) for analyzing tactile illusory phenomena; it is inti-
mately related to the vision models of optical flow, inspired
by which, we calculate the inter-frame tactile flow, and use it
as a temporal feature descriptor. Since tactile readings can be
hardly affected by factors like color and illumination, we
empirically discover that some complex optical flow models
(e.g. Sun, Roth, and Black 2010) might have negative impact
for tactile recognition and demand more computation effort.
So we simply follow (Horn and Schunck 1981), and perform
mean flow subtraction and tactile flow stacking.

As shown in Figure 3b, we use �u(x(t)) to denote the two-
dimensional vector field of tactile flow between frames x(t)

and x(t+1); and use notation �u(x
(t)
i,j ) to indicate the vector at

point 〈i, j〉i,j=1,...,d. The horizontal and vertical components,
uh(x

(t)) and uv(x
(t)), are treated as two channels in the tem-

poral RTCN. The overall tactile flow can be dominated by a
particular direction (e.g. caused by sudden slippage in an un-
stable grasping), which is unfavoured to ConvNets. As zero-
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centering the input of ConvNets allows better exploiting the
rectification nonlinearities (Simonyan and Zisserman 2014),
we perform mean flow subtraction by subtracting the mean
vector from �u(x(t)). To represent force motion across several
consecutive frames, we stack n vector fields together; hence
the stacked tactile flow Ut for frame x(t) is formulated as

Ut(i, j, 2t
′−1)=uh

(
x
(t+t′−1)
i,j

)
,Ut(i, j, 2t

′)=uv

(
x
(t+t′−1)
i,j

)
, (4)

where Ut(i, j, 2t
′)t′=1,...,n denotes the force motion at point

〈i, j〉 over a sequence of n frames; Ut has 2n input channels.

Temporal Thread: Intensity Difference Stacking

Intensity difference has been widely used to detect moving
targets in video clips by carrying out differential operation
on every two successive frames, which may do well in ideal
condition, but it is especially susceptible to the variation of
illumination light. Unlike video clips, tactile readings only
respond to grip force. So tactile intensity difference is also
an informative temporal cue to describe the change of force
intensity and distribution. To remove the noise residual, we
perform the high-pass filtering with a threshold T . g(x(t)) is
used to denote the tactile difference between x(t) and x(t+1);
and the value change of unit 〈i, j〉 is set to zero unless

g(x
(t)
i,j ) = x

(t)
i,j − x

(t+1)
i,j ,

∣∣∣x(t)
i,j − x

(t+1)
i,j

∣∣∣ ≥ T. (5)

We can also stack n consecutive intensity differences to rep-
resent changes over a larger granularity; the stacked volume
for frame t is denoted as Gt that embodies n channels:

Gt(i, j, t
′) = g

(
x
(t+t′−1)
i,j

)
, t′ = 1, . . . , n. (6)

Hierarchical Fusion Strategy

Temporal Feature Fusion The output vectors from pool-
ing layers in both temporal threads are concatenated consti-
tuting a joint temporal feature space Pt, and the row vectors
of which are fully connected (weighted by Wt) to l output
nodes. Wt is initialized randomly and tuned with Eq. (3).

Spatio-Temporal Decision Fusion The l output probabil-
ity values from spatial and temporal part are concatenated to
compose a joint spatio-temporal decision space with 2l di-
mensions, which is noted as o(t)∈R2l in Figure 3a. To learn
a complex nonlinear function to fuse the spatial and tempo-
ral decisions, an Extreme Learning Machine (ELM) with L
hidden nodes and l output nodes is applied. We simply use
the sigmoidal activation due to its proved universal approxi-
mation and classification capability (Huang et al. 2015); the
activation function of the i-th hidden node is

Sig(ai, bi,o
(t)) =

[
1 + e−(ai·o(t)+bi)

]−1

, (7)

where the parameters {ai, bi}i=1···L are randomly generated
obeying any continuous probability distribution (Huang et
al. 2012). The spatio-temporal feature space is defined as

Pst =

⎡
⎢⎣
Sig(a1, b1,o

(1)) · · · Sig(aL, bL,o
(1))

...
. . .

...
Sig(a1, b1,o

(N)) · · · Sig(aL, bL,o
(N))

⎤
⎥⎦ . (8)

Optimal L is selected from {100, 200, 300, 400, 500}; and
spatio-temporal weight matrix Wst is adjusted with Eq. (3).

Table 1: Tactile datasets. SDH: Schunk Dexterous Hand, SPG:

Schunk Parallel Gripper, BDH: Barrett Dexterous Hand.

Data Specification SD10 SPr10 BDH10 HCs10
Frame Dimension 13×18 8×16 8×13 4×4
# Object Classes 10 10 10 10

# Tactile Seq. 100 97 53 180
Mean Seq. Length 349 511 561 37
# Training Frames 25,001 36,782 24,253 4,720
# Testing Frames 9,857 12,787 5,465 1,812

Frame-Label Fusion: 2-Layer Random Majority Pooling

Defining Sig(a,b,o(t)) as the row vector of Pst, we predict
the class label for the t-th frame x(t) using

label(x(t)) = arg max
y∈{1,...,l}

[
Sig(a,b,o(t)) ·Wst

]
. (9)

In this way, we generate Ni labels for the i-th sequence xi

that has Ni frames. Considering that frames in the same tac-
tile sequence are obtained via manipulating the same object,
we use 2-layer (applying more than one layer enables certain
prediction invariance and stability) random majority pooling
to predict sequence labels. Specifically, the Ni frame labels
(denoted as a set Z) are randomly reshuffled, yielding a new
set Z′. We then in the first layer use a majority pooling win-
dow of size q sliding in a non-overlapping manner, in which
it votes for the most-frequent label. The first layer generates
	Ni

q

 labels, which are majority-pooled in the second layer:

label(xi) = mp[mp(Z′
1), . . . ,mp(Z′

�Ni/q�)], where mp(•) de-
notes the operation of majority pooling.

Experiments with Real-World Tasks

In this section, we evaluate 3T-RTCN on several benchmark
datasets: SD5, SD10 (Bekiroglu, Kragic, and Kyrki 2010;
Bekiroglu et al. 2011), SPr7, SPr10 (Drimus et al. 2014),
BDH5 (Yang et al. 2015b), BDH10 (Xiao et al. 2014), and
HCs10 (Yang et al. 2015a), which represent different tactile
recognition tasks with various complexities. SD5, SPr7, and
BDH5 turn out to be similar to SD10, SPr10, and BDH10 re-
spectively in many ways, so here we only focus on 4 datasets
specified in Table 1. The parameters (i.e. F , k, r, s, C, L)
were determined by a combination of grid search and man-
ual search (Hinton 2012) on validation sets. The parallel ar-
chitecture of 3T-RTCN, shallow structure of RTCNs (with-
out weight-tuning), and efficient fusion strategies make the
parameter evaluation extremely fast.

Briefs of Tactile Benchmark Datasets

The SD5 and SPr10 datasets were collected with the 3-finger
SDH (Figure 5a) and the 2-finger SPG (Figure 5b) respec-
tively; the grasp execution applied was similar: a household
object (cf. Figure 5c) was manually placed between the fin-
gers at the beginning; after the first physical contact with
the object, the fingers moved back and forth slightly for 5
times, and then released the object in the end. The BDH10
dataset was collected with a 4-degree-of-freedom (4-DoF)
BDH mounted on the end of a 7-DoF Schunk manipula-
tor (the uppermost image in Figure 3b); the hand (cf. Fig-
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Figure 4: The visualization of a tactile sequence obtained by
grasping the same object using different grippers: the units
are sorted by their mean output over the temporal axis.

(a) SDH (b) SPG (c) SD/SPr10 obj. (d) BDH10 obj.

Figure 5: Robotic hands and/or objects used to collect SD10
(a+c), SPr10 (b+c), and BDH10 datasets: (a) one 13×6 sen-
sor per finger; (b) one 8×8 flexible sensor per finger.

ure 1) has 3 fingers with one sensor patch (3×8) mounted
on each finger and one (24 units) on the palm; ten objects
(Figure 5d) with different shape, hardness, and surface tex-
ture are grasped (from the initial contact till the complete
cease of the lifting movement) for 5∼6 times each, bringing
about 53 tactile sequences in total. The HCs10 dataset was
collected from a flexible capacitive tactile sensor array on
the Handpi electronic test stand (Figure 6a); one of the ten
objects (top-left of Figure 6b) was fastened at the tail of the
force gauge with a clamp and moved down towards the sen-
sor with a small fixed speed; the data was logged from the
initial contact until the time when normal force measured by

(a) Handpi-50 (b) Objects and contact/sliding directions

Figure 6: The illustration of collecting the HCs10 dataset.

the dynamometer reached 5 kg·m/s2; each object was placed
in 3 directions as shown in Figure 6b, repeating 6 times (i.e.
3 stable contacts and 3 contacts with slippage) for each di-
rection, so as to get 18 sequences for each object.

On Spatial and Temporal Threads

The intention of this section is to validate the performance of
3T-RTCN compared to that of using either spatial or tempo-
ral information only, and also to clarify the contributions of
spatial and temporal information to the overall performance.
The accuracies in Figure 7 were averaged over 10 trials, each
of which used a 7:3 train/test-ing split. 3T-RTCN achieved
100% recognition ratio for all datasets except HCs10, which
might be yet another circumstantial evidence of (Anselmi et
al. 2015) that invariant features cut the requirement on sam-
ple complexity; it phenomenally matches people’s ability to
learn from very few labeled examples. To locate the factors
that influence the discrimination ability of spatial and tem-
poral information, we visualize the output of maximally acti-
vated sensor units when grasping the same object using SDH
(Fig. 4a) and SPG (Fig. 4b); we discovered that SPG pro-
duced sparse (spatial) and smooth (temporal) signal resem-
bling certain filtering effect, while SDH generated dense and
spiky output. We believe that temporal threads tend to per-
form better for sparse and filtered tactile data, while spatial
ones becomes relatively more crucial when the task involves
more contact areas (i.e. more tactile sensor units with dense
output). It is noteworthy that increasing the stacking size n
from 2 to 5 only leads to a trivial enhancement or even worse
performance, so we use n=2 for the experiments followed.

On Weight-Tuning and Micro-Fusion

The unexpectedly high recognition ratio of 3T-RTCN makes
us curious about the role of weight-tuning. So we pretrained
(Ngiam et al. 2010) and finetuned (Schmidt 2012) the convo-
lutional weights of 3T-RTCN. Fig. 8a illustrates that weight-
tuning invariably increased the accuracy of frame-wise pre-
diction by an average margin of 1.01%; but this gain was not
big enough to differentiate the sequence-wise performance;
thus a properly parameterized architecture is as beneficial as
weight-tuning. Observed from Figure 8b, the weight-tuning
stepped up the averaged training time by roughly 25 times,
which is unfavoured in real-time tactile recognition tasks.

While 3T-RTCN falls into the macro-fusion category, we
are also interested in checking out the performance of micro-
fusion ConvNets that capture the motion information at an
early stage. In this respect, we tested the so-called 3D Con-
vNet (Ji et al. 2013) which convolves a 3D filter with a cube
formed by 7 contiguous frames; each cube has 25 maps in
4 channels: 7 (Frames) + 12 (TactileFlows: 6 horizontal and 6
vertical) + 6 (IntensityDifferences). The convolutional weights
and output weights were trained by (Schmidt 2012). As can
be seen from Fig. 8a, 3T-RTCN consistently outperformed
the finetuned (no pretraining) 3D ConvNet with an average
gap of 5.2%, underpinning the effectiveness of higher-level
feature/decision fusion. Notably in Fig. 8b, 3T-RTCN acted
6∼10 times faster than the 3D ConvNet, which is partly due
to the reduced output dimensionality of square-root pooling.
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Figure 7: Mean accuracy as a function of window size for random majority pooling. Left to right: SD10, SPr10, BDH10, HCs10.

Table 2: The comparison of average recognition ratio between 3T-RTCN and the state-of-the-arts. (direct-quote*, best, 2nd best)

Datasets/Models 3T-RTCN JKSC MV-HMP ST-HMP LDS-Martin BoS-LDS Other Models
SD10 100.0 91.5 94.0 * 94.0 * 92.0 97.5 * 97.0 * (MV-HMPFD)
SPr10 100.0 87.0 * 84.5 * 88.5 * 94.5 94.2 91.1 * (ST-HMPFD)

BDH10 100.0 94.0 81.6 87.5 82.0 90.5 96.0 * (pLDSs)
HCs10 91.2 93.5 67.7 83.0 70.0 74.5 N/A

(a) Avg. test accuracy (%) (b) Avg. training time (sec.)

Figure 8: Comparison of 4 approaches: (1) 3T-RTCN, (2) the
3T-RTCN without majority pooling, (3) same as “(2)” with
pretrain & finetune, and (4) micro-fusion with 3D ConvNets.

On Comparison with State-of-the-Arts

Here we compare 3T-RTCN with state-of-the-art models for
tactile recognition; our study involves both micro and macro
fusion methods, which include LDS-Martin (Saisan et al.
2001), ST/MV-HMP, ST/MV-HMPFD (Madry et al. 2014),
BoS-LDSs (Ma et al. 2014), pLDSs (Xiao et al. 2014), and
JKSC (Yang et al. 2015b). For fair comparability with some
directly referenced results (i.e. the asterisked scores in Ta-
ble 2), all simulations in this section were carried out on
10-fold cross validations with 9:1 splits. The highest score
for each dataset is indicated in bold; and the second best one
is underlined. The 3T-RTCN achieved the best recognition
rate on all tasks except HCs10. For low-dimensional tactile
data (e.g. HCs10), convolution and pooling will cause a big
granularity loss, which may undermine the recognition ratio
slightly; nevertheless, we still have reasons (e.g. efficiency,
robustness, and fault-tolerance) to apply 3T-RTCN on low-
dimension dataset. Additionally, we noticed empirically that
JKSC and MV/ST-HMP were constantly trained hundreds
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Figure 9: Noise robustness: 1) 3T-RTCN, 2) spatial thread,
3) temporal threads, 4) ST-HMP, 5) LDS-Martin, 6) JKSC.

of times slower than our model, which was majorly induced
by the time-consuming activities of kernel computation and
dictionary learning respectively.

On Robustness and Fault-Tolerance

Robustness and fault-tolerance both describe the consistency
of systems’ behavior, but robustness describes the response
to the input, while fault-tolerance describes the response to
the dependent environment. Johnson (1984) defined a fault-
tolerant system as the one that can continue its intended op-
eration (possibly at a reduced level) rather than failing com-
pletely, if the system partially fails. We will compare with 3
models: JKSC, ST-HMP, and LDS-Martin, which represent
3 mainstream methodologies: sparse coding, unsupervised
feature learning, and time-series modeling.

Robustness to Sensor Noise We manually added differ-
ent noise capacities (white Gaussian) to frame vectors. SNR
(Signal-to-Noise Ratio) is used as a measure for comparing
the strength of the desired force signal to the level of back-
ground noise. It is defined as the ratio of signal strength to
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Figure 10: Fault-tolerance to sensor malfunc. Legend: Fig. 9.

noise power, and often expressed in decibels (dB): SNRdB=
10 · log10 (Psig/Pnos) , where Psig and Pnos denote the power
of signal and noise respectively; and SNR>0 indicates more
signal than noise. Figure 9 demonstrates that our way of fus-
ing the strength of spatial and temporal information offered
the best noise robustness quality. 3T-RTCN still maintained
strong classification capability even when the noise strength
ratio reached up to 50% (SNR=0); but with the same amount
of noise contamination, other models’ performance dropped
dramatically without exception. ST-HMP turned out to have
the best noise robustness among the three referenced meth-
ods, while JKSC had relatively the worst one that sometimes
lost its classification power completely at SNR=0.

Fault-Tolerance to Partial Sensor Malfunction A com-
mon hardware glitch of tactile sensors is partial sensor mal-
function, in which one or more units composing the sensor
array are broken and hence always output a fixed value (most
likely to be zero) or random values; and it is prone to occur in
extreme environments. To examine the fault-tolerance abil-
ity in coping with such failure, we intentionally sabotaged a
percentage (1∼ 100% with rounding scheme) of unit read-
ings. We carried out 2 groups of simulations: one group (top
row in Figure 10) used zeros to replace the “damaged” units;
the other group (bottom row) made them output random val-
ues from the range of [0, 1]. For each malfunction ratio, five
sets of “broken” units were picked, so that each data point is
in-fact the average test accuracy of 10×5=50 simulations.

Figure 10 evidently validates that our 3T-RTCN provided
much more superior fault-tolerance ability (to sensor mal-
function) than other methods. Temporal threads might hit a
better score at low malfunction rates, but the spatial thread
surpasses temporal ones and possesses stronger discrimina-
tion power at a higher malfunction ratio. Another instruc-
tive and illuminating discovery is that all models (esp. JKSC
and LDS-Martin) can better cope with the zero signal than
the noise “generated” by malfunction units; it hence implies
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Figure 11: Fault-tolerance to frame loss: cf. legend in Fig. 9.

detecting malfunction units and forcing them to output zero
values might be a beneficial approach for tactile recognition.

Fault-Tolerance to Frame Loss Another repeatedly seen
corruption of tactile sensory data is frame loss, which is usu-
ally caused by transmission circuit malfunction. Frame loss
occurs when some frame slices sent across the transmission
circuit fail to reach their destinations. To simulate frame-loss
context, we arbitrarily removed a ratio of frames from each
sequence; and for every frame-loss ratio, we made 5 random
choices of throwaway frames. From Figure 11, we found that
spatial thread is more tolerable to frame-loss than temporal
threads, because frame-loss primarily ruins the temporal co-
herence between neighboring frames. The performance of
3T-RTCN gently and monotonically decreased upon higher
frame-loss ratio; nevertheless it performed constantly bet-
ter than other models at almost any presumed frame-loss ra-
tio. However, ST-HMP was hardly impacted by frame-loss;
hence in this sense, it is a stable feature learning algorithm
for tactile sequences. Interestingly, the frame-loss tolerance
trend of JKSC varied dramatically on different datasets; its
test accuracy could even conspicuously go up with more lost
frames (e.g. BDH10); our guess is that frame-loss works like
subsampling that eliminates the local peak and trough of tac-
tile output over time axis (e.g. Fig. 4a); but it is hard to take
this advantage, since over-subsampling can do great harm.

Conclusions and Perspectives

Inspired by the biological discovery of segregated spatio-
temporal neural pathways for prefrontal control of fine tac-
tile discrimination (Gogulski et al. 2013), we put forward
the segregated spatio-temporal RTCN threads that constitute
our 3T-RTCN model, which performs spatio-temporal fea-
ture representation and fusion for tactile recognition. It out-
performed several state-of-the-art methods by a large margin
on training efficiency, prediction accuracy, robustness, and
fault-tolerance. In general, temporal threads tend to be more
discriminative than spatial ones on sparse and filtered tactile
signal. In comparison with convolutional weight-tuning and
3D ConvNet, our approach inevitably reduced training time
dramatically, making it less challenging in converting 3T-
RTCN to an equivalent online learning algorithm. We also
noted that forcing the malfunction units generating zero val-
ues is potentially beneficial in enhancing the fault-tolerance
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ability. Our future perspectives include addressing larger-
scaled tactile data, investigating the effectiveness of RNN
(Recurrent Neural Networks), and a much more extensive
analysis on computational complexity for both batch and on-
line/sequential version of our model.
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