
Deep Tracking: Seeing Beyond Seeing
Using Recurrent Neural Networks

Peter Ondrúška and Ingmar Posner
Mobile Robotics Group, University of Oxford, United Kingdom

{ondruska, ingmar}@robots.ox.ac.uk

Abstract

This paper presents to the best of our knowledge the
first end-to-end object tracking approach which directly
maps from raw sensor input to object tracks in sensor
space without requiring any feature engineering or sys-
tem identification in the form of plant or sensor models.
Specifically, our system accepts a stream of raw sensor
data at one end and, in real-time, produces an estimate
of the entire environment state at the output including
even occluded objects. We achieve this by framing the
problem as a deep learning task and exploit sequence
models in the form of recurrent neural networks to learn
a mapping from sensor measurements to object tracks.
In particular, we propose a learning method based on a
form of input dropout which allows learning in an un-
supervised manner, only based on raw, occluded sen-
sor data without access to ground-truth annotations. We
demonstrate our approach using a synthetic dataset de-
signed to mimic the task of tracking objects in 2D laser
data – as commonly encountered in robotics applica-
tions – and show that it learns to track many dynamic
objects despite occlusions and the presence of sensor
noise.

Introduction

As we demand more from our robots the need arises for them
to operate in increasingly complex, dynamic environments
where scenes – and objects of interest – are often only par-
tially observable. However, successful decision making typ-
ically requires complete situational awareness. Commonly
this problem is tackled by a processing pipeline which uses
separate stages of object detection and tracking, both of
which require considerable hand-engineering. Classical ap-
proaches to object tracking in highly dynamic environments
require the specification of plant and observation models as
well as robust data association.

In recent years neural networks and deep learning ap-
proaches have revolutionised how we think about classifi-
cation and detection in a number of domains (Krizhevsky,
Sutskever, and Hinton 2012; Szegedy, Toshev, and Erhan
2013). The often unreasonable effectiveness of such ap-
proaches is commonly attributed to both an ability to learn

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

What the robot seesTrue world state y xt t

Recurrent neural network

Robot sensor

Figure 1: Often a robot’s sensors provide only partial ob-
servations of the surrounding environment. In this work we
leverage a recurrent neural network to effectively reveal oc-
cluded parts of a scene by learning to track objects from raw
sensor data – thereby effectively reversing the sensing pro-
cess.

relevant representations directly from raw data as well as
a vastly increased capacity for function approximation af-
forded by the depth of the networks (Bengio 2009).

In this work we propose a framework for deep track-
ing, which effectively provides an off-the-shelf solution for
learning the dynamics of complex environments directly
from raw sensor data and mapping it to an intuitive repre-
sentation of a complete and unoccluded scene around the
robot as illustrated in Figure 1.

To achieve this we leverage Recurrent Neural Networks
(RNNs), which were recently demonstrated to be able to
effectively handle sequence data (Graves 2013; Sutskever,
Hinton, and Taylor 2009). In particular we consider a com-
plete yet uninterpretable hidden state of the world and then
train the network end-to-end to update its belief of this state
using sequence of partial observations and map it back into
an interpretable unoccluded scene. This gives the network a
freedom to optimally define the content of the hidden state

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

3361

and the considered operations without the need of any hand-
engineering.

We demonstrate that such a system can be trained in an
entirely unsupervised manner only based on raw sensor data
and without the need for supervisor annotation. To the best
of our knowledge this is the first time when such a system
is demonstrated and we believe our work will provide a new
paradigm for an end-to-end tracking. In particular, our con-
tributions can be summarized as follows:
• A novel, end-to-end way of filtering partial observations

of dynamic scenes using recurrent neural networks to pro-
vide a full, unoccluded scene estimation.

• A new method of unsupervised training based on a novel
form of dropout encouraging the network to correctly pre-
dict objects in unobserved spaces.

• A compelling demonstration and attached video 1 of
the method in a synthesised scenario of robot tracking
the state of the surrounding environment populated by
many moving objects. The network directly accepts un-
processed raw sensor inputs and learns to predict posi-
tions of all objects in real time even through complete
sensor occlusions and noise 2.

Deep Tracking

Formally, our goal is to predict the current, un-occluded
scene around the robot given the sequence of sensor observa-
tions, i.e. to model P (yt|x1:t) where yt ∈ R

N is a discrete-
time stochastic process with unknown dynamics modelling
the scene around the robot containing other both static and
dynamic objects and xt ⊆ yt are the sensor measurements of
directly visible scene parts. We use encoding xt = {vt, rt}
where {vit, zit} = {1, yit} if i-th element of yt is observed
and {0, 0} otherwise. Moreover, as the scene changes the
robot can observe different parts of the scene at different
times.

In general, this problem can not be solved effectively if
the process yt is purely random and unpredictable as in such
case there is no way to determine the unobserved elements
of yt. In practice, however, the sequences yt and xt exhibit
structural and temporal regularities which can be exploited
for effective prediction. For example, objects tend to follow
certain motion patterns and have certain appearance. This
allows the behaviour of the objects to be estimated when
they are visible such that later this knowledge can be used
for prediction when they become occluded.

Deep tracking leverages recurrent neural networks to ef-
fectively model P (yt|x1:t). In the remainder of this section
we first describe the probabilistic model assumed to underlie
the sensing process before detailing how RNNs can be used
for tracking.

The Model

Like many approaches to object tracking, our model is in-
spired by Bayesian filtering (Chen 2003). Note, however, the

1Video is available at: https://youtu.be/cdeWCpfUGWc
2The source code of our experiments is available at:

http://mrg.robots.ox.ac.uk/mrg people/peter-ondruska/

h0 h1 h2

y1 y2

x1 x2

h3 ht

y3 yt

x3 xt

Figure 2: The assumed graphical model of the genera-
tive process. World dynamics are modelled by the hidden
Markov process ht with appearance yt which is partially ob-
served by sensor measurements xt.

process yt does not satisfy Markov property: Even knowl-
edge of yt at any particular time t provides only partial infor-
mation about the state of the world such as object positions,
but does not contain all necessary information such as their
speed or acceleration required for prediction. The latter can
be obtained only by relating subsequent measurements. The
methods such as the Hidden Markov Model (Rabiner 1989)
are therefore not directly applicable.

To handle this problem we assume the generative model
in Figure 2 such that alongside yt there exists another un-
derlying Markov process, ht, which completely captures the
state of the world with the joint probability density

P (y1:N , x1:N , h1:N) =
N∏
t=1

P (xt|yt)P (yt|ht)P (ht|ht−1),

(1)
where

• P (ht|ht−1) denotes the hidden state transition probability
capturing the dynamics of the world;

• P (yt|ht) is modelling the instantaneous unoccluded sen-
sor space;

• and P (xt|yt) describes the actual sensing process.

The task of estimating P (yt|x1:t) can now be framed in the
context of recursive Bayesian estimation (Bergman 1999) of
the belief Bt which, at any point in time t, corresponds to a
distribution Bel(ht) = P (ht|x1:t). This belief can be com-
puted recursively for the considered model as

Bel−(ht) =

∫
ht−1

P (ht|ht−1)Bel(ht−1) (2)

Bel(ht) ∝
∫
yt

P (xt|yt)P (yt|ht)Bel−(ht) (3)

where Bel−(ht) denotes belief prediction one time step into
the future and Bel(ht) denotes the corrected belief after the
latest measurement has become available. P (yt|x1:t) in turn
can then be expressed simply using this belief,

P (yt|x1:t) =

∫
ht

P (yt|ht)Bel(ht). (4)

3362

Ra
w

 o
cc

lu
de

d
se

ns
or

 in
pu

t
Fi

lte
re

d
ou

tp
ut

Re
cu

rr
en

t
ne

ur
al

 n
et

w
or

k

t = 1 t = 2 t = 3

y1

B1 B2 B3

y2 y3

x1 x2 x3

B0

Figure 3: An illustration of the filtering process using a re-
current neural network.

Filtering Using Recurrent Neural Network

Computation of P (yt|x1:t) is carried easily by iteratively up-
dating the current belief Bt

Bt = F (Bt−1, yt) (5)
defined by Equations 2,3 and simultaneously providing pre-
diction

P (yt|x1:t) = P (yt|Bt) (6)
defined by equation 4. Moreover, instead of yt the same
method can be used to predict any state in the future
P (yt+n|x1:t) by providing empty observations of the form
x(t+1):(t+n) = ∅.

For realistic applications this approach is, however, lim-
ited by the need for the suitable belief state representation as
well as the explicit knowledge of the distributions in Equa-
tion 1 modelling the generative process.

The key idea of our solution is to avoid the need to spec-
ify this knowledge and instead use a highly expressive neu-
ral networks, governed by weights WF and WP , to model
both F (Bt−1, xt) and P (yt|Bt) allowing to learn their func-
tion directly form the data. Specifically, we assume Bt can
be approximated and represented as a vector, Bt ∈ R

M . As
illustrated in Figure 3, the function F is then simply a re-
current mapping from R

M × R
2N → R

M corresponding
to an implementation by a Feed-Forward Recurrent Neural
Network (Medsker and Jain 2001) where the Bt acts as the
network’s memory passed from one time step to the next.

Importantly, we do not impose any restrictions on the con-
tent or function of this hidden representation. Provided both
networks for F (Bt, xt) and P (yt|Bt) are differentiable they
can be trained together end-to-end as a single recurrent net-
work with a cost function directly corresponding to the data
likelihood provided in Equation 4. This allows the neural
networks to adapt to each other and to learn an optimal hid-
den state representation for Bt together with procedures for
belief updates using partial observations xt and to use this
information to decode the final scene state yt. Training of
the network is detailed in the next section while the concrete
architecture used for our experiment is discussed as a part of
Experimental Results.

Training

The network can be trained both in a supervised mode, i.e.
with both known y1:N , x1:N as well as in an unsupervised
mode where only x1:N is known. A common method of su-
pervised training is to minimize the negative log-likelihood
of the true scene state given the sensor input

L = −
N∑
t=1

logP (yt|x1:t) (7)

This objective can be optimised by the gradient descent with
partial derivatives given by backpropagation through time
(Rumelhart, Hinton, and Williams 1985)

∂L
∂Bt

=
∂F (Bt, xt+1)

∂Bt
· ∂L
∂Bt+1

− ∂ logP (yt|Bt)

∂Bt
(8)

∂L
∂WF

=

N∑
t=1

∂F (Bt−1, xt)

∂WF
· ∂L
∂Bt

(9)

∂L
∂WP

= −
N∑
t=1

∂ logP (yt|Bt)

∂WP
. (10)

However, a major disadvantage of the supervised training
is the requirement of the ground-truth scene state yt con-
taining parts not visible by the robot sensor. One way of ob-
taining this information is to place additional sensors in the
environment which jointly provide information about every
part of the scene. Such an approach, however, can be imprac-
tical, costly or even impossible. In the following part we de-
scribe a training method which only requires raw, occluded
sensor observations alone. This dramatically increases the
practicality of the method as the only necessary learning in-
formation is a long enough record of x1:N as obtained by the
sensor in the field.

Unsupervised Training

The aim of unsupervised training is to learn F (Bt−1, xt) and
P (yt|Bt) using only x1:t. This might seem impossible with-
out knowledge of yt as there would be no way to correct the
network predictions. However, some values of yt as xt ⊆ yt
are known in the directly observed sensor measurements. A
naive approach would be to train the network using the ob-
jective from Equation 7 of predicting the known values of yt
and not back-propagating from the unobserved ones. Such
an approach would fail, however, as the network would only
learn to copy the observed elements of xt to the output and
never predict objects in occlusion.

Instead, and crucially, we propose to train the network not
to predict the current state P (yt|x1:t) but a state in the fu-
ture P (yt+n|x1:t). In order for the network to correctly pre-
dict the visible part of the object after several time steps the
network must learn how to represent and simulate object dy-
namics during the time when the object is not seen using F
and then convert this information to predict P (yt+n|Bt+n).

This form of learning can be implemented easily by con-
sidering the cost function from Equation 7 of predicting visi-
ble elements of yt:t+n and dropping-out all xt:t+n by setting
them to 0 marking the input unobserved. This is similar to

3363

standard node dropout (Srivastava et al. 2014) to prevent net-
work overfitting. Here, we are dropping out the observations
both spatially across the entire scene and temporarily across
multiple time steps in order to prevent the network to overfit
to the task of simply copying over the elements. This forces
the network to learn the correct patterns.

An interesting observation demonstrated in the next sec-
tion is that even though the network is in theory trained to
predict only the future observations xt+n, in order to achieve
this the network learns to predict yt+n. We hypothesise this
is due to the tendency of the regularized network to find the
simplest explanation for observations where it is easier to
model P (yt|Bt) than P (xt|Bt) =

∫
yt
P (xt|yt)P (yt|Bt).

Experimental Results

In this section we demonstrate the effectiveness of our ap-
proach in estimating the full scene state in a simulated sce-
nario representing a robot equipped with a 2D laser scan-
ner surrounded by many dynamic objects. Our inspiration
here is a situation of a robot in a middle of a busy street sur-
rounded by a crowd of moving people. Objects are modelled
as circles independently moving with constant velocity in a
random direction but never colliding with each other or with
the robot. The number of objects present in the scene is var-
ied over time between two and 12 as new objects randomly
appear and later disappear at a distance from the robot.

Sensor Input

At each time step we simulated the sensor input as com-
monly provided by a planar laser scanner. We divided the
scene yt around the robot using a 2D grid of 50×50 pixels
with the robot placed towards the bottom centre. To model
sensor observations xt we ray-traced the visibility of each
pixel and assigned values xi

t = {vit, rit} indicating pixel vis-
ibility (by the robot) and presence of an obstacle if the pixel
is visible. An example of the input yt and corresponding ob-
servation xt is depicted in Figure 3. Note that, as in the case
of a real sensor, only the surface of the object as seen from
particular viewpoint is ever observed. This input was then
fed to the network as a stream of 50×50 2-channel binary
images for filtering.

Neural Network

To jointly model F (Bt−1, xt) and P (yt|Bt) we used a small
feed-forward recurrent network as illustrated in Figure 4.
This architecture has four layers and uses convolutional op-
erations followed by a sigmoid nonlinearity as the basic in-
formation processing step at every layer. The network has in
total 11k parameters and its hyperparameters such as num-
ber of channels in each layer and size of the kernels were
set by cross-validation. The belief state Bt is represented by
the 3rd layer of size 50×50×16 which is kept between time
steps.

The mapping F (Bt−1, xt) is composed of the stage of
input-preprocessing (the Encoder) followed by a stage of
hidden state propagation (the Belief tracker). The aim of the
Encoder is to analyse the sensor measurements, to perform
operations such as detecting objects directly visible to the

2
7x7 Kernel

16

8

1

Input

Encoder

Belief
tracker

Decoder

5x5 Kernel

7x7 Kernel

tt-1

5x5 Kernel

P(y |B)t t

F(B , x)t-1 t

x t

50

50

Figure 4: The 4-layer recurrent network architecture used
for the experiment. Directly visible objects are detected in
Encoder and fed into Belief tracker to update belief Bt used
for scene deocclusion in Decoder.

sensor and to convert this information into a 50×50×8 em-
bedding as input to the Belief tracker. This information is
concatenated with the previous belief state Bt−1 and in Be-
lief tracker combined into a new belief state Bt.

Finally, P (yt|Bt) is modelled by a Bernoulli distribution
by interpreting the network final layer output as a probabilis-
tic occupancy grid pt of the corresponding pixels being part
of an object giving rise to the total joint probability

P (yt|pt) =
∏
i

(pit)
yi
t(1− pit)

(1−yi
t) (11)

with logarithm corresponding to the binary cross-entropy.
One pass through the network takes 10ms on a standard lap-
top drawing the method suitable for real-time data filtering.

Training

We generated 10,000 sequences of length 200 time steps and
trained the network for a total of 50,000 iterations using
stochastic gradient descent with learning rate 0.9. The ini-
tial belief Bt was modelled as a free parameter being jointly
optimised with the network weights WF ,WP .

Both supervised (i.e. when the groundtruth of yt is
known) and un-supervised training were attempted with al-
most identical results. Figure 5 illustrates the unsupervised
training progress. Initially, the network produces random
output, then it gradually learns to predict the correct shape of
the visible objects and finally it learns to track their position
even through complete occlusion. As illustrated in the at-
tached video, the fully trained network is able to confidently
and correctly start tracking an object immediately after it
has seen even only a part of it and is then able to confidently
keep predicting its position even through long periods of oc-
clusion.

Finally, Figure 6 shows example activations of layers
from different parts of the network. It can be seen that the
Encoder module learned to produce in one of its layers a
spike at the center of visible objects. Particularly interesting
is the learned structure of the belief state. Here, the network

3364

t = 1

t = 2

t = 3

t = 4

true positive false positive false negative true negative (visible) true negative (occluded)

Network outputNetwork input

1000

Training cost

100

200

500

10,000 20,000 30,000 40,000 50,000
Iteration

Figure 5: The unsupervised training progress. From left to right, the network first learns to complete objects and then it learns
to track the objects through occlusions. Some situations can not be predicted correctly such as the object in occlusion on the
fourth frame not seen before. Note, the ground-truth for comparison was used only for evaluation, but not during the training.

learned to represent hypotheses of objects having different
motion patterns with different patterns of unit activations
and to track this pattern from frame to frame. None of this
behaviour is hard-coded and it is a pure result of the network
adaptation to the task.

Additionally we performed experiments changing the
shape of objects from circles to squares and also simulating
sensor noise on 1% of all pixel observations3. In all cases
the network correctly learned and predicted the world state,
suggesting the approach and the learning procedure is able
to perform well in a variety of scenarios. We however ex-
pect more complex cases will require networks having more
intermediate layers or using different units such as LSTM
(Hochreiter and Schmidhuber 1997).

3See the attached video.

Related Works

Our work concerns modelling partially-observable stochas-
tic processes with a particular focus on the application
of tracking objects. This problem is commonly solved by
Bayesian filtering which gave rise to tracking methods for a
variety of domains (Yilmaz, Javed, and Shah 2006). Com-
monly, in these approaches the state representation is de-
signed by hand and the prediction and correction operations
are made tractable under a number of assumption on model
distributions or via sampling based methods. The Kalman
filter (Kalman 1960), for example, assumes a multivariate
normal distribution to represent the belief over the latent
state leading to the well-known prediction/update equations
but limiting its expressive power. In contrast, the Particle fil-
ter (Thrun, Burgard, and Fox 2005) foregoes any assump-
tions on belief distributions and employs a sample-based ap-
proach. In addition, where multiple objects are to be tracked,
correct data association is crucial for the tracking process to

3365

In
pu

t
En

co
de

r
Be

lie
f t

ra
ck

er
D

ec
od

er

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

Figure 6: Examples of the filter activations from different parts of the network (one filter per layer). The Encoder adapts to
produce a spike at the position of directly visible objects. Interesting is the structure of the belief Bt. As highlighted by circles
in 2nd row, it adapted to assign different activation patterns to objects having different motion patterns (best viewed in colour).

succeed.
In contrast to using such hand-designed pipelines we pro-

vide a novel end-to-end trainable solution allowing to auto-
matically learn an appropriate belief state representation as
well as the corresponding predict and update operations for
an environment containing multiple objects with different
appearance and potentially very complex behaviour. While
we are not the first to leverage the expressive power of neural
networks in the context of tracking, prior art in this domain
primarily concerned only the detection part of the tracking
pipeline (Fan et al. 2010), (Jänen et al. 2010).

A full neural-network pipeline requires the ability to learn
and simulate the dynamics of the underlying system state in
the absence of measurements such as when the tracked ob-
ject becomes occluded. Modelling complex dynamic scenes
however requires modelling distributions of exponentially-
large state representations such as real-valued vectors hav-
ing thousands of elements. A pivotal work to model high-
dimensional sequences was based on using Temporal Re-
stricted Boltzman Machines (Sutskever and Hinton 2007;
Sutskever, Hinton, and Taylor 2009; Mittelman et al. 2014).
This generative model allows to model the joint distribu-
tion of P (y, x). The downside of using an RBM, however,
is the need of sampling, making the inference and learning
computationally expensive. In our work, we assume an un-
derlying generative model but, in the spirit of Conditional
Random Fields (Lafferty, McCallum, and Pereira 2001) we
directly model only P (y|x). Instead of RBM our archi-

tecture features Feed-forward Recurrent Neural Networks
(Medsker and Jain 2001; Graves 2013) making the inference
and weight gradients computation exact using a standard
back-propagation learning procedure (Rumelhart, Hinton,
and Williams 1988). Moreover, unlike undirected models,
a feed-forward network allows the freedom to straightfor-
wardly apply a wide variety of network architectures such as
fully-connected layers and LSTM (Hochreiter and Schmid-
huber 1997) to design the network. Our used architecture is
similar to recent Encoder-Recurrent-Decoder (Fragkiadaki
et al. 2015) and similarly to (Shi et al. 2015) features convo-
lutions for spatial processing.

Conclusions

In this work we presented Deep Tracking, an end-to-end ap-
proach using recurrent neural networks to map directly from
raw sensor data to an interpretable yet hidden sensor space,
and employ it to predict the unoccluded state of the entire
scene in a simulated 2D sensing application. The method
avoids any hand-crafting of plant or sensor models and in-
stead learns the corresponding models directly from raw,
occluded sensor data. The approach was demonstrated on
a synthetic dataset where it achieved highly faithful recon-
structions of the underlying world model.

As future work our aim is to evaluate Deep Tracking on
real data gathered by robots in a variety of situations such as
pedestrianised areas or in the context of autonomous driv-
ing in the presence of other traffic participant. In both situa-

3366

tions knowledge of the likely unoccluded scene is a pivotal
requirement for robust robot decision making. We further in-
tend to extend our approach to different modalities such as
3D point-cloud data and depth cameras.

References

Bengio, Y. 2009. Learning deep architectures for ai. Foun-
dations and trends in Machine Learning 2(1):1–127.
Bergman, N. 1999. Recursive bayesian estimation. De-
partment of Electrical Engineering, Linköping University,
Linköping Studies in Science and Technology. Doctoral dis-
sertation 579.
Chen, Z. 2003. Bayesian filtering: From kalman filters to
particle filters, and beyond. Statistics 182(1):1–69.
Fan, J.; Xu, W.; Wu, Y.; and Gong, Y. 2010. Human track-
ing using convolutional neural networks. Neural Networks,
IEEE Transactions on 21(10):1610–1623.
Fragkiadaki, K.; Levine, S.; Felsen, P.; and Malik, J. 2015.
Recurrent network models for human dynamics. ICCV.
Graves, A. 2013. Generating sequences with recurrent neu-
ral networks. arXiv preprint arXiv:1308.0850.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Jänen, U.; Paul, C.; Wittke, M.; and Hähner, J. 2010. Multi-
object tracking using feed-forward neural networks. In Soft
Computing and Pattern Recognition (SoCPaR), 2010 Inter-
national Conference of, 176–181. IEEE.
Kalman, R. E. 1960. A new approach to linear filtering
and prediction problems. Journal of Fluids Engineering
82(1):35–45.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Lafferty, J.; McCallum, A.; and Pereira, F. C. 2001. Con-
ditional random fields: Probabilistic models for segmenting
and labeling sequence data.
Medsker, L., and Jain, L. 2001. Recurrent neural networks.
Design and Applications.
Mittelman, R.; Kuipers, B.; Savarese, S.; and Lee, H.
2014. Structured recurrent temporal restricted boltzmann
machines. In Proceedings of the 31st International Confer-
ence on Machine Learning (ICML-14), 1647–1655.
Rabiner, L. R. 1989. A tutorial on hidden markov models
and selected applications in speech recognition. Proceedings
of the IEEE 77(2):257–286.
Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J.
1985. Learning internal representations by error propaga-
tion. Technical report, DTIC Document.
Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1988.
Learning representations by back-propagating errors. Cog-
nitive modeling 5:3.
Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.;
and Woo, W.-c. 2015. Convolutional lstm network: A ma-

chine learning approach for precipitation nowcasting. arXiv
preprint arXiv:1506.04214.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A simple way to prevent
neural networks from overfitting. The Journal of Machine
Learning Research 15(1):1929–1958.
Sutskever, I., and Hinton, G. E. 2007. Learning multilevel
distributed representations for high-dimensional sequences.
In International Conference on Artificial Intelligence and
Statistics, 548–555.
Sutskever, I.; Hinton, G. E.; and Taylor, G. W. 2009. The re-
current temporal restricted boltzmann machine. In Advances
in Neural Information Processing Systems, 1601–1608.
Szegedy, C.; Toshev, A.; and Erhan, D. 2013. Deep neural
networks for object detection. In Advances in Neural Infor-
mation Processing Systems, 2553–2561.
Thrun, S.; Burgard, W.; and Fox, D. 2005. Probabilistic
robotics. MIT press.
Yilmaz, A.; Javed, O.; and Shah, M. 2006. Object tracking:
A survey. Acm computing surveys (CSUR) 38(4):13.

3367

