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Abstract

CMDragons 2015 is the champion of the RoboCup
Small Size League of autonomous robot soccer. The
team won all of its six games, scoring a total of 48
goals and conceding 0. This unprecedented dominant
performance is the result of various features, but we
particularly credit our novel offense multi-robot coor-
dination. This paper thus presents our Selectively Re-
active Coordination (SRC) algorithm, consisting of two
layers: A coordinated opponent-agnostic layer enables
the team to create its own plans, setting the pace of the
game in offense. An individual opponent-reactive ac-
tion selection layer enables the robots to maintain re-
activity to different opponents. We demonstrate the
effectiveness of our coordination through results from
RoboCup 2015, and through controlled experiments us-
ing a physics-based simulator and an automated referee.

1 Introduction

The RoboCup 2015 robot soccer Small-Size League (SSL)
consists of teams of six autonomous robots playing on a field
of 9m×6m, with overhead cameras that observe the pose
of the twelve players and of the orange golf ball used to
play. These observations (gathered at 60Hz) are passed to
each team’s computer (Zickler et al. 2010), which runs the
planning algorithms to choose actions for each individual
team robot. Such actions are sent by radio (at 60Hz) to the
robots for execution. The RoboCup SSL is a very complex
multi-robot planning problem with clear goals to achieve, in
a fast-paced adversarial environment, with inevitably non-
deterministic real physical sensing and execution.

Many researchers, present authors included, have worked
on this research problem (Veloso, Stone, and Han 2000;
Veloso, Bowling, and Stone 2000; D’Andrea 2005; Bruce
et al. 2008; Sukvichai, Ariyachartphadungkit, and Chaiso
2012; Li et al. 2015), making contributions in real-time
sensing (Bruce and Veloso 2003) and control (Behnke et
al. 2004), planning (Zickler and Veloso 2009), and team-
work (Stone and Veloso 1999), which have enabled the cur-
rent RoboCup SSL games to be a fascinating demonstra-
tion of effective AI multi-robot planning algorithms under
significant uncertainty. Every year, teams improve and the
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game conditions and rules change to increase the difficulty
of the problem and challenge the autonomous planning algo-
rithms (Weitzenfeld et al. 2015). This year, the CMDragons
(see Figure 1), composed of the same robot hardware for
the last 10 years, won the competition, scoring 48 goals and
suffering 0 goals in 6 games. This level of performance had
never been reached before in the league. While various de-
fense and offense algorithms contributed to our result (Men-
doza et al. 2015), we strongly credit our new coordinated,
aggressive, and continuous attack, which we present here.

Figure 1: All the CMDragons 2015 robots (6 play at a time),
champions of the RoboCup Small Size League of robot soc-
cer. (Hardware designed and built by Mike Licitra, and
carefully maintained by Joydeep Biswas and Richard Wang.)

In this paper, we contribute our Selectively Reactive Co-
ordination (SRC) approach to tractably and effectively solve
the coordinated soccer offense problem. Our SRC algo-
rithm is composed of two layers: The coordinated opponent-
agnostic layer enables the team to conduct potentially ex-
pensive optimizations offline to find multi-robot team plans
that generally perform well. The individual opponent-
reactive action selection layer is highly reactive to oppo-
nents within the constraints imposed by the coordination
layer plans, and thus enables the team to adapt appropriately
to opponent behavior.

While robot soccer is a specific planning problem, we be-
lieve many of the ideas we present generalize to other dy-
namic multi-robot domains –e.g., capture-the-flag (Atkin,
Westbrook, and Cohen 1999), keepaway (Stone et al. 2006),
rescue planning (Jennings, Whelan, and Evans 1997), and
team patrolling (Agmon et al. 2008)– in which robots bal-
ance executing an agreed-upon team plan with reacting to
changes in the environment. We hope that this paper inspires
others to pursue the robot soccer problem, or to apply or ex-
tend our algorithms to other dynamic multi-robot domains.
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2 Multi-Robot Offense Coordination:

Statement and Overview

One of the core challenges of planning for a team of soccer
robots consists of representing and reasoning about the op-
ponent team. The level of opponent-reactivity of team plans
can vary, as exemplified by two extremes: (i) The purely
reactive team, which positions its robots completely in reac-
tion to the adversary, is unable to carry out plans of its own
and is susceptible to coercion (Biswas et al. 2014); (ii) The
open loop team, which positions its robots ignoring the op-
ponent’s state, is unable to appropriately react to opponent
behavior. In this work, we introduce a novel intermediate
Selectively Reactive Coordination (SRC) algorithm that cre-
ates team plans of its own while also responding to the oppo-
nent. SRC combines an opponent-agnostic team coordina-
tion layer with an opponent-reactive individual action evalu-
ation and selection layer. This section provides an overview
of our SRCalgorithm, while Sections 3 and 4 describe in de-
tail the two layers in the context of the CMDragons.

Coordination via Zones and Guard Locations. The
SRC creates a skeleton of an opponent-agnostic multi-robot
plan P to be followed by the team, composed by a set of
roles R = {r1, . . . , rn} for a team of n robots. The roles
capture what the team members should be doing and con-
strains how the robots should do it to adhere to the plan. The
coordination layer performs two main functions: (i) selects
a plan skeleton based on the state of the game, and then (ii)
matches each robot ρi to a role rj .

The CMDragons 2015 offense has two types of roles: one
Primary Attacker (PA), and (n−1) Support Attackers (SAs).
The PA role is completely opponent-and-situation-driven,
and is thus unconstrained by P . The SAs move to maxi-
mize the estimated probability of the team scoring. Plan P
constrains the behavior of each SAi by (i) bounding its to
motion a zone zi ⊂ R

2, and (ii) assigning it a default tar-
get guard location p0

i ∈ zi. Each element of a zone set
Z =

{
(z1,p

0
1), . . . , (zn−1,p

0
n−1)

}
is assigned to a SA in

the team. A plan can consist of a single zone assignment
P = Z, or of a sequence of such steps P = [Z1, . . . ,Zk].
These plan-skeletons encode strategies that work well gener-
ally against various opponents. We search for effective plans
offline, using extensive data and human knowledge.

Individual Action Selection. SRC considers the oppo-
nents and ball in the positioning of the PA and the SAs,
leading to an opponent-reactive action selection layer for
each robot, that maximizes the estimated probability of
scoring a goal. Formally, we have our n offense robots
R = {ρ1, . . . , ρn} and a team of adversary robots Ro =
{ρo1, , . . . , ρom}. We assume full knowledge of the observ-
able state of the world x ∈ X consisting of: Each of our
robots’ pose and velocity state xρ

i , the opponent robots’ pose
and velocity state xo

i , the ball state xb, and the state xg of
the game, with information such as time left and score.

Table 1 shows the higher-level actions of the individual
robots (as opposed to low-level actions, such as apply cur-
rent to the wheel motors, or to the kicker), as used in the
coordination approach. In our formulation, the PA executes

Action Effect Type

move(p) Move to location p Passive
getBall Move to intercept ball Active
shoot Shoot ball to opponent’s goal Active
pass(p) Pass ball to location p Active
dribble Dribble ball to hold possession Active

Table 1: Actions available to each robot. Active actions ma-
nipulate the ball, while Passive actions do not.

active actions that manipulate the ball, while the SAs per-
form passive actions that do not involve ball manipulation.

Each Support Attacker SAi moves either to its guard lo-
cation p0

i ∈ zi, or to a location p∗i ∈ zi to receive a pass
from the PA, depending on whether the PA is ready to pass
to SAi. Pass location p∗ is computed via optimization as
the location within zi that maximizes the probability of suc-
cessfully receiving a pass from the PA and then scoring a
goal by taking a shoot action.

The PA selects the optimal action a∗ among the
set of possible active actions Aa.The PA only consid-
ers passing to the (n − 1) locations p∗i that the SAs
have chosen. Therefore, the action space for the PA is
(getBall, shoot, dribble, pass), which can be fully explored
and evaluated to estimate the probability of scoring a goal
for each action, and choose the optimal action a∗.

Complete Overview of SRC algorithm Algorithm 1
presents the complete algorithm and refers to the rest of the
paper. First, the algorithm jointly computes (n − 1) zones
to assign to each SA. Then, each of the n fully-instantiated
roles (one PA and (n − 1) SAs with zones) is jointly opti-
mally assigned to each robot. Finally, each robot plans its
actions individually within the constraints of its role.

Algorithm 1 Selective Reactive Coordination for Offense.
Input: State of the world x.
Output: Individual robot actions.

function PlanAction(x)
Instantiate roles ri with zones zi (Section 3)

{(zi,p
0
i )}n−1

i=1 ← ComputeZones(x)
{ri}ni=1 ← [SA(z1,p

0
1), . . . , SA(zn−1,p

0
n−1),PA]

Optimally assign roles (Section 3)
{(ρi, ri)}ni=1 ← OptAssign ({ri}ni=1,x)

Choose actions individually (Section 4)
for i in [1, 2, . . . , n] do

a∗i ← IndividualAction(ρi, ri,x)
end for

end function

This layered joint-individual algorithm maintains
tractability: ComputeZones is O(n), OptAssign is O(n3),
and IndividualAction is O(n + m) for each robot, where
m is the number of opponents. As the size of the team
grows, the OptAssign step might need to be modified to
maintain real-time planning.
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(a) Coverage-zones for 3 SAs (b) Dynamic-zone assignment, step i (c) Dynamic-zone assignment, step i+ 1

Figure 2: Coordinated zone assignments for Support Attacker robots. White dashed lines show the zone boundaries; white and
orange circles show our SAs and PA respectively. A pass from the PA in (b) triggers a change in zones to those in (c).

3 Role Assignment to Zones

This section addresses the problem of selecting zones and
assigning robots to be PA or SAs based on such zones.
We explore two selection approaches: coverage-zones and
dynamic-zones. Throughout this paper, we assume that the
number n of offense robots is known. Balancing offense and
defense, a complex problem on its own, is beyond the scope
of this paper, which focuses on offense coordination.

Coverage-zone Selection Our coverage-zone approach is
based on an offline definition of zone sets Zi, each of which
cover the opponent’s half of the field. Online, the team
chooses the right coverage set Z based on features of the
state of the game, such as possession and ball position. This
approach follows a long tradition in robot soccer of build-
ing upon human knowledge of the game of soccer to reason
about zones and formations (Stone and Veloso 1999).

Figure 2a shows a set of Coverage-zones for a four-robot
offense used at RoboCup 2015. These predefined zone sets
partition the offensive half of the field, giving much freedom
to the individual SAs to search for the optimal positioning
within these large zones, while ensuring a well-distributed
opponent-agnostic formation along the field.

Dynamic-zone Selection The other approach we em-
ployed in RoboCup 2015 relies more heavily on coordinated
zone selection to determine the flow of actions, leaving lit-
tle positioning choice to the individual robots. The algo-
rithm coordinates the team of robots to move, as the play
progresses, in sequences of zones P = [Z1,Z2, . . . ,Zk],
each of a smaller size than the coverage-zones.

Each plan Pi is selected from a set P of possible plans. To
create P, we first created a set P0 of candidate plans, lever-
aging human knowledge and intuition about the game. Then,
we ran extensive simulation tests to find the best-performing
plans from P0, according to various performance metrics,
such as goals scored and pass completion. Automated plan
generation and selection is a subject for future work.

Each of the plans in P has a set of applicability condi-
tions. For instance, in RoboCup 2015, the set P was divided
into defense, midfield, and offense plans. In general, the
goal of these plans is to move the ball toward the opponent’s
goal. Transitions from Zi to Zi+1 are triggered when either
a robot kicks the ball or a timeout period expires. Figures 2b
shows a set of dynamic zones for a 3-robot offense, which
evolves to that of Figure 2c when the PA passes the ball.

Optimal role assignment Once the set of roles has been
fully instantiated with zones, our algorithm assigns each
robot to a role. This assignment is performed optimally,
given an appropriate cost function Ci(ρj) of assigning role
ri ∈ R to robot ρj ∈ R: The optimal assignment is a bi-
jection f : R → R, such that the total assignment cost∑

i Ci(f(ri)) is minimized. This optimal assignment can
be computed in O(n3) time (Bertsekas 1981).

The definition of the cost function Ci is crucial to achieve
the right assignments. The optimal assignment is the one
that maximizes the probability of scoring a goal. In our al-
gorithm, we approximate this by a cost function that repre-
sents the time ti(ρj) that it would take robot ρj to fulfill role
ri, multiplied by an importance factor wi:

Ci(ρj) = witi(ρj) (1)

Our robots are homogeneous, and thus there is no intrin-
sic benefit of choosing one over another for a specific role.
Thus, the assignment that maximizes the probability of scor-
ing is the one that minimizes the probability of the opponent
disrupting our plans. This probability highly correlates with
the time taken to perform a plan, and thus we minimize the
total completion time, giving a higher importance wi to the
PA than to the SAs.

The cost of assigning the role of Primary Attacker to robot
ρj is thus the time that it will take for ρj to drive to location
p∗PA computed to be the best ball interception location for
ρj (or 0 if ρj is already in possession of the ball). Similarly,
the cost for the Support Attackers is computed as the time it
will take for robot ρj to drive to location p∗ij evaluated to be
the best location within zone zi to support the PA.

4 Opponent-Reactive Individual Action

Evaluation and Selection

Once the coordinated team has assigned each robot a fully
instantiated role (see Section 3), each robot performs its role
individually, with limited communication with the rest of the
team (Browning et al. 2005). This individualization enables
our algorithms to scale tractably with the number of robots.

4.1 Primary Attacker (PA)

The PA is the most complex role, as it requires the robot
to make various decisions and use several different skills.
For clarity of presentation, we present the PA at a level of
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(a) P (near |p) (b) P (open |p,x) (c) P (receive |p,x)

Figure 3: Estimated probabilities for individual decision-making of the blue robots. Lighter gray indicates higher probability
points. Probability that p (a) is near enough to the yellow goal and (b) has a wide enough angle on it, to shoot and score, and
(c) Probability that the highlighted SA can receive a pass at different locations p from the PA holding the orange ball.

abstraction suitable for this paper; for example, even though
the PA has various skills for intercepting a moving ball, here
we join them into a single getBall action.

The goal of the PA is to manipulate the ball to maximize
the probability of scoring a goal. When the PA does not
have possession of the ball, it executes the getBall action.
When the PA has possession, it chooses among three action
types: shoot on goal (shoot), pass to a Support Attacker SAi

(passi), or individually dribble the ball (dribble). We briefly
explain the dribble action, new to the CMDragons 2015.

Individual Dribbling. To hold possession of the ball, the
PA uses a rotating dribbler bar that imparts back-spin on
the ball, making it roll toward the robot. Furthermore, the
PA drives with the ball to keep it away from opponents,
while driving to the location pt of the most promising pass
or shoot option (as computed in Equation 4 or 3 below).
Thus, the PA, with location pPA, balances the goal of driv-
ing in the direction �ut = pt−pPA of its target, and avoiding
the closest opponent with direction �uo = po − pPA, if its
distance do = |po − pPA| is smaller than a threshold Dmin.
Figure 4 shows a diagram of these quantities.

The robot aligns with �ut by rotating its heading �ub to-
wards �ut along the smaller angle φ− unless there exists a
turning threat threat(�ub, �uo, do) within φ−, in which case
it rotates along the larger angle φ+. A turning threat exists
if the opponent is within φ−, and closer than Dmin:

threat(�ub, �uo, do) = (do ≤ Dmin)∧
((�ub × �uo)(�ub × �ut) ≥ 0)∧

((�ut × �uo)(�ut × �ub) ≥ 0) (2)
Once aligned, the robot dribbles that ball towards pt, while
avoiding obstacles along the way (Bruce and Veloso 2006).

Primary Attacker Algorithm. Algorithm 2 shows the
procedure for choosing the optimal PA action. The PA esti-
mates the probability that each one of these actions will lead

Dmin�ub

φ+

φ−

�uo
�ut

pt

Figure 4: Variables used to execute the dribble action. The
PA holding the orange ball decides how to drive to pt while
avoiding the opponent in direction �uo.

to a goal, given the location of the ball pb and the state of
the world1 x. The probability of scoring a goal by shooting
is estimated as the probability that the ball is close enough
to the opponent’s goal for a shot to be effective and that the
robot has a wide enough angle on the goal:

P (goal | shoot,pb,x) = P (near |pb)P (open |pb,x). (3)

Figures 3a and 3b illustrates these two functions, treated as
independent for simplicity.

The probability of scoring a goal by first passing is esti-
mated as the probability that the pass will successfully reach
its target robot and that the robot will subsequently success-
fully shoot on the goal from the estimated world state x′i
after the pass, obtained from forward predictions of our own
robots, and assuming the opponents are static. This proba-
bility is highly dependent on the location p∗i at which robot
SAi decides to receive the pass:

P (goal | passi,p∗i ,x) = P (receivei |p∗i ,x)×
P (goal | shoot,p∗i ,x′i). (4)

1While the location of the ball is part of x, we state it explicitly
for clarity of explanation in the remainder of the paper.
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Algorithm 2 Primary Attacker action-selection algorithm.
Input: Robot ρi, instantiated role PA, world state x
Output: Chosen individual action a∗.

1: function INDIVIDUALACTION(ρi,PA,x)
2: if not in possession of the ball then
3: a∗ ← getBall
4: else
5: A ← {shoot, dribble, pass1, . . . , passn−1}
6: a∗ ← argmaxa∈A [P (goal |a,x)]
7: end if
8: return a∗
9: end function

This approximation is a one-step lookahead that assumes the
receiving robot will shoot on the goal. Estimating further
pass success probabilities is computationally expensive and
inaccurate in a highly dynamic adversarial domain (Zickler
and Veloso 2010; Trevizan and Veloso 2012). However, as
these probabilities are estimated at every timestep, multiple
passes emerge naturally. The estimated pass success prob-
ability P (receivei |p∗i ,x) itself is a composition of various
probabilities, as described in Section 4.2.

The probability of scoring by dribbling (to be followed by
a pass or shot) is estimated by a constant value kd:

P (goal | dribble,pb,x) = kd (5)
This simple estimate provided significant results during
RoboCup 2015: Our PA used dribble 42 times in the semi-
final and 60 times in the final, giving our team 47 and 146
seconds of additional ball possession time, respectively.

4.2 Support Attackers (SAs).

The task of each Support Attacker SAi is to maximize the
probability of the team scoring by supporting the PA from
within its assigned zone zi. Each SAi thus (i) searches for
the location p∗i that maximizes the probability of receiving a
pass and then scoring a goal (Equation 4) and then (ii) moves
to p∗i at the right time to receive a pass from the PA. We now
describe these two components and the resulting algorithm.

Optimal Pass Location Search. To find the location p∗i
that maximizes Equation 4, we must compute estimates of
the two factors in it. Section 4.1 addresses the computa-
tion of P (goal | shoot,p,x′). To estimate the probability
P (receivei |p,x) of successfully receiving a pass at loca-
tion p, we compile a set of conditions ck that must all be
true for a pass to be received, and combine their individual
probabilities assuming independence (Biswas et al. 2014):

P (receivei |p,x) =
∏

k

P (ck|p,x). (6)

Examples of these individual factors include the probability
of the pass not being intercepted by any opponent, and the
probability of not losing the ball by attempting to receive
too close to the field boundary. Figure 3c shows an exam-
ple of the resulting map from location on the field to prob-
ability of success. Because the optimization space is only
2-dimensional, we effectively employ random sampling to
find the optimal location p∗i that maximizes Equation 4.

Pass-ahead Computation After choosing p∗i , SAi and
PA execute the pass using a pass-ahead procedure: Only
once SAi has calculated that its own navigation time tρ(p

∗
i )

is comparable to the time tb(p∗i ) that the pass will take to get
there, SAi moves to p∗i . Until then, SAi moves to (or stays
at) its guard location p0

i . Thus, we combine an opponent-
agnostic default location p0

i that enables our robots to move
the world to a less dynamic and thus more predictable state,
with an opponent-reactive pass location p∗i that enables our
robots to adapt appropriately. This pass-ahead coordina-
tion (Biswas et al. 2014) has been crucial in the high pass
success rate of the CMDragons, as it makes the task of mark-
ing our SAs significantly more difficult. Figure 5 illustrates
a pass-ahead maneuver leading to a goal in RoboCup 2015.

(a) Pass initial configuration

(b) Pass final configuration, immediately preceding a goal

Figure 5: Pass-ahead maneuver leading to a goal in
RoboCup 2015. The figure shows the initial and final world
configurations, and the motion of the ball and pass receiver.

Secondary Attacker Algorithm. Algorithm 3 describes
the procedure for choosing the optimal SA action. While
robots choose their individual actions independently, we en-
able limited communication to avoid computation redun-
dancy. For example, SA robots communicate to the PA
robots their computed values for p∗i , P (goal | passi,p∗i ,x),
tb(p

∗
i ) and tρ(p

∗
i ).

5 RoboCup 2015 and Simulation Results

Our layered coordinated offense approach proved extremely
successful during the RoboCup 2015 competition. Here,
we discuss the CMDragons’ performance in the tournament,
and conduct simulation experiments to further support SRC.

CMDragons Performance in RoboCup 2015 The
RoboCup 2015 SSL tournament consisted of 17 teams
from various universities in the world. The CMDragons
played three games during the Round Robin stage (RR1,
RR2, RR3), one Quarter-Final (QF), one Semi-Final (SF),
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Algorithm 3 Support Attacker action-selection algorithm.
Input: Robot ρi, instantiated role SA(zi,p

0
i ), world state x

Output: Chosen individual action a∗.

1: function INDIVIDUALACTION(ρi, SA(zi,p
0
i ),x)

2: p∗i ← FindOptLoc(ρi, zi,x)
3: if tb(p

∗
i ) ≤ tρ(p

∗
i ) then

4: a∗ ← move(p∗i )
5: else
6: a∗ ← move(p0

i )
7: end if
8: return a∗
9: end function

and the Final (F). We won all 6 games, scoring 48 goals,
and conceding 0. Table 2 summarizes goal, shot, and pass
statistics for our team in each game.

Game Shots Passes
Scored Missed Succ.% Compl. Missed Succ.%

RR1 6 11 35.3 32 9 78.1
RR2 10 5 66.7 14 4 77.8
RR3 10 15 40.0 30 7 81.1
QF 15 25 37.5 38 4 90.5
SF 2 29 6.5 51 12 81.0
F 5 15 25.0 29 15 65.9

Total 48 100 32.4 194 51 79.2Avg 8 16.7 32.3 8.5

Table 2: Statistics for each CMDragons game in RoboCup
2015. RR2 and RR3 ended early due to a 10-goal mercy
rule, after 10:20 and 18:25 minutes respectively (normally,
games last 20 minutes).

Our team demonstrated an effective level of coordination:
with an average of 32.3 passes completed per game, our
team had a 79.2% pass completion rate2. Furthermore, most
of the team’s goals were collective efforts: 22 goals were
scored directly after 1 pass, 11 directly after 2 consecutive
passes, and 1 after 3 consecutive passes.

Simulation Validation We complement our real-world re-
sults from RoboCup with experiments run on a PhysX-based
simulator, with an automated referee (Zhu, Biswas, and
Veloso 2015) that enabled extensive testing without human
intervention. We test our novel SRC algorithm against two
alternate highly competitive versions of our team described
below. We tested each condition for over 500 minutes of reg-
ular game-play, with no free kicks, fitting the focus of this
paper. While it is always difficult to clearly dominate over
other versions of our team by changing a single aspect of the
team, the SRC algorithm showed a significant improvement
over the alternatives.

First, we tested our team using SRC against a team in
which each SAi moves to its Individually-Optimal Location
p∗i computed over the entire field (team IndivOpt). Thus,

2For anecdotal reference, the pass completion rates of the hu-
man teams in the 2014 World Cup final were 71% and 80%.

IndivOpt has the advantage of globally-optimal individual
positioning, while SRC has the advantage of team coordina-
tion. Table 3 shows that the SRC offense outperforms team
IndivOpt in terms of offensive statistics.

Team Goals Blocked Blocked Total
Scored (Goalie) (Other) Shots

SRC 59 128 1636 1823
IndivOpt 35 85 1381 1501
SRC 67 165 2045 2227
ExactPlan 53 142 2453 2648

Table 3: Results of simulation experiments. Our SRC al-
gorithm outperforms a team that positions robots in their
Individually-Optimal Location (IndivOpt), and a team that
positions them according to an Exact Team Plan (ExactPlan)

.

Then, we tested SRC against a team in which the coor-
dination layer, instead of creating only a skeleton of a team
plan, creates an Exact Team Plan (team ExactPlan); this plan
assigns robots to specific locations, rather than zones as in
SRC. Thus, ExactPlan has the advantage that effective com-
plete plans can be specified in advance, but it lacks the re-
activity of SRC. Similar exact plan strategies have been suc-
cessfully applied by highly competitive teams in SSL (Zhao
et al. 2014). Table 3 shows that SRC outperforms Exact-
Plan: even though ExactPlan shoots more, SRC shoots past
the defense more and scores more. We hypothesize that Ex-
actPlan shoots more in general because its PA is less likely
to find good passing options, and decides to shoot instead.

6 Conclusion

This paper presents a Selectively Reactive Coordination
(SRC) approach to the problem of offensive team coordina-
tion in the context of robot soccer. This approach achieves
a tradeoff between the ability to create team plans indepen-
dently of the opponents, and the ability to react appropriately
to different opponent behaviors.

An opponent-agnostic coordination layer creates skele-
tons of team plans that are generally effective against various
opponents. These plans are encoded by zones to be assigned
to the Support Attacker robots, while the Primary Attacker
robot is unconstrained by the plan. Team plans can be gener-
ated offline, and can therefore leverage human knowledge or
extensive computation. During the game, plans are selected
based on efficiently-computable conditions.

Given the constraints imposed by the selected team plan,
each robot plans its actions individually. At this level, deci-
sions are highly reactive to the behavior of the opponents.

We present empirical support for our approach through
statistics of our unprecedented performance in RoboCup
2015, and through controlled experimental results obtained
using a physics-based simulator and an automated referee.
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