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Abstract

Hashing-based model counting has emerged as a promising
approach for large-scale probabilistic inference on graphi-
cal models. A key component of these techniques is the
use of xor-based 2-universal hash functions that operate over
Boolean domains. Many counting problems arising in prob-
abilistic inference are, however, naturally encoded over fi-
nite discrete domains. Techniques based on bit-level (or
Boolean) hash functions require these problems to be propo-
sitionalized, making it impossible to leverage the remark-
able progress made in SMT (Satisfiability Modulo Theory)
solvers that can reason directly over words (or bit-vectors). In
this work, we present the first approximate model counter that
uses word-level hashing functions, and can directly leverage
the power of sophisticated SMT solvers. Empirical evalua-
tion over an extensive suite of benchmarks demonstrates the
promise of the approach.

1 Introduction

Probabilistic inference on large and uncertain data sets is
increasingly being used in a wide range of applications. It
is well-known that probabilistic inference is polynomially
inter-reducible to model counting (Roth 1996). In a recent
line of work, it has been shown (Chakraborty, Meel, and
Vardi 2013; Chakraborty et al. 2014; Ermon et al. 2013; Ivrii
et al. 2015) that one can strike a fine balance between per-
formance and approximation guarantees for propositional
model counting, using 2-universal hash functions (Carter
and Wegman 1977) on Boolean domains. This has propelled
the model-counting formulation to emerge as a promising
“assembly language” (Belle, Passerini, and Van den Broeck
2015) for inferencing in probabilistic graphical models.

In a large class of probabilistic inference problems, an im-
portant case being lifted inference on first order represen-
tations (Kersting 2012), the values of variables come from
finite but large (exponential in the size of the representa-
tion) domains. Data values coming from such domains are
naturally encoded as fixed-width words, where the width
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is logarithmic in the size of the domain. Conditions on ob-
served values are, in turn, encoded as word-level constraints,
and the corresponding model-counting problem asks one to
count the number of solutions of a word-level constraint. It is
therefore natural to ask if the success of approximate propo-
sitional model counters can be replicated at the word-level.

The balance between efficiency and strong guarantees
of hashing-based algorithms for approximate propositional
model counting crucially depends on two factors: (i) use of
XOR-based 2-universal bit-level hash functions, and (ii) use
of state-of-the-art propositional satisfiability solvers, viz.
CryptoMiniSAT (Soos, Nohl, and Castelluccia 2009), that
can efficiently reason about formulas that combine disjunc-
tive clauses with XOR clauses.

In recent years, the performance of SMT (Satisfiabil-
ity Modulo Theories) solvers has witnessed spectacular im-
provements (Barrett et al. 2012). Indeed, several highly opti-
mized SMTsolvers for fixed-width words are now available
in the public domain (Brummayer and Biere 2009; Jha, Li-
maye, and Seshia 2009; Hadarean et al. 2014; De Moura
and Bjørner 2008). Nevertheless, 2-universal hash functions
for fixed-width words that are also amenable to efficient rea-
soning by SMT solvers have hitherto not been studied. The
reasoning power of SMTsolvers for fixed-width words has
therefore remained untapped for word-level model counting.
Thus, it is not surprising that all existing work on probabilis-
tic inference using model counting (viz. (Chistikov, Dim-
itrova, and Majumdar 2015; Belle, Passerini, and Van den
Broeck 2015; Ermon et al. 2013)) effectively reduce the
problem to propositional model counting. Such approaches
are similar to “bit blasting” in SMT solvers (Kroening and
Strichman 2008).

The primary contribution of this paper is an effi-
cient word-level approximate model counting algorithm
SMTApproxMC that can be employed to answer inference
queries over high-dimensional discrete domains. Our algo-
rithm uses a new class of word-level hash functions that are
2-universal and can be solved by word-level SMTsolvers ca-
pable of reasoning about linear equalities on words. There-
fore, unlike previous works, SMTApproxMC is able to lever-
age the power of sophisticated SMT solvers.

To illustrate the practical utility of SMTApproxMC,
we implemented a prototype and evaluated it on a
suite of benchmarks. Our experiments demonstrate that
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SMTApproxMC can significantly outperform the prevalent
approach of bit-blasting a word-level constraint and us-
ing an approximate propositional model counter that em-
ploys XOR-based hash functions. Our proposed word-level
hash functions embed the domain of all variables in a large
enough finite domain. Thus, one would not expect our ap-
proach to work well for constraints that exhibit a hugely het-
erogeneous mix of word widths, or for problems that are dif-
ficult for word-level SMT solvers. Indeed, our experiments
suggest that the use of word-level hash functions provides
significant benefits when the original word-level constraint
is such that (i) the words appearing in it have long and simi-
lar widths, and (ii) the SMTsolver can reason about the con-
straint at the word-level, without extensive bit-blasting.

2 Preliminaries

A word (or bit-vector) is an array of bits. The size of the ar-
ray is called the width of the word. We consider here fixed-
width words, whose width is a constant. It is easy to see that
a word of width k can be used to represent elements of a
set of size 2k. The first-order theory of fixed-width words
has been extensively studied (see (Kroening and Strichman
2008; Bruttomesso 2008) for an overview). The vocabu-
lary of this theory includes interpreted predicates and func-
tions, whose semantics are defined over words interpreted
as signed integers, unsigned integers, or vectors of propo-
sitional constants (depending on the function or predicate).
When a word of width k is treated as a vector, we assume
that the component bits are indexed from 0 through k − 1,
where index 0 corresponds to the rightmost bit. A term is ei-
ther a word-level variable or constant, or is obtained by ap-
plying functions in the vocabulary to a term. Every term has
an associated width that is uniquely defined by the widths
of word-level variables and constants in the term, and by the
semantics of functions used to build the term. For purposes
of this paper, given terms t1 and t2, we use t1 + t2 (resp.
t1 ∗ t2) to denote the sum (resp. product) of t1 and t2, inter-
preted as unsigned integers. Given a positive integer p, we
use t1 mod p to denote the remainder after dividing t1 by
p. Furthermore, if t1 has width k, and a and b are integers
such that 0 ≤ a ≤ b < k, we use extract(t1, a, b) to denote
the slice of t1 (interpreted as a vector) between indices a and
b, inclusively.

Let F be a formula in the theory of fixed-width words.
The support of F , denoted sup(F ), is the set of word-level
variables that appear in F . A model or solution of F is an
assignment of word-level constants to variables in sup(F )
such that F evaluates to True. We use RF to denote the set
of models of F . The model-counting problem requires us
to compute |RF |. For simplicity of exposition, we assume
henceforth that all words in sup(F ) have the same width.
Note that this is without loss of generality, since if k is the
maximum width of all words in sup(F ), we can construct
a formula F̂ such that the following hold: (i) |sup(F )| =

|sup(F̂ )|, (ii) all word-level variables in F̂ have width k,
and (iii) |RF | = |R

̂F |. The formula F̂ is obtained by replac-
ing every occurrence of word-level variable x having width
m (< k) in F with extract(x̂, 0,m− 1), where x̂ is a new

variable of width k.
We write Pr [X : P] for the probability of outcome X

when sampling from a probability space P . For brevity, we
omit P when it is clear from the context.

Given a word-level formula F , an exact model counter
returns |RF |. An approximate model counter relaxes this re-
quirement to some extent: given a tolerance ε > 0 and con-
fidence 1 − δ ∈ (0, 1], the value v returned by the counter
satisfies Pr[ |RF |

1+ε ≤ v ≤ (1 + ε)|RF |] ≥ 1 − δ. Our
model-counting algorithm belongs to the class of approxi-
mate model counters.

Special classes of hash functions, called 2-wise indepen-
dent universal hash functions play a crucial role in our
work. Let sup(F ) = {x0, . . . xn−1}, where each xi is a
word of width k. The space of all assignments of words in
sup(F ) is {0, 1}n.k. We use hash functions that map ele-
ments of {0, 1}n.k to p bins labeled 0, 1, . . . p − 1, where
1 ≤ p < 2n.k. Let Zp denote {0, 1, . . . p − 1} and let H
denote a family of hash functions mapping {0, 1}n.k to Zp.

We use h
R←− H to denote the probability space obtained by

choosing a hash function h uniformly at random from H. We
say that H is a 2-wise independent universal hash family if
for all α1, α2 ∈ Zp and for all distinct X1,X2 ∈ {0, 1}n.k,

Pr
[
h(X1) = α1 ∧ h(X2) = α2 : h

R←− H
]
= 1/p2.

3 Related Work

The connection between probabilistic inference and model
counting has been extensively studied by several au-
thors (Cooper 1990; Roth 1996; Chavira and Darwiche
2008), and it is known that the two problems are inter-
reducible. Propositional model counting was shown to be
#P-complete by Valiant (Valiant 1979). It follows easily
that the model counting problem for fixed-width words is
also #P-complete. It is therefore unlikely that efficient ex-
act algorithms exist for this problem. (Bellare, Goldreich,
and Petrank 2000) showed that a closely related problem,
that of almost uniform sampling from propositional con-
straints, can be solved in probabilistic polynomial time using
an NP oracle. Subsequently, (Jerrum, Valiant, and Vazirani
1986) showed that approximate model counting is polyno-
mially inter-reducible to almost uniform sampling. While
this shows that approximate model counting is solvable in
probabilstic polynomial time relative to an NP oracle, the al-
gorithms resulting from this largely theoretical body of work
are highly inefficient in practice (Meel 2014).

Building on the work of Bellare, Goldreich and Pe-
trank (2000), Chakraborty, Meel and Vardi (2013) proposed
the first scalable approximate model counting algorithm for
propositional formulas, called ApproxMC. Their technique
is based on the use of a family of 2-universal bit-level hash
functions that compute XOR of randomly chosen proposi-
tional variables. Similar bit-level hashing techniques were
also used in (Ermon et al. 2013; Chakraborty et al. 2014)
for weighted model counting. All of these works leverage
the significant advances made in propositional satisfiability
solving in the recent past (Biere et al. 2009).

Over the last two decades, there has been tremendous
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progress in the development of decision procedures, called
Satisfiability Modulo Theories (or SMT) solvers, for com-
binations of first-order theories, including the theory of
fixed-width words (Barrett, Fontaine, and Tinelli 2010;
Barrett, Moura, and Stump 2005). An SMT solver uses
a core propositional reasoning engine and decision pro-
cedures for individual theories, to determine the satisfia-
bility of a formula in the combination of theories. It is
now folklore that a well-engineered word-level SMT solver
can significantly outperform the naive approach of blast-
ing words into component bits and then using a propo-
sitional satisfiability solver (De Moura and Bjørner 2008;
Jha, Limaye, and Seshia 2009; Bruttomesso et al. 2007). The
power of word-level SMT solvers stems from their ability to
reason about words directly (e.g. a+ (b− c) = (a− c) + b
for every word a, b, c), instead of blasting words into com-
ponent bits and using propositional reasoning.

The work of (Chistikov, Dimitrova, and Majumdar 2015)
tried to extend ApproxMC (Chakraborty, Meel, and Vardi
2013) to non-propositional domains. A crucial step in their
approach is to propositionalize the solution space (e.g.
bounded integers are equated to tuples of propositions) and
then use XOR-based bit-level hash functions. Unfortunately,
such propositionalization can significantly reduce the effec-
tiveness of theory-specific reasoning in an SMT solver. The
work of (Belle, Passerini, and Van den Broeck 2015) used
bit-level hash functions with the propositional abstraction of
an SMT formula to solve the problem of weighted model in-
tegration. This approach also fails to harness the power of
theory-specific reasoning in SMT solvers.

Recently, (de Salvo Braz et al. 2015) proposed
SGDPLL(T ), an algorithm that generalizes SMT solving
to do lifted inferencing and model counting (among other
things) modulo background theories (denoted T ). A fixed-
width word model counter, like the one proposed in this pa-
per, can serve as a theory-specific solver in the SGDPLL(T )
framework. In addition, it can also serve as an alernative to
SGDPLL(T ) when the overall problem is simply to count
models in the theory T of fixed-width words, There have
also been other attempts to exploit the power of SMT solvers
in machine learning. For example, (Teso, Sebastiani, and
Passerini 2014) used optimizing SMT solvers for structured
relational learning using Support Vector Machines. This is
unrelated to our approach of harnessing the power of SMT
solvers for probabilistic inference via model counting.

4 Word-level Hash Function

The performance of hashing-based techniques for approx-
imate model counting depends crucially on the underly-
ing family of hash functions used to partition the solution
space. A popular family of hash functions used in propo-
sitional model counting is Hxor, defined as the family of
functions obtained by XOR-ing a random subset of propo-
sitional variables, and equating the result to either 0 or 1,
chosen randomly. The family Hxor enjoys important prop-
erties like 2-independence and easy implementability, which
make it ideal for use in practical model counters for propo-
sitional formulas (Gomes, Sabharwal, and Selman 2007;

Ermon et al. 2013; Chakraborty, Meel, and Vardi 2013). Un-
fortunately, word-level universal hash families that are 2-
independent, easily implementable and amenable to word-
level reasoning by SMT solvers, have not been studied thus
far. In this section, we present HSMT , a family of word-level
hash functions that fills this gap.

As discussed earlier, let sup(F ) = {x0, . . . xn−1}, where
each xi is a word of width k. We use X to denote the n-
dimensional vector (x0, . . . xn−1). The space of all assign-
ments to words in X is {0, 1}n.k. Let p be a prime number
such that 2k ≤ p < 2n.k. Consider a family H of hash func-
tions mapping {0, 1}n.k to Zp, where each hash function is
of the form h(X) = (

∑n−1
j=0 aj ∗ xj + b) mod p, and the

aj’s and b are elements of Zp, represented as words of width
�log2 p	. Observe that every h ∈ H partitions {0, 1}n.k into
p bins (or cells). Moreover, for every ξ ∈ {0, 1}n.k and
α ∈ Zp, Pr

[
h(ξ) = α : h

R←− H
]
= p−1. For a hash func-

tion chosen uniformly at random from H, the expected num-
ber of elements per cell is 2n.k/p. Since p < 2n.k, every cell
has at least 1 element in expectation. Since 2k ≤ p, for ev-
ery word xi of width k, we also have xi mod p = xi. Thus,
distinct words are not aliased (or made to behave similarly)
because of modular arithmetic in the hash function.

Suppose now we wish to partition {0.1}n.k into pc cells,
where c > 1 and pc < 2n.k. To achieve this, we need to
define hash functions that map elements in {0, 1}n.k to a
tuple in (Zp)

c. A simple way to achieve this is to take a c-
tuple of hash functions, each of which maps {0, 1}n.k to Zp.
Therefore, the desired family of hash functions is simply the
iterated Cartesian product H × · · · × H, where the product
is taken c times. Note that every hash function in this family
is a c-tuple of hash functions. For a hash function chosen
uniformly at random from this family, the expected number
of elements per cell is 2n.k/pc.

An important consideration in hashing-based techniques
for approximate model counting is the choice of a hash func-
tion that yields cells that are neither too large nor too small
in their expected sizes. Since increasing c by 1 reduces the
expected size of each cell by a factor of p, it may be difficult
to satisfy the above requirement if the value of p is large. At
the same time, it is desirable to have p > 2k to prevent alias-
ing of two distinct words of width k. This motivates us to
consider more general classes of word-level hash functions,
in which each word xi can be split into thinner slices, effec-
tively reducing the width k of words, and allowing us to use
smaller values of p. We describe this in more detail below.

Assume for the sake of simplicity that k is a power of 2,
and let q be log2 k. For every j ∈ {0, . . . q−1} and for every
xi ∈ X, define xi

(j) to be the 2j-dimensional vector of
slices of the word xi, where each slice is of width k/2j . For
example, the two slices in x1

(1) are extract(x1, 0, k/2− 1)
and extract(x1, k/2, k − 1). Let X(j) denote the n.2j-
dimensional vector (x0

(j),x1
(j), . . .xn−1

(j)). It is
easy to see that the mth component of X(j), denoted
X

(j)
m , is extract(xi, s, t), where i = 
m/2j�, s = (m

mod 2j) · (k/2j) and t = s + (k/2j) − 1. Let pj de-
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note the smallest prime larger than or equal to 2(k/2
j).

Note that this implies pj+1 ≤ pj for all j ≥ 0. In
order to obtain a family of hash functions that maps
{0, 1}n.k to Zpj

, we split each word xi into slices
of width k/2j , treat these slices as words of reduced
width, and use a technique similar to the one used above
to map {0, 1}n.k to Zp. Specifically, the family H(j) ={
h(j) : h(j)(X) =

(∑n.2j−1
m=0 a

(j)
m ∗X(j)

m + b(j)
)

mod pj

}
maps {0, 1}n.k to Zpj , where the values of a(j)m and b(j) are
chosen from Zpj , and represented as �log2 pj	-bit words.

In general, we may wish to define a family of hash
functions that maps {0, 1}n.k to D, where D is given by
(Zp0

)
c0 × (Zp1

)
c1 × · · · (Zpq−1

)cq−1 and
∏q−1

j=0 p
cj
j < 2n.k.

To achieve this, we first consider the iterated Cartesian prod-
uct of H(j) with itself cj times, and denote it by

(H(j)
)cj ,

for every j ∈ {0, . . . q − 1}. Finally, the desired family of
hash functions is obtained as

∏q−1
j=0

(H(j)
)cj . Observe that

every hash function h in this family is a
(∑q−1

l=0 cl

)
-tuple

of hash functions. Specifically, the rth component of h, for
r ≤

(∑q−1
l=0 cl

)
, is given by

(∑n.2j−1
m=0 a

(j)
m ∗X(j)

m + b(j)
)

mod pj , where
(∑j−1

i=0 ci

)
< r ≤

(∑j
i=0 ci

)
, and the

a
(j)
m s and b(j) are elements of Zpj

.
The case when k is not a power of 2 is handled by

splitting the words xi into slices of size �k/2	, �k/22	
and so on. Note that the family of hash functions de-
fined above depends only on n, k and the vector C =
(c0, c1, . . . cq−1), where q = �log2 k	. Hence, we call this
family HSMT (n, k, C). Note also that by setting ci to 0 for
all i �= 
log2(k/2)�, and ci to r for i = 
log2(k/2)� reduces
HSMT to the family Hxor of XOR-based bit-wise hash
functions mapping {0, 1}n.k to {0, 1}r. Therefore, HSMT

strictly generalizes Hxor.
We summarize below important properties of

the HSMT (n, k, C) class. All proofs are available
in (Chakraborty et al. 2015).

Lemma 1. For every X ∈ {0, 1}n.k and every α ∈ D,

Pr[h(X) = α | h R←− HSMT (n, k, C)] =
∏|C|−1

j=0 pj
−cj

Theorem 1. For every α1, α2 ∈ D and every distinct
X1,X2 ∈ {0, 1}n.k, Pr[(h(X1) = α1 ∧ h(X2) = α2) |
h

R←− HSMT (n, k, C)] =
∏|C|−1

j=0 (pj)
−2.cj . Therefore,

HSMT (n, k, C) is pairwise independent.

Gaussian Elimination The practical success of XOR-
based bit-level hashing techniques for propositional model
counting owes a lot to solvers like CryptoMiniSAT (Soos,
Nohl, and Castelluccia 2009) that use Gaussian Elimination
to efficiently reason about XOR constraints. It is significant
that the constraints arising from HSMT are linear modu-
lar equalities that also lend themselves to efficient Gaussian
Elimination. We believe that integration of Gaussian Elimi-
nation engines in SMT solvers will significantly improve the
performance of hashing-based word-level model counters.

5 Algorithm

We now present SMTApproxMC, a word-level
hashing-based approximate model counting algorithm.
SMTApproxMC takes as inputs a formula F in the theory
of fixed-width words, a tolerance ε (> 0), and a confidence
1−δ ∈ (0, 1]. It returns an estimate of |RF | within the toler-
ance ε, with confidence 1− δ. The formula F is assumed to
have n variables, each of width k, in its support. The central
idea of SMTApproxMC is to randomly partition the solution
space of F into “small” cells of roughly the same size, using
word-level hash functions from HSMT (n, k, C), where C
is incrementally computed. The check for “small”-ness of
cells is done using a word-level SMT solver. The use of
word-level hash functions and a word-level SMT solver
allows us to directly harness the power of SMT solving in
model counting.

The pseudocode for SMTApproxMC is presented in Al-
gorithm 1. Lines 1– 3 initialize the different parame-
ters. Specifically, pivot determines the maximum size of a
“small” cell as a function of ε, and t determines the number
of times SMTApproxMCCore must be invoked, as a function
of δ. The value of t is determined by technical arguments in
the proofs of our theoretical guarantees, and is not based on
experimental observations Algorithm SMTApproxMCCore
lies at the heart of SMTApproxMC. Each invocation of
SMTApproxMCCore either returns an approximate model
count of F , or ⊥ (indicating a failure). In the former case,
we collect the returned value, m, in a list M in line 8. Fi-
nally, we compute the median of the approximate counts in
M , and return this as FinalCount.

Algorithm 1 SMTApproxMC(F, ε, δ, k)

1: counter ← 0;M ← emptyList;

2: pivot ← 2× �e3/2 (1 + 1
ε

)2	;
3: t ← �35 log2(3/δ)	;
4: repeat
5: m ← SMTApproxMCCore(F, pivot, k);
6: counter ← counter + 1;
7: if m �= ⊥ then
8: AddToList(M,m);
9: until (counter < t)

10: FinalCount ← FindMedian(M);
11: return FinalCount;

The pseudocode for SMTApproxMCCore is shown in Al-
gorithm 2. This algorithm takes as inputs a word-level SMT
formula F , a threshold pivot, and the width k of words in
sup(F ). We assume access to a subroutine BoundedSMT
that accepts a word-level SMT formula ϕ and a threshold
pivot as inputs, and returns pivot + 1 solutions of ϕ if
|Rϕ| > pivot; otherwise it returns Rϕ. In lines 1– 2 of
Algorithm 2, we return the exact count if |RF | ≤ pivot.
Otherwise, we initialize C by setting C[0] to 0 and C[1] to
1, where C[i] in the pseudocode refers to ci in the previ-
ous section’s discussion. This choice of initialization is mo-
tivated by our experimental observations. We also count the
number of cells generated by an arbitrary hash function from
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Algorithm 2 SMTApproxMCCore(F, pivot, k)

1: Y ← BoundedSMT(F, pivot);
2: if |Y | ≤ pivot) then return |Y |;
3: else
4: C ← emptyVector; C[0] ← 0; C[1] ← 1;
5: i ← 1; numCells ← p1;
6: repeat
7: Choose h at random from HSMT (n, k, C);
8: Choose α at random from

∏i
j=0

(
Zpj

)C[j]
;

9: Y ← BoundedSMT(F ∧ (h(X) = α), pivot);
10: if (|Y | > pivot) then
11: C[i] ← C[i] + 1;
12: numCells ← numCells × pi;
13: if (|Y | = 0) then
14: if pi > 2 then
15: C[i] ← C[i]− 1;
16: i ← i+ 1; C[i] ← 1;
17: numCells ← numCells × (pi+1/pi);
18: else
19: break;
20: until ((0 < |Y | ≤ pivot) or (numCells > 2n.k))
21: if ((|Y | > pivot) or (|Y | = 0)) then return ⊥;
22: else return |Y | × numCells;

HSMT (n, k, C) in numCells. The loop in lines 6–20 itera-
tively partitions RF into cells using randomly chosen hash
functions from HSMT (n, k, C). The value of i in each iter-
ation indicates the extent to which words in the support of F
are sliced when defining hash functions in HSMT (n, k, C)
– specifically, slices that are �k/2i	-bits or more wide are
used. The iterative partitioning of RF continues until a ran-
domly chosen cell is found to be “small” (i.e. has ≥ 1 and
≤ pivot solutions), or the number of cells exceeds 2n.k, ren-
dering further partitioning meaningless. The random choice
of h and α in lines 7 and 8 ensures that we pick a random
cell. The call to BoundedSMT returns at most pivot+1 solu-
tions of F within the chosen cell in the set Y . If |Y | > pivot,
the cell is deemed to be large, and the algorithm partitions
each cell further into pi parts. This is done by increment-
ing C[i] in line 11, so that the hash function chosen from
HSMT (n, k, C) in the next iteration of the loop generates pi
times more cells than in the current iteration. On the other
hand, if Y is empty and pi > 2, the cells are too small (and
too many), and the algorithm reduces the number of cells by
a factor of pi+1/pi (recall pi+1 ≤ pi) by setting the values of
C[i] and C[i+1] accordingly (see lines15 –17). If Y is non-
empty and has no more than pivot solutions, the cells are of
the right size, and we return the estimate |Y | × numCells.
In all other cases, SMTApproxMCCore fails and returns ⊥.

Similar to the analysis of ApproxMC (Chakraborty,
Meel, and Vardi 2013), the current theoretical analysis of
SMTApproxMC assumes that for some C during the execu-
tion of SMTApproxMCCore, log |RF | − log(numCells) −
1 = log(pivot). We leave analysis of SMTApproxMC
without above assumption to future work. The follow-
ing theorems concern the correctness and performance of

SMTApproxMC.

Theorem 2. Suppose an invocation of
SMTApproxMC(F, ε, δ, k) returns FinalCount. Then
Pr

[
(1 + ε)−1|RF | ≤ FinalCount ≤ (1 + ε)|RF |

] ≥ 1−δ

Theorem 3. SMTApproxMC(F, ε, δ, k) runs in time poly-
nomial in |F |, 1/ε and log2(1/δ) relative to an NP-oracle.

The proofs of Theorem 2 and 3 can be found
in (Chakraborty et al. 2015).

6 Experimental Methodology and Results

To evaluate the performance and effectiveness of
SMTApproxMC, we built a prototype implementation
and conducted extensive experiments. Our suite of bench-
marks consisted of more than 150 problems arising from
diverse domains such as reasoning about circuits, planning,
program synthesis and the like. For lack of space, we
present results for only for a subset of the benchmarks.

For purposes of comparison, we also implemented a state-
of-the-art bit-level hashing-based approximate model count-
ing algorithm for bounded integers, proposed by (Chistikov,
Dimitrova, and Majumdar 2015). Henceforth, we refer to
this algorithm as CDM, after the authors’ initials. Both
model counters used an overall timeout of 12 hours per
benchmark, and a BoundedSMT timeout of 2400 seconds
per call. Both used Boolector, a state-of-the-art SMT solver
for fixed-width words (Brummayer and Biere 2009). Note
that Boolector (and other popular SMT solvers for fixed-
width words) does not yet implement Gaussian elimination
for linear modular equalities; hence our experiments did not
enjoy the benefits of Gaussian elimination. We employed
the Mersenne Twister to generate pseudo-random numbers,
and each thread was seeded independently using the Python
random library. All experiments used ε = 0.8 and δ = 0.2.
Similar to ApproxMC, we determined value of t based on
tighter analysis offered by proofs. For detailed discussion,
we refer the reader to Section 6 in (Chakraborty, Meel, and
Vardi 2013). Every experiment was conducted on a single
core of high-performance computer cluster, where each node
had a 20-core, 2.20 GHz Intel Xeon processor, with 3.2GB
of main memory per core.

We sought answers to the following questions from our
experimental evaluation:

1. How does the performance of SMTApproxMC compare
with that of a bit-level hashing-based counter like CDM?

2. How do the approximate counts returned by
SMTApproxMC compare with exact counts?

Our experiments show that SMTApproxMC significantly
outperforms CDM for a large class of benchmarks. Further-
more, the counts returned by SMTApproxMC are highly ac-
curate and the observed geometric tolerance(εobs) = 0.04.

Performance Comparison Table 1 presents the result of
comparing the performance of SMTApproxMC vis-a-vis
CDM on a subset of our benchmarks. In Table 1, column
1 gives the benchmark identifier, column 2 gives the sum
of widths of all variables, column 3 lists the number of
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Benchmark Total Bits Variable Types # of Operations
SMTApproxMC

time(s)
CDM

time(s)
squaring27 59 {1: 11, 16: 3} 10 – 2998.97
squaring51 40 {1: 32, 4: 2} 7 3285.52 607.22
1160877 32 {8: 2, 16: 1} 8 2.57 44.01
1160530 32 {8: 2, 16: 1} 12 2.01 43.28
1159005 64 {8: 4, 32: 1} 213 28.88 105.6
1160300 64 {8: 4, 32: 1} 1183 44.02 71.16
1159391 64 {8: 4, 32: 1} 681 57.03 91.62
1159520 64 {8: 4, 32: 1} 1388 114.53 155.09
1159708 64 {8: 4, 32: 1} 12 14793.93 –
1159472 64 {8: 4, 32: 1} 8 16308.82 –
1159115 64 {8: 4, 32: 1} 12 23984.55 –
1159431 64 {8: 4, 32: 1} 12 36406.4 –
1160191 64 {8: 4, 32: 1} 12 40166.1 –

Table 1: Runtime performance of SMTApproxMC vis-a-vis CDM for a subset of benchmarks.

variables (numVars) for each corresponding width (w) in
the format {w : numVars}. To indicate the complexity of
the input formula, we present the number of operations in
the original SMT formula in column 4. The runtimes for
SMTApproxMC and CDM are presented in columns 5 and
column 6 respectively. We use “–” to denote timeout af-
ter 12 hours. Table 1 clearly shows that SMTApproxMC
significantly outperforms CDM (often by 2-10 times) for
a large class of benchmarks. In particular, we observe that
SMTApproxMC is able to compute counts for several cases
where CDM times out.

Benchmarks in our suite exhibit significant heterogeneity
in the widths of words, and also in the kinds of word-level
operations used. Propositionalizing all word-level variables
eagerly, as is done in CDM, prevents the SMT solver from
making full use of word-level reasoning. In contrast, our ap-
proach allows the power of word-level reasoning to be har-
nessed if the original formula F and the hash functions are
such that the SMT solver can reason about them without
bit-blasting. This can lead to significant performance im-
provements, as seen in Table 1. Some benchmarks, however,
have heterogenous bit-widths and heavy usage of operators
like extract(x, n1, n2) and/or word-level multiplication. It is
known that word-level reasoning in modern SMT solvers is
not very effective for such cases, and the solver has to resort
to bit-blasting. Therefore, using word-level hash functions
does not help in such cases. We believe this contributes to the
degraded performance of SMTApproxMC vis-a-vis CDM in
a subset of our benchmarks. This also points to an interesting
direction of future research: to find the right hash function
for a benchmark by utilizing SMT solver’s architecture.

Quality of Approximation To measure the quality of the
counts returned by SMTApproxMC, we selected a subset of
benchmarks that were small enough to be bit-blasted and
fed to sharpSAT (Thurley 2006) – a state-of-the-art exact
model counter. Figure 1 compares the model counts com-
puted by SMTApproxMC with the bounds obtained by scal-
ing the exact counts (from sharpSAT) with the tolerance
factor (ε = 0.8). The y-axis represents model counts on
log-scale while the x-axis presents benchmarks ordered in
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Figure 1: Quality of counts computed by SMTApproxMC
vis-a-vis exact counts

ascending order of model counts. We observe that for all
the benchmarks, SMTApproxMC computes counts within
the tolerance. Furthermore, for each instance, we computed
observed tolerance ( εobs) as count

|RF | −1, if count ≥ |RF |, and
|RF |
count − 1 otherwise, where |RF | is computed by sharpSAT
and count is computed by SMTApproxMC. We observe that
the geometric mean of εobs across all the benchmarks is only
0.04 – far less (i.e. closer to the exact count) than the theo-
retical guarantee of 0.8.

7 Conclusions and Future Work

Hashing-based model counting has emerged as a promising
approach for probabilistic inference on graphical models.
While real-world examples naturally have word-level con-
straints, state-of-the-art approximate model counters effec-
tively reduce the problem to propositional model counting
due to lack of non-bit-level hash functions. In this work, we
presented, HSMT , a word-level hash function and used it
to build SMTApproxMC, an approximate word-level model
counter. Our experiments show that SMTApproxMC can sig-
nificantly outperform techniques based on bit-level hashing.

Our study also presents interesting directions for future
work. For example, adapting SMTApproxMC to be aware
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of SMT solving strategies, and augmenting SMT solving
strategies to efficiently reason about hash functions used in
counting, are exciting directions of future work.

Our work goes beyond serving as a replacement for other
approximate counting techniques. SMTApproxMC can also
be viewed as an efficient building block for more sophis-
ticated inference algorithms (de Salvo Braz et al. 2015).
The development of SMT solvers has so far been primarily
driven by the verification and static analysis communities.
Our work hints that probabilistic inference could well be an-
other driver for SMT solver technology development.
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