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Abstract

Bounding the tree-width of a Bayesian network can reduce
the chance of overfitting, and allows exact inference to be
performed efficiently. Several existing algorithms tackle the
problem of learning bounded tree-width Bayesian networks
by learning from k-trees as super-structures, but they do not
scale to large domains and/or large tree-width. We propose
a guided search algorithm to find k-trees with maximum In-
formative scores, which is a measure of quality for the k-tree
in yielding good Bayesian networks. The algorithm achieves
close to optimal performance compared to exact solutions in
small domains, and can discover better networks than exist-
ing approximate methods can in large domains. It also pro-
vides an optimal elimination order of variables that guaran-
tees small complexity for later runs of exact inference. Com-
parisons with well-known approaches in terms of learning
and inference accuracy illustrate its capabilities.

Introduction

Bayesian networks (BNs) compactly represent the joint
probability distribution for a multivariate domain by using
a directed acyclic graph (DAG) to encode conditional inde-
pendences. Learning the graph (a.k.a. structure) of a BN is
a very challenging task. With the goal of decision making
or probabilistic explanation, it is desirable to learn models
that generalize well and at the same time have low inferen-
tial complexity. One attempt that has received growing at-
tention recently is to learn a BN with bounded tree-width.
By imposing a hard constraint on the tree-width of a BN,
selecting overly complicated structures of dependences is
avoided, thereby the chance of overfitting is reduced. This
has been supported by empirical results (Elidan and Gould
2008). Moreover, a BN with small tree-width allows exact
inferences to be performed efficiently (Kwisthout, Bodlaen-
der, and van der Gaag 2010). This paper presents a new ap-
proach for score-based Bayesian network structure learning
with a hard constraint on the tree-width of the yielded net-
work. We show that such approach outperforms the state of
the art, and can be applied to numerous problems. We em-
ploy it on the UAI’2014 Inference Competition and achieve
promising results.
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Even though research on BN structure learning has been
very active (Barlett and Cussens 2013; Cussens et al. 2013;
de Campos and Ji 2011; Hemmecke, Lindner, and Studený
2012; Jaakkola et al. 2010; Yuan and Malone 2013), few
algorithms have been designed for learning with bounded
tree-width. Elidan and Gould (2008) designed an approxi-
mate algorithm by combining several heuristics to compute
the tree-width and to learn the structure of BNs. Very re-
cently, this topic has attracted great attention. Korhonen and
Parviainen (2013) proposed a dynamic programming algo-
rithm for learning n-node BNs of tree-width at most k with
time complexity O(3nnk+O(1)). In practice, such approach
is quite slow for networks with more than 15 nodes or for
tree-width bound greater than 3. Parviainen, Farahani, and
Lagergren (2014) employed an integer programming ap-
proach to solve the problem. To avoid exponentially many
constraints in the number of variables, it iteratively creates
a cutting plane on the current incumbent solution. Berg,
Järvisalo, and Malone (2014) translated the problem into a
weighted maximum satisfiability problem and solved it by
weighted MAX-SAT solvers. These algorithms work only
with networks of at most 30 variables. Nie et al. (2014) pro-
posed two algorithms, one based on integer programming
that focuses on finding the exact solution for small domains
and one based on sampling k-trees with the goal of address-
ing large domains. One shortcoming of the latter approach is
that the sampling space for k-trees is huge and can be barely
explored by the sampling technique in a reasonable amount
of time.

We develop an approximate algorithm that is able to deal
with domains with more than 100 variables (well beyond
current methods) and still produce reasonably accurate re-
sults. We achieve significant improvements on large do-
mains while maintaining close to optimal performance on
small ones. The strategy we employ is to search for promis-
ing k-trees, which are the maximal undirected graphs of
tree-width k, and then discover the optimal BN whose moral
graph is a subgraph of it. By taking advantage of some un-
derlying ideas behind the procedure to construct a k-tree, a
search algorithm with pruning is introduced to find the k-
tree from a root clique with maximum Informative Score
(Nie, de Campos, and Ji 2015), which is a heuristic mea-
sure for a k-tree about the quality of the BNs that are “con-
tained” in it. Therefore, we avoid the high complexity of an
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exact method (Korhonen and Parviainen 2013) and reduce
the need of so many samples over this huge space of k-trees
(Nie et al. 2014), as we target quality of k-trees instead of
quantity. We will show that performance can be improved
significantly in both accuracy and efficiency by the new ap-
proach.

Preliminaries
Let X = {Xi}ni=1 be categorical random variables. The
structure of a Bayesian network G= (V,E) contains ver-
tices V corresponding to variables X and edges E repre-
senting direct dependencies between variables. Denote Xpai

as the parent set of variable Xi, i ∈ N = {1, 2, . . . , n}.
Conditional probability tables P (Xi|Xpai

) are given ac-
cordingly. A Bayesian network defines a joint probability
distribution over X by the expression: P (X1, . . . , Xn) =∏n

i=1 P (Xi|Xpai
). The structure learning task of a BN is to

identify the best DAG from data. In this paper we consider
the score-based structure learning problem, in which a score
s(G) is assigned to each DAG G.

The commonly used score functions, such as BIC
(Schwarz 1978) and BDeu (Buntine 1991; Cooper and Her-
skovits 1992; Heckerman, Geiger, and Chickering 1995),
are decomposable, that is, the overall score can be writ-
ten as the summation of local score functions, s(G) =∑

i∈N si(Xpai
). For each variable, its score is a function

only of its parent set. We assume that local scores have been
computed and pruned in advance (de Campos and Ji 2010;
2011) and can be retrieved in constant time. Typical scores
try to maximize data log-likelihood while applying a penalty
or regularization to avoid overfitting. However, this regular-
ization avoids only local overfitting (naturally constraining
the number of parents of a node), but even a graph with small
in-degree can be complex in the inference stage due to a pos-
sibly large tree-width, which is not captured by usual scores.

In graph theory, the width of a tree decomposition of a
undirected graph is the size of its largest clique minus one.
The tree-width of an undirected graph is the minimum width
among all possible tree decompositions of the graph. Define
tree-width tw(G) of a DAG G as the tree-width of its moral
graph, which is obtained by connecting nodes with common
child, and by making all edges undirected. It has been proven
that the complexity of exact inference on BNs is related to its
tree-width exponentially (Murphy. 2012). It is necessary to
learn graphs with bounded tree-width to achieve inferential
efficiency (Kwisthout, Bodlaender, and van der Gaag 2010).
However even the sole computation of the tree-width of a
graph is intractable (Arnborg, Corneil, and Proskurowski
1987). One way of imposing the tree-width constraint is us-
ing the so-called k-trees.
Definition 1. The family of k-trees is defined inductively as
follows.

1. A (k+1)-clique is a k-tree.
2. If G= (V,E) is a k-tree and C ⊆ V is a k-clique,
then the graph obtained by adding a new vertex v and
an edge u−v for each u ∈ C is a k-tree.

A k-clique is a set of k nodes in which every two nodes
are connected to each other. k-trees are the maximal graphs

with tree-width k, which means no more edges can be added
to them without increasing the tree-width (see (Patil. 1986)
for details). Therefore, every graph with tree-width at most
k is a subgraph of a k-tree. Learning a BN whose moral
graph is a subgraph of a k-tree automatically satisfies the
tree-width constraint for the learned network (and every BN
of tree-width k has its moral graph as a subgraph of a k-tree).

We denote by Tn,k the set of all k-trees over n nodes.
One could search directly on this space (Nie et al. 2014), but
the total number k-trees is in the order of en log(nk), which is
extremely large for any network with more than a few tens of
nodes. Therefore, the number of k-trees explored in a given
limit of time is too small and there is no guarantee about
their quality to produce good BNs.

Guided Search for k-trees

Due to the complexity of exactly learning a BN from a k-tree
(which is linear in n but factorial in k) and the huge space
of k-trees, one cannot expect to exploit too many k-trees. To
avoid learning from every k-tree without distinction, Nie, de
Campos, and Ji (2015) proposed the so called Informative
Score (or I-score) function to evaluate how well a k-tree fits
the data. The I-score of a k-tree Tk can be roughly defined as
I(Tk) =

∑
eij∈Tk

Iij , where eij denotes the edge connect-
ing node i and j, and Iij is the empirical mutual information
of variables i and j. Since mutual information is equivalent
to the likelihood score (Koller and Friedman 2009), a high I-
score for a k-tree will suggest that the best BN whose moral
graph is a subgraph of the k-tree will have a high score itself.
Computing I(Tk) requires only mutual information of pairs
of nodes with complexity at most O(n2) over all multiple
runs of the algorithm (as the mutual information values can
be stored for later usage). The goodness of the I-score is dis-
cussed in (Nie, de Campos, and Ji 2015). We perform some
empirical study ourselves to confirm such hypothesis1.

Now we introduce the formulation of the search algorithm
for good k-trees. The goal is to find a k-tree with the highest
I-score. We formulate this problem into a shortest path find-
ing problem. According to Definition 1, let a state (of this
path search space) containing the initial (k+1)-clique be the
initial state and that with all variables be the goal state. The
nodes and edges are added one by one into the existing graph
until the goal state is reached. Define the cost of any given
graph as its negative I-score. So moving from a state to an-
other has the cost of all nodes/edges that are introduced for
such state change. Therefore, the objective is to find a path
from the initial state to the goal state with the lowest cost.

Different from typical path-finding problems, each time
we add a variable to the existing graph we need also to
choose a k-clique in the current graph, which will be the one
connected to the new variable (this is the recursive procedure
to build k-trees in Definition 1). Therefore, in each step, we
choose a successor variable as well as a k-clique in the cur-
rent graph to represent a change in the state of our search.
The proposed algorithm is a modification of the A* search
algorithm, which has been used for BN structure learning

1http://homepages.rpi.edu/∼nies/nie2016aaai supp.pdf
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(Yuan, Malone, and Wu 2011). In this work A* search is
applied over a tree.

Let Cj denote a clique of size k. The initial state has the
form of U1 = [(Xj1, C1)] if we represent the (k+1)-clique
into a pair containing an arbitrary node Xj1 in the (k+1)-
clique and the remaining k-clique. The ith state has the form
Ui = [(Xj1, C1); (Xj2, C2); . . . ; (Xji, Ci)], 1 ≤ i ≤ n .

where Ci is a clique selected from the node set
{C1, Xj1, Xj2, . . . , Xj,i−1}. The goal state Un contains n
pairs of X and C. Note that each state defines a graph.

To tackle this path-finding problem, we employ a simple
breadth-first search with pruning, which uses a knowledge-
plus-heuristic cost function to determine the order in which
the search visits the states. The cost function f(U) for node
U is a sum of two functions f(U) = g(U) + h(U): (1) The
past path-cost function g(U) for the current graph G, which
is the cost from the initial state to the current state U . (2)
A future path-cost function h(U) to estimate the cost from
current state U to the goal state.

The algorithm uses an open list to store the search frontier,
and a closed list to store the explored nodes. In each step, the
state with the smallest f cost from the open list is selected
as the successor state, until the goal state is reached.

The definition of the g function is straightforward:

g(U) := −I(G) =
∑

eij∈G

−Iij ,

which is the negative I-score for the current structure G. The
algorithm requires the h function to be admissible. The func-
tion h is called admissible if the estimated cost will never be
greater than the true cost to the goal state. Consider the fol-
lowing heuristic function,

h(U) := −
∑

Xi∈V \U

∑
j∈Vik

Iij ,

where the set Vik, |Vik| = k is defined as the set of vari-
ables that has the largest k mutual information values with
variable Xi, and V \U denotes the set of all unexplored vari-
ables. The h function is the summation of the k largest (neg-
ative) mutual information values associated with all the un-
explored variables.
Theorem 1. h is admissible.

Proof. For each unexplored variable Xu, the heuristic
function h includes the largest k mutual information values
associated with Xu. If the optimal k-tree is built, the mutual
information corresponding to the edges connecting Xu can-
not exceed the largest k numbers. Since the value of mutual
information is nonnegative, h is a lower bound to the true
cost, and thus admissible. �

The h function has another property called consistent. A
heuristic function h is consistent if for any state U and its
successor W , h(U)≤h(W )+c(U,W ), where c(U,W ) is the
cost of the edges added in W . If the heuristic function h is
consistent, the f function is monotonically non-decreasing
on any path, and then the algorithm is guaranteed to find the
optimal path as long as the goal state is reached. The con-
sistent heuristic function allows to discard any duplicated
entries in the closed set and makes the search more efficient.

Theorem 2. h is consistent.

Proof. Assume node Xs is added into the graph when
the path travels from state U to W . Then h(U)−h(W ) =
−
∑

Xi∈Vsk
Iis, which is the largest k mutual information

values associated with variable Xs. This is obviously less
than or equal to c(U,W ), which includes mutual informa-
tion values associated with (arbitrary) k edges. Thus h(U)≤
h(W )+c(U,W ) and h is consistent. �

With an admissible and consistent h function, each move
the search algorithm makes is optimal, until the goal state is
reached. Given the g and the h functions, the algorithm for
k-trees is summarized in Algorithm 1.

Algorithm 1 Find the optimal k-tree given an initial (k+1)-
clique.

Input Mutual information Iij , initial (k+1)-clique R;
Output a k-tree with highest I-score.

1: openset = {R}
2: closedset = empty
3: while openset is not empty, do
4: Let U∗ be the state in openset with lowest f score.

X∗
i is the successor variable and C is the k-clique in

the current graph to be connected to X∗
i .

5: if all variables are included, then
6: Return the structure.
7: end if
8: Remove all the states containing X∗

i from openset,
add them to closedset.

9: for each possible successor variable Xi, do
10: for each k-clique C in the current graph, do
11: Add {Xi, C} to openset.
12: end for
13: end for
14: end while

Given a k-tree, we can employ either an exact method
(Korhonen and Parviainen 2013) or an approximate method
(Nie et al. 2014) to learn a BN whose moral graph is a sub-
graph of the k-tree and maximizes the score function. We
present Algorithm 2 for learning BNs of tree-width at most
k. Algorithm 2 is an anytime algorithm with a time limit and
iteration limit. When the limit is reached, the currently best
solution is returned.

There are three steps in Algorithm 2: 1) Identify an initial
clique; 2) Find the optimal k-tree from the clique; 3) Find
a BN corresponding to the k-tree. Step 2 and 3 both have
theoretical guarantees. The only uncertainty is in step 1. To
minimize the effect of the randomness, the initial clique is
selected as the k+1 variables with the largest I-score, similar
to (Chow and Liu 1968), which selects an edge with largest
mutual information as initialization. Given a time limit, it is
also applicable to randomly sample a clique from all pos-
sible ones besides the clique with the highest I-score. For
a network with n variables, the total number of possible
(k+1)-cliques is |Ck+1| =

(
n

k+1

)
. Compared to the number

of all possible k-trees, |Tn,k| =
(
n
k

)
(k(n− k) + 1)

n−k−2,
the sample space is significantly reduced. Moreover, since
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Algorithm 2 Learning a Bayesian network structure of
bounded tree-width.
Input score function si, ∀i ∈ N , mutual information

Iij , ∀i, j ∈ N ;
Output a DAG G∗.

1: Initialize G∗
i as an empty set for all i ∈ N ;

2: while time or iteration limit is not reached, do
3: Identify an initial (k+1)-clique;
4: Find the optimal k-tree Tk from the initial clique us-

ing Algorithm 1;
5: Find a DAG G that maximizes the score function and

is consistent with Tk;
6: if

∑
i∈N si(Gi) >

∑
i∈N si(G

∗
i ) then

7: Update G∗
i , ∀i ∈ N .

8: end if
9: end while

a clique covering a great amount of mutual information is
likely to be contained in different k-trees, the initial clique
does not have much impact on the k-trees found by the al-
gorithm. This is also empirically confirmed. The worst case
in Step 2 occurs when every k nodes in the existing graph
can form a clique, therefore the worst case complexity is∑n−1

m=k+1

(
m
k

)
(n−m).

Algorithm 2 automatically provides an optimal elimina-
tion ordering with induced width k, which is the size of the
largest clique in the tree decomposition minus one. By con-
verting the k-tree into a clique tree, we just need to eliminate
the nodes from the leaves until the root. A node is eliminated
when it does not appear in the parent (parent meaning the
next clique in the direction of the root clique). This can be
used later by inference methods on the learned network, as
we will evaluate later on.

Experiments

Bayesian Network Scores

We start the experiments by comparing the BDeu scores of
structures learned by the proposed method against scores
from the state-of-the-art approaches. We use a collection
of data sets from the UCI repository (Bache and Lichman
2013) of varying dimensionalities2. The numbers of samples
vary from 100 to 20,000. Non-binary variables are binarized
over the median value. In all experiments, we maximize the
Bayesian Dirichlet equivalent uniform (BDeu) score with
equivalent sample size equal to one (Heckerman, Geiger,
and Chickering 1995).

As state-of-the-art methods, we compare the proposed
method against five existing methods, namely the K&P algo-
rithm3 (Korhonen and Parviainen 2013) (results are omitted
as they are always inferior to MILP in our experiments), the
MILP algorithm (Nie et al. 2014), the TWILP algorithm4

2Details about the datasets, http://homepages.rpi.edu/∼nies/
nie2016aaai supp.pdf

3http://www.cs.helsinki.fi/u/jazkorho/aistats-2013/
4https://bitbucket.org/twilp/twilp/

(Parviainen, Farahani, and Lagergren. 2014), the S2 algo-
rithm (Nie et al. 2014) and the GOBNILP algorithm5 (Bar-
lett and Cussens 2013). Note that the GOBNILP algorithm is
an exact algorithm based on integer programming that does
not impose any constraint on the tree-width, therefore it can
be considered as a baseline to measure how much loss in
score is brought by bounding the tree-width. We denote the
proposed algorithm as K&P+ and S2+, depending on the
method we use to learn a BN from a k-tree (following the
notation in (Nie et al. 2014)). K&P+ learns an optimal BN
from a k-tree exactly using the K&P algorithm, and S2+ uses
a second-stage sampling method to learn a BN from a k-tree
using the S2 algorithm.

The implementation of the proposed algorithm is in Mat-
lab on a desktop with 16GB of memory. It has been given ten
minutes of running time, same that was given to all other ap-
proximate algorithms. The exact methods (MILP and GOB-
NILP) are given three hours of running time. The iteration
limit is set to 100 with different initial cliques. The BDeu
scores achieved by different methods are given in Table 1.
The K&P method can only solve the smallest 4 networks
with the same results as other exact methods. For small data
sets with less than 30 nodes, even though the proposed al-
gorithm is not guaranteed to return the optimal structure as
the exact algorithms are, it can always find a structure that is
very close to optimal in terms of scores. For the letter, mush-
room and wdbc data set, it even found a structure better than
TWILP algorithm. This is because within the time limit, the
exact algorithm was not able to finish and only returned a
currently best solution. Compared to the GOBNILP method
which has no constraint on the tree-width, bounding the tree-
width does not seem to lose too much in accuracy, while at
the same time a small tree-width guarantees low complex-
ity for exact inference (that is, in many cases the achieved
network has similar BDeu to that obtained by GOBNILP
without tree-width constraint but it ensures that later infer-
ences with the network will run efficiently, which is a very
important property for the practical use of the networks).

As for larger data sets, the proposed algorithm is superior
to all competing methods. For the largest two data sets (hill
and community), there are nearly 30% and 10% improve-
ment over the plain S2 algorithm. All the exact methods
failed due to excessive memory consumption. In all the data
sets, S2+ outperformed K&P+, and the gap between these
two methods has become larger as the size of the network
has increased. This also suggests that finding good k-trees is
more important than learning the optimal BN from a given
k-tree.

Inference Accuracy and Complexity

In order to demonstrate that bounding tree-width improves
the inferential complexity significantly, especially for large
complex networks, while maintaining its accuracy, we first
run a synthetic evaluation. We build two synthetic networks
that have very large tree-width, namely rand50 and rand60
with 50 and 60 variables, respectively. Table 2 gives, on the
left-hand side, the details about the two networks. All the

5http://www.cs.york.ac.uk/aig/sw/gobnilp/
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Table 1: Performance of different methods with tree-width limit 4. The median in 10 runs with different seeds is reported. A
symbol – indicates no solution found within the time limit. Best score among approximate methods is in bold.

DATASET VAR. MILP TWILP S+K&P S2 K&P+ S2+ GOBNILP

nursery 9 −7.216·104 −7.216·104 −7.224·104 −7.216·104 −7.220·104 −7.216·104 −7.216·104
breast 10 −2.685·103 −2.685·103 −2.714·103 −2.686·103 −2.689·103 −2.686·103 −2.685·103
housing 14 −3.159·103 −3.205·103 −3.459·103 −3.196·103 −3.290·103 −3.211·103 −3.159·103
adult 15 −2.004·105 −2.007·105 −2.050·105 −2.010·105 −2.018·105 −2.007·105 −2.004·105
zoo 17 −5.624·102 −5.782·102 −6.762·102 −5.826·102 −6.346·102 −5.794·102 −5.615·102
letter 17 −1.843·105 −1.884·105 −1.981·105 −1.879·105 −1.900·105 −1.860·105 −1.840·105
mushroom 22 −5.783·104 −6.381·104 −7.942·104 −6.043·104 −7.337·104 −5.999·104 −5.557·104
wdbc 31 −6.995·103 −7.788·103 −8.907·103 −7.201·103 −7.318·103 −7.143·103 −6.863·103
audio 62 −2.541·103 −2.161·103 −2.458·103 −2.131·103 −2.157·103 −2.126·103 −2.013·103
hill 100 −4.235·104 – −1.412·103 −1.137·103 −9.921·102 −8.784·102 –
community 100 – – −1.129·105 −9.330·104 −8.756·104 −8.384·104 –

nodes are binary. The (conditional) probability distributions
for each node are randomly generated from Beta(0.5,0.5).
10,000 samples are generated from these networks by a sim-
ple ancestral sampling, which we use for learning a new net-
work with tree-width bounded in 3. Training time limit is
set to 10 minutes. With both learned network of small tree-
width and original network of large tree-width, we run the
junction tree algorithm for exact inference. As a measure-
ment of the inferential computational complexity, we use the
total running time of 1,000 computations of marginal proba-
bility distributions, averaged over all variables (by repeating
the experiment multiple times). The inference time is mea-
sured by the ratio of the running time of the learned network
to that of the original network. The results are given in Table
2 (on the right-hand side). The ratios of the inference time on
learned network to that of the original networks are 32.8%
and 4.3%, respectively for rand50 and rand60. While the
inference time complexity is reduced significantly by using
the proposed algorithm, accuracy has been well preserved,
which can be verified by the Hellinger and max-absolute er-
rors (details on their calculations are given in the next sec-
tion). This suggests that such approach could be used as new
approximate inference procedure for BNs, as we investigate
in the continuation.

UAI 2014 Probabilistic Inference Competition

We now evaluate the sampling-learning-exact-inference ap-
proach (that is, we (i) take a network on which we want
to run probabilistic inference, (ii) sample data from it, (iii)
learn a BN of small tree-width, (iv) run exact inference on
the learned network) using several networks from the UAI
2014 Probabilistic Inference Competition6. Given the struc-
ture and parameters of a BN (or a Markov random field),
the task is to compute the marginal probability distribution
of each one of the variables given some evidence (MAR
task). We selected 3 networks from the CSP category, 6 from
DBN and 65 from ObjectDetection (the reason for choosing
such networks was the number of variables going up to 100).
10,000 data samples are collected from each network.

6http://www.hlt.utdallas.edu/∼vgogate/uai14-competition/

Bear in mind that the quality of sampling is not part of the
goal of this paper, so we shall assume that sampling has been
effectively performed without further questions. That said,
for BNs, the samples are generated using a simple and effi-
cient ancestral sampling, in which we go through nodes in a
topological order so parents have always been sampled be-
fore the current node. For Markov random fields, sampling
is a more challenging task. We use a Gibbs sampling ap-
proach with restarts and a large burn-in period. In fact, one
might even question whether it is worth to sample from a
Markov random field to then learn a bounded tree-width BN
instead of using the sampling directly to perform the desired
inference. One advantage of learning a BN is that the same
learned network can be used to perform multiple different
queries with different observations. Moreover, the sampling
from BNs is easy, so this whole scheme is certainly more
appropriate in such cases. In spite of that, our goal is to eval-
uate the goodness of bounded tree-width learning, so we as-
sume the samples to be appropriate.

From the data we have produced, a BN with tree-width
at most 4 is learned using the proposed method. The junc-
tion tree algorithm is then used to perform exact inference,
to which we provide the corresponding optimal elimination
order obtained from the k-tree (Section ).

To be consistent with the procedure during the inference
competition, we employ the following evaluation criteria for
the MAR task: the Hellinger error and the max-absolute er-
ror. The Hellinger error is defined as

Herr =
1

n

n∑
i=1

Hell (P ∗(Xi), P (Xi)) ,

where Hell (P ∗(Xi), P (Xi)) is the Hellinger distance be-
tween the true probability distribution P ∗(Xi) correspond-
ing to the ith variable and the approximate one P (Xi)
from the learned network. For two discrete probability dis-
tributions P = (p1, . . . , pm) and Q = (q1, . . . , qm), their
Hellinger distance is defined as

Hell(P,Q) =
1√
2

√√√√
m∑
j=1

(
√
pj −

√
qj)2 .
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Table 2: On the left-hand side, two synthetic networks used for the evaluation of the inference complexity and accuracy. Fan-in
and fan-out are maximum number of parents and children. Width is the induced tree-width. On the right-hand side, the inference
accuracy and time, which is the ratio of the inference time of learned network to that of the original network.

NET VAR. ARCS FAN-IN FAN-OUT WIDTH Herr Aerr Time

Rand50 50 283 7 22 18 0.0367 0.0017 32.8%
Rand60 60 517 10 41 22 0.0476 0.0023 4.3%

Table 3: The Hellinger and max-absolute errors for the MAR task of test cases in the UAI 2014 inference competition. OB
stands for the category of ObjectDetection. Average error is reported.

Hellinger error Max-absolute error
NET LBP SampleSearch S2+ LBP SampleSearch S2+

DBNave 0.2095 0.0422 0.0572 0.1886 0.0479 0.0541

CSPave 0.0324 0.0031 0.0037 0.0299 0.0020 0.0035

OBave 0.0209 0.0202 0.0134 0.0087 0.0087 0.0057

Average 0.0367 0.0213 0.0165 0.0242 0.0116 0.0095

The max-absolute error is computed as

Aerr =
1

n

n∑
i=1

max
t
|P ∗(Xi = t)− P (Xi = t)| .

The proposed method can be viewed as taking the compli-
cated network, sampling from it, building a simpler network
with small tree-width, and finally using an exact inference
method. As baseline methods, we compare the results with
loopy belief propagation (LBP) and SampleSearch7 (Gogate
and Dechter 2007) with iterative join graph propagation
(IJGP) for approximate inference, both applied to the orig-
inal competition networks. LBP was run until completion,
while the other methods were given two minutes per in-
stance. In our experiment, the junction tree algorithm has an
average running time of 0.2 second per instance, so time was
mostly spent during learning (which is also accounted in the
two minutes). The average errors are given in Table 3. Com-
pared to the approximate inference algorithms, the proposed
method reached comparable accuracy in the MAR task. In
most cases, it outperformed LBP and SampleSearch in terms
of both Hellinger error and max-absolute error. Some ex-
ceptions are in the DBN and CSP categories. One reason
is that these networks assign extreme marginal probabilities
to some nodes. For example, node 2 in DBN 12 network
has ground truth probability of 6.11× 10−6 to take state
1. Our algorithm estimated it as 8.22×10−5 and Sample-
Search estimated it as 6×10−6. Intuitively, they all indicate
this node always takes state 2. Our sample based method
requires a large number of samples to estimate the extreme
probabilities. In contrast, SampleSearch directly computes
them from the ground truth network. This explains why we
have problems with such networks. In general, the approach
has achieved good accuracy, and meanwhile the complexity
of exact inference is reduced due to the small tree-width.
As an advantage over the others, multiple different infer-
ences could be queried very efficiently using the learned BN

7http://graphmod.ics.uci.edu/group/IJGPSampleSearch

without the need of further learning (even though this is not
accounted for in the competition, so we have not exploited
such fact).

Conclusion

In this paper we present an algorithm for learning Bayesian
networks with bounded tree-width out of potentially good
k-trees. Using the informative score, we introduce a search
method that can efficiently find these k-trees of high
promise, which in return are able to produce Bayesian net-
works with high BDeu scores (as empirically seen). Multiple
experiments indicate the effectiveness of this procedure. In
particular, the proposed method achieved close to optimal
performance for small networks and was able to scale up
to larger networks having better performance than the cur-
rent state of the art. Because it provides an optimal elimi-
nation order that guarantees inference efficiency, using the
learned network for reasoning and extracting information is
greatly facilitated. Inspired by that, we created a sampling
plus learning plus exact inference procedure and compared
to well-known approaches in an important inference task
of UAI 2014’s competition. With bounded tree-width, infer-
ence complexity is significantly reduced with respect to the
original networks (especially for large complex networks)
while inference accuracy is usually well maintained.
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