
From Exact to Anytime Solutions for Marginal MAP

Junkyu Lee
University of California, Irvine

Irvine, CA 92697, USA
junkyul@ics.uci.edu

Radu Marinescu
IBM Research – Ireland

radu.marinescu@ie.ibm.com

Rina Dechter
University of California, Irvine

Irvine, CA 92697, USA
dechter@ics.uci.edu

Alexander Ihler
University Irvine, CA 92697, USA

ihler@ics.uci.edu

Abstract

This paper explores the anytime performance of search-based
algorithms for solving the Marginal MAP task over graphical
models. The current state-of-the-art for solving this challeng-
ing task is based on best-first search exploring the AND/OR
graph with the guidance of heuristics based on mini-bucket
and variational cost-shifting principles. Yet, those schemes
are uncompromising in that they solve the problem exactly,
or not at all, and often suffer from memory problems. In
this work, we explore the well known principle of weighted
search for converting best-first search solvers into anytime
schemes. The weighted best-first search schemes report a
solution early in the process by using inadmissible heuris-
tics, and subsequently improve the solution. While it was
demonstrated recently that weighted schemes can yield ef-
fective anytime behavior for pure MAP tasks, Marginal MAP
is far more challenging (e.g., a conditional sum must be eval-
uated for every solution). Yet, in an extensive empirical anal-
ysis we show that weighted schemes are indeed highly ef-
fective anytime solvers for Marginal MAP yielding the most
competitive schemes to date for this task.

Introduction

Graphical models provide a powerful framework for rea-
soning about conditional dependency structures over many
variables. The Maximum a Posteriori (MAP) task asks
for the mode of the joint probability distribution, while the
Marginal MAP (MMAP) task generalizes MAP by allowing
a subset of the variables to be marginalized.

MMAP is known to be a very challenging task. The dif-
ficulty rises from not only the exponential size of the search
space but also the hardness of evaluating a full instantiation
of MAP variables, i.e., computing the marginal probability
given evidence. Furthermore, variable elimination orders of
MMAP are constrained and often more costly because the
maximization and the summation do not commute, i.e., sum
variables are eliminated before any MAP variable.

Early work for solving MMAP exactly was based on the
depth-first branch and bound search guided by a heuristic
based on evaluating (incrementally) a join-tree built along
an unconstrained variable ordering (Park and Darwiche

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2003; Yuan and Hansen 2009). The depth-first branch and
bound search improves its performance when it traverses an
AND/OR search graph, and when it is guided by heuristics
based on weighted mini-bucket elimination with cost shift-
ing schemes, as shown in (Marinescu, Dechter, and Ihler
2014). More recently, several best-first AND/OR search al-
gorithms for MMAP were also proposed, and were shown
to outperform considerably depth-first search if memory is
available (Marinescu, Dechter, and Ihler 2015). They in-
clude the best-first AND/OR search algorithm which be-
longs to the AO* family, as well as a recursive best-
first AND/OR search algorithm that operates within limited
memory. In addition, variational algorithms for MMAP (Liu
and Ihler 2013), and an anytime MMAP algorithm based
on factor-set-elimination (Maua and De Campos 2012) have
also been developed.

Best-first search, which typically expands fewer nodes
than depth-first search, is a particularly favorable choice for
MMAP because it can save on the number of evaluations of
the marginal probability conditioned on the MAP variables.
However, best-first search faces two drawbacks: (1) it may
require enormous amounts of memory, (2) it only returns the
optimal solution at the end of processing. Recursive best-
first search (Korf 1993) remedies the memory issue, but still
lacks anytime behavior.

Contributions: Here, we focus on providing good any-
time solutions, and develop the anytime version of the ex-
act AND/OR search algorithms. We use the principle of
weighted search that was shown to provide a useful tool for
converting best first algorithms into anytime scheme (Pohl
1970). Unlike local search based methods (Park and Dar-
wiche 2004), our proposed algorithms come with solution
quality guarantees; unlike variational schemes (Liu and Ihler
2013) our algorithms will prove optimality if given enough
time.

We discuss the effectiveness of the newly introduced any-
time algorithms against state-of-the-art exact search algo-
rithms over varying strength of heuristics and time bounds.
Through extensive empirical evaluations, we show that the
proposed anytime algorithms dominate exact search algo-
rithms and provide anytime solutions to the problems that
were beyond the reach of exact algorithms.

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

3255

Background

A graphical model is a tuple M = 〈X,D,F〉, where
X = {Xi : i ∈ V } is a set of variables indexed by set
V and D = {Di : i ∈ V } is the set of their finite domains
of values. F = {ψα : α ∈ F} is a set of discrete positive
real-valued local functions defined on subsets of variables,
where we use α ⊆ V and Xα ⊆ X to indicate the scope
of function ψα, i.e., Xα = var(ψα) = {Xi : i ∈ α}.
The function scopes yield a primal graph whose vertices
are the variables and whose edges connect any two variables
that appear in the scope of the same function. The graphi-
cal model M defines a factorized probability distribution on
X, P (X) = 1

Z

∏
α∈F ψα(Xα). The partition function, Z,

normalizes the probability.
Let XM = {X1, ..., Xm} be a subset of X called MAP

variables and XS = X \ XM be the complement of XM ,
called sum variables. The Marginal MAP (MMAP) task
seeks an assignment x∗

M to variables XM having maximum
probability. This requires access to the marginal distribution
over XM , which is obtained by summing out variables XS :

x∗
M = argmax

xM

∑

xS

∏

α∈F

ψα(xα) (1)

AND/OR Search Spaces

Significant recent improvements in search for MMAP infer-
ence have been achieved by using AND/OR search spaces,
which often capture problem structure far better than stan-
dard OR search methods (Marinescu, Dechter, and Ihler
2014; Dechter and Mateescu 2007). The AND/OR search
space is defined relative to a pseudo tree of the primal graph,
which captures problem decomposition.

DEFINITION 1 (pseudo tree) A pseudo tree of an undi-
rected graph G = (V,E) is a directed rooted tree T =
(V,E′) such that every arc ofG not included inE′ is a back-
arc in T connecting a node in T to one of its ancestors. The
arcs in E′ may not all be included in E.

We say that a pseudo tree T of G is valid for MAP vari-
ables XM if T restricted to XM , denoted by T ′ = (V ′, E′′)
where V ′ ⊆ V , E′′ ⊆ E′ and V ′ correspond to XM , forms
a connected subgraph of T that has the same root as T and
is called a start pseudo tree.

Given a graphical model M = 〈X,D,F〉 with primal
graph G and valid pseudo tree T of G, the AND/OR search
tree ST based on T has alternating levels of OR nodes corre-
sponding to the variables, and AND nodes corresponding to
the values of the OR parent’s variable, with edge weights ex-
tracted from the original functions F (for details see Dechter
and Mateescu (2007)). Identical sub-problems, identified by
their context (the partial instantiation that separates the sub-
problem from the rest of the problem graph), can be merged,
yielding an AND/OR search graph. Merging all context-
mergeable nodes yields the context minimal AND/OR search
graph, denoted CT . The size of CT is exponential in the in-
duced width of G along a depth-first traversal of T (i.e., the
constrained induced width).

DEFINITION 2 (MMAP solution tree) A solution subtree
x̂M of CT relative to the MAP variables XM is a subtree

(a) Primal graph (b) Pseudo tree (valid)

(c) Context minimal AND/OR search graph

Figure 1: A simple graphical model.

of CT restricted to XM that: (1) contains the root of CT ;
(2) if an internal OR node n ∈ CT is in x̂M , then n is la-
beled with a MAP variable and exactly one of its children is
in x̂M ; (3) if an internal AND node n∈CT is in x̂M then all
its OR children which denote MAP variables are in x̂M .

Each node n in CT can be associated with a value v(n);
for MAP variables v(n) is the optimal marginal MAP value
of the conditioned sub-problem rooted at n, while for a sum
variable it is the likelihood of the partial assignment denoted
by n. Clearly, v(n) can be computed recursively based on
the values of n’s successors: OR nodes by maximization or
summation (for MAP or sum variables, respectively), and
AND nodes by multiplication.
Example 1 Figure 1 shows an example of simple graphical
model. Figure 1(a) is the primal graph of 8 bi-valued vari-
ables and 10 binary functions, where the MAP and sum vari-
ables are XM = {A,B,C,D} and XS = {E,F,G,H}.
Figure 1(b) is a valid pseudo tree whose MAP variables form
a start pseudo tree. Figure 1(c) displays the context mini-
mal AND/OR search graph based on the valid pseudo tree.
(the contexts are shown next to the pseudo tree nodes). A
MMAP solution subtree corresponding to the MAP assign-
ment (A = 0, B = 1, C = 1, D = 0) is shown in red.

Earlier Work: Exact AND/OR Search for MMAP

Current state-of-the-art approaches for exact MMAP solving
are based on either depth-first or best-first AND/OR search
guided by mini-bucket heuristics enhanced with variational
cost-shifting ideas (Marinescu, Dechter, and Ihler 2014;
2015).

AND/OR Branch and Bound (AOBB-MMAP) (Mari-
nescu, Dechter, and Ihler 2014) explores in a depth-first

3256

Algorithm 1: AOBF-MMAP
Input: Graphical model M = 〈X,D,F〉, pseudo tree T ,

XM = X \XS , heuristic h(·)
Output: Optimal MMAP value (and assignment)

1 Insert root n0 in CT , where n0 is labeled by the root of T
2 Initialize q(n0) ← h(n0) and let T ′ = {n0}
3 while true do
4 Select non-terminal tip node n in the best partial tree T ′.
5 if tips(T ′) = ∅ then return (q(n0), T

′)
6 foreach successor n′ of n do // Expand
7 if n′ /∈ CT then
8 Add n′ as child of n in CT

9 if n′ is OR node labeled by X ∈ XS then
10 q(n′) ← eval(M|T ′)

11 else q(n′) ← h(n′)

12 foreach ancestor m of n in CT do // Update
13 if m is OR node then
14 q(m) ← maxn′∈succ(m) w(m,n′) · q(n′)
15 Mark best successor n′ of m as

n′ = argmaxn′∈succ(m) w(m,n′) · q(n′),
maintaining marked successor if still best

16 else q(m) ←
∏

n′∈succ(m) q(n
′)

17 Recompute best partial tree T ′ by following marked arcs
from the root n0

manner the context minimal AND/OR search graph and
therefore takes advantage of problem decomposition. Dur-
ing search, AOBB-MMAP keeps track of the value of the
best solution found so far (a lower bound on the optimal
MMAP cost) and uses this value and the heuristic function
to prune away portions of the search space that are guaran-
teed not to contain the optimal solution in a typical branch
and bound manner.

Best-First AND/OR Search (AOBF-MMAP) (Mari-
nescu, Dechter, and Ihler 2015) is a variant of AO* (Nils-
son 1980) applicable to graphical models that explores the
context minimal AND/OR search graph in a best-first rather
than depth-first manner. This enables AOBF-MMAP to visit
a significantly smaller search space than AOBB-MMAP
which sometimes translates into important time savings, as
well as considerably fewer conditional likelihood evalua-
tions. Extensive empirical evaluations (Marinescu, Dechter,
and Ihler 2015) showed that when given enough memory
AOBF-MMAP is often superior to AOBB-MMAP. For com-
pleteness, we provide the pseudo code of AOBF-MMAP in
Algorithm 1.

Recursive Best-First AND/OR Search (RBFAOO-
MMAP) was recently introduced to address the memory
issues of AOBF-MMAP. RBFAOO-MMAP (described by
Algorithm 2) extends Recursive Best-First Search (RBFS)
(Korf 1993) to MMAP queries over graphical models and
thus it uses a threshold controlling mechanism to drive
the search in a depth-first like manner. Specifically, let
q(n), called the q-value, be an upper bound of the solution
cost at node n, and θ(n) be the threshold at n indicating
the availability of a second best solution besides q(n).
RBFAOO-MMAP keeps examining the subtree rooted at n

Algorithm 2: RBFAOO-MMAP
Input: Graphical model M = 〈X,D,F〉, pseudo tree T ,

XM = X \XS , heuristic h(·)
Output: Optimal MMAP value

1 Procedure RBFAOO()
2 Insert root n0 in CT , where n0 is labeled by the root of T
3 OrNode(n0, 0)
4 return q(n0)

5 Function OrNode(n, θ)
6 while true do
7 foreach AND child c of n do
8 if c is in cache then q(c) ← ReadCache(c)
9 else q(c) ← h(c)

10 q(c) = w(n, c) · q(c)
11 Update q(n) ← maxc∈succ(n) q(c) and mark n as

solved if the child with the highest q-value is solved
12 if q(n) < θ or n is solved then
13 break

14 Identify two children (n1, n2) with the two highest q
values s.t. q(n1) ≥ q(n2) ≥ q(others) and update
threshold as θ′ = max(θ, q(n2))/w(n, n1)

15 AndNode(n1, θ′)
16 WriteCache(n, q(n))

17 Function AndNode(n, θ)
18 while true do
19 foreach OR child c of n do
20 if c is in cache then q(c) ← ReadCache(c)
21 else if c is labeled by X ∈ XS then
22 q(c) ← eval(M|x̄)
23 else q(c) ← h(c)

24 Update q(n) ←
∏

c∈succ(n) q(c), and mark n as
solved if all its children are solved

25 if q(n) < θ or n is solved then
26 break

27 Identify an unsolved OR child n1 and update
threshold θ′ = θ · q(n1)/q(n)

28 OrNode(n1, θ′)
29 WriteCache(n, q(n))

until either q(n) < θ(n) or the subtree is solved optimally.
Therefore, it gradually grows the search space by updating
the q-values of the internal nodes and re-expanding them,
unlike AOBF-MMAP. The algorithm may operate in linear
space (no caching); however, for efficiency, it may use a
fixed size cache table to store some of the nodes (based
on contexts). In practice, RBFAOO-MMAP outperformed
dramatically both AOBB-MMAP and AOBF-MMAP on
a variety of benchmarks (Marinescu, Dechter, and Ihler
2015).

Anytime AND/OR Search for MMAP

A serious drawback of these highly competitive best-first
search schemes is that they lack anytime behavior, namely
they either solve the problem exactly, or not at all. In many
situations, it is desirable to obtain a good solution relatively
quickly and spend the remaining time improving it. There-
fore, in this paper we explore the potential of the well known
principle of weighted search and convert the best-first search
algorithms into anytime search schemes for Marginal MAP.

Weighted best-first AND/OR search was introduced re-

3257

cently as an effective alternative to anytime depth-first
search schemes for pure MAP tasks (Flerova, Marinescu,
and Dechter 2014). These algorithms were evaluated exten-
sively on a wide range of benchmark problems and were
shown to be very powerful and highly competitive with
Breadth Rotating AOBB search (Otten and Dechter 2011),
one of the best performing anytime MAP solvers. The any-
time best-first AND/OR search algorithms for MMAP pre-
sented in this paper are direct extensions of the weighted
best-first search algorithms for pure MAP (Flerova, Mari-
nescu, and Dechter 2014).

Weighted AOBF-MMAP and RBFAOO-MMAP The
fixed-weighted version of the AOBF-MMAP and RBFAOO-
MMAP algorithms can be obtained easily by multiplying1

the heuristic function h(n) of a node n in the AND/OR
search graph by a weight w > 1 (i.e., substituting h(n)
by w · h(n)). Notice that only the portion of the search
space that corresponds to the MAP variables is consid-
ered. If h(n) is admissible, which is the case for mini-
bucket heuristics, then the cost of the solution discovered by
weighted AOBF-MMAP (or weighted RBFAOO-MMAP)
is w-optimal, namely it is guaranteed to be within a fac-
tor w from the optimal one. These schemes extend well
known approaches such as WA* (Pohl 1970) and WAO*
(P. Chakrabarti 1987) to MMAP queries.

Algorithm 3: WAOBF-MMAP
Input: Graphical model M = 〈X,D,F〉, pseudo tree T ,

XM = X \XS , heuristic h(·), initial weight w0

Output: w-optimal MMAP value V(T), and assignment T
1 Initialize w = w0, V(T) = −∞, T = ∅
2 while w >= 1 do
3 (V ′, T ′) ← AOBF-MMAP(M, w · h)
4 Maintain and report current best solution as (V(T), T)
5 Decrease weight according to schedule policy
6 return (V(T), T)

Iterative Weighted AOBF-MMAP Since weighted
AOBF-MMAP yields w-optimal solutions, it can then be
extended into an iterative anytime scheme called WAOBF-
MMAP (Algorithm 3), by decreasing the weight from one
iteration to the next (until it becomes 1).

Specifically, WAOBF-MMAP starts by running AOBF-
MMAP with the initial weight w0 until it finds a subopti-
mal solution, and restarts the search with a decreased weight
following a weight update schedule policy such as wi+1 =√
wi. Clearly, different schedules are also possible, how-

ever, the latter proved quite effective in practice (see also
(Flerova, Marinescu, and Dechter 2013) for additional de-
tails). Notice that the algorithm also output a w-optimality
guaranty.

Iterative Weighted RBFAOO-MMAP The anytime
weighted RBFAOO-MMAP, called here WRBFAOO-
MMAP, is obtained by replacing the call to AOBF-MMAP
in line 3 of Algorithm 3 with a call to RBFAOO-MMAP.

1For numerical stability all algorithms presented solve Eq. 1 in
log space, as an energy minimization problem.

Algorithm 4: WRAOBF-MMAP
Input: Graphical model M = 〈X,D,F〉, pseudo tree T ,

XM = X \XS , heuristic h(·), initial weight w0

Output: w-optimal MMAP value V(T), and assignment T
1 Initialize w = w0, C′

T = {s}, V(T) = −∞, T = ∅
2 while w >= 1 do
3 (V ′, T ′, C′

T) ← AOBF-MMAP(M, w · h,C′
T , T)

4 Maintain and report current best solution as (V(T), T)
5 Decrease weight according to schedule policy
6 Revise C′

T according to w · h from leaves to the root
7 Update the best partial solution tree T from revised C′

T
8 return (V(T), T)

Anytime Repairing AOBF-MMAP Running WAOBF-
MMAP from scratch at each iteration seems redundant.
Therefore, we introduce another anytime scheme, called
WRAOBF-MMAP, that is based on the anytime repairing
AOBF approach for pure MAP (Flerova, Marinescu, and
Dechter 2014). Algorithm 4 describes WRAOBF-MMAP.
As the name suggests, it does not discard the explicated
AND/OR search graph C ′

T after finishing the i-th itera-
tion but rather it revises the node values in C ′

T from leaves
to the root node according to the newly inflated heuristic
wi+1 · h(n). The search continues with the revised best par-
tial solution tree.

Anytime AND/OR Branch and Bound Search Depth-
first AND/OR Branch and Bound often lacks good anytime
behavior because during search AOBB will solve to com-
pletion all but one independent subproblems rooted at an
AND node. This behavior was first observed by (Otten and
Dechter 2011) in the context of pure MAP inference. There-
fore, Breadth Rotating AOBB (BRAOBB) was introduced
as an anytime depth-first AND/OR search scheme that ro-
tates through different subproblems in a round-robin man-
ner. Extensive empirical evaluations showed that BRAOBB
improves considerably AOBB’s anytime behavior (Otten
and Dechter 2011). We describe next algorithm BRAOBB-
MMAP which is a direct application of the technique to
MMAP queries.

Algorithm 5 summarizes BRAOBB-MMAP, omitting the
details about AOBB-MMAP (i.e., pruning, caching and
propagation). For these details, see (Marinescu, Dechter,
and Ihler 2014).

The algorithm maintains not only the LOCAL stack but
also aGLOBAL queue to store and rotate the subproblems.
Notice that rotation applies only to MAP variables. A sep-
arate stack called LOCALS is used to perform an exhaus-
tive depth-first exploration of the summation subproblems
(lines 3-4). BRAOBB-MMAP expands the chain portions
of the pseudo tree corresponding to the MAP variables until
the rotation limit R is reached or the current subproblem is
fully solved (line 9). If the rotation limit R is reached be-
fore solving the current subproblem, the nodes in LOCAL
are moved to the GLOBAL queue, and visited later. The
partial solution tree T ′ as well as the best solutions found so
far need to be maintained according to the node expansion
(lines 6-8). The algorithm returns the optimal solution upon

3258

Algorithm 5: BRAOBB-MMAP
Input: Graphical model M = 〈X,D,F〉, pseudo tree T ,

XM = X \XS , heuristic h(·), rotation limit R
Output: the anytime MMAP value V(T), and assignment T

1 Insert root to GLOBAL queue (FIFO)
2 while GLOBAL
= ∅ do
3 if LOCALS
= ∅ then
4 DFS traversal below n using stack LOCALS

5 LOCALM ← front(GLOBAL)
6 Maintain partial MMAP assignment T ′

7 if T ′ is a complete MMAP assignment then
8 Maintain and report best solution so far as (V(T), T)
9 for r ← 1 to R or until LOCAL = ∅ or until

childSubprob(LOCAL)
= ∅ do
10 Pop the top node n in LOCAL
11 if n = 〈Xi〉 is OR node then
12 foreach xj ∈ Di do
13 Create AND node n′ = 〈Xi, xj〉
14 Push n′ to top of LOCAL

15 else if n = 〈Xi, xj〉 is AND node then
16 Y1 . . . Ym ← childrenT (Xi)
17 Create OR nodes 〈Y1〉 . . . 〈Ym〉
18 if m = 1 then
19 Push 〈Y1〉 to top of LOCAL

20 else if m > 1 then
21 for j ← 1 to m do
22 if Yj ∈ XM then
23 NEW ← {〈Yj〉}
24 Push NEW to back of GLOBAL
25 else if Yj ∈ XS then
26 Push 〈Yj〉 to top of LOCALS

27 break

28 if succ(n) = ∅ then Propagate values upward
29 if LOCAL
= ∅ then Push LOCAL to back of GLOBAL

30 return (V(T), T)

completion or an anytime solution if interrupted.

Empirical Evaluation

We evaluate empirically the newly introduced anytime
AND/OR search algorithms and compare them with the
exact algorithms on problem instances generated from
the PASCAL2 Inference Challenge benchmarks (Elidan,
Globerson, and Heinemann 2012). All competing algo-
rithms use the static weighted mini-bucket heuristic with
moment matching, WMB-MM(i), whose strength can be
controlled by a parameter i-bound (Dechter and Rish 2003;
Liu and Ihler 2011). The experiment supports different
levels of strength for the guiding heuristics, from weak to
strong, and time bounds up to 2 hours with 24 GB mem-
ory. The starting weight was 64 for WAOBF, WRAOBF,
and WRBFAOO, and the overestimation parameter was 1 for
RBFAOO and WRBFAOO. For the 5 best-first algorithms,
the size of the cache table was 4 GB, whereas for the 2 depth-
first branch and bound algorithms the size of the cache table
was only limited by the total memory limit of 24 GB for a
fair comparison.

Our benchmark is a subset of PASCAL2 benchmark
on 3 domains: grid with 15 networks; pedigree and

1 sec 5 sec 30 sec 1 min 20 min 1 hr 2 hr

10
20
30
40
50
60
70
80
90

100

Pe
rc

en
t(

to
ta

l1
75

in
st

an
ce

s)

aobb
wraobf

braobb
rbfaoo

aobf
wrbfaoo

waobf

Figure 2: Percentage of instances solved (i=18). The height
of the bottom bar represents the percent of instances solved
optimally, and the height of the stacked bar represents the
percent of instances with any solution.

promedas with 10 networks. For each network, we gener-
ated 5 MMAP problem instances where half of the variables
are MAP variables: 1 easy instance such that the MAP vari-
ables were selected from a breadth-first traversal of a pseudo
tree obtained from an unconstrained min-fill ordering; and 4
hard instances where the MAP variables were selected uni-
formly at random.

To compare anytime performance, we consider respon-
siveness and the solution quality: how quickly the algorithm
can generate a solution (responsiveness), and how good is
the solution provided by a given time bound (quality). The
responsiveness was measured by the coverage of each algo-
rithm in terms of optimal and anytime solutions at varying
time bounds. Specifically, anytime coverage refers to the
percentage of problem instances with a solution within the
time bound, whereas optimal coverage only accounts for the
optimally solved instances. The quality of anytime solution
for each algorithm was evaluated by counting the number of
problem instances with better anytime solutions. The metric
for evaluating the score of each algorithm will be given later
in this section.

Performance Regimes of MMAP Algorithms

In Table 1, we summarize the anytime performance regimes
of 7 MMAP algorithms with respect to the responsiveness at
1 hour time bound with WMB-MM(i = 18) heuristics, and
the quality of anytime solutions at 1 hour time bound with
WMB-MM(i = 12) heuristics on 3 benchmark domains.

RBFAOO and AOBF are the two worst performing algo-
rithms in terms of both anytime responsiveness and quality
of solution. Algorithms WRBFAOO and WAOBF are the
best performing algorithms in terms of solution quality, and
the anytime responsiveness of both algorithms was close to
that of depth-first search based algorithms, showing the ben-
efit of weighted best-first search.

Responsiveness of MMAP Algorithms

In Figure 2, we present both optimal and anytime coverage
results for 7 MMAP algorithms over varying time bounds
from 1 second to 2 hours. Note that, all algorithms shown
in Figure 2 used the WMB-MM(i = 18) heuristic. Consid-
ering the optimality of the solution at 2 hour time bound,

3259

grid (75 instances) pedigree (50 instances) promedas (50 instances) overall (175 instances)

MMAP algorithms responsiveness quality score responsiveness quality score responsiveness quality score responsiveness quality score

exact
AOBB 93% 293% 84% 342.00% 86% 405% 89% 339%
AOBF 69% 209% 30% 158.00% 42% 258% 50% 208%

RBFAOO 79% 58% 44% 95.00% 42% 132% 58% 90%

anytime

WAOBF 97% 379% 88% 442.00% 54% 266% 82% 365%

WRBFAOO 100% 422% 90% 440.00% 60% 305% 86% 394%

WRAOBF 97% 374% 88% 364.00% 54% 261% 82% 339%
BRAOBB 99% 365% 58% 259.00% 94% 473% 86% 365%

Table 1: Anytime performance regimes for each of 7 evaluted algorithms. 3 exact MMAP algorithms (AOBB-MMAP,
AOBF-MMAP, RBFAOO-MMAP) and 4 new anytime algorithms (BRAOBB-MMAP, WAOBF-MMAP, WRBFAOO-MMAP,
WRAOBF-MMAP) are evaluated in grid, pedigree, and promedas domain. Responsiveness shows the percentage of instances
solved at 1 hour time bound with WMB-MM(i = 18) heuristic. Quality score is the sum of individual quality scores against
other 6 algorithms that compare the quality of anytime solutions at 1 hour time bound with WMB-MM(i = 12) heuristic. The
metric for the score is defined in the following section.

wrbfaoo waobf wraobf
grid

braobb aobb wrbfaoo waobf wraobf
pedigree

braobb aobb wrbfaoo waobf wraobf
promedas

braobb. aobb wrbfaoo waobf wraobf
all

braobb aobb

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
tS

co
re

(to
ta

l7
5

in
st

an
ce

s)

vs. waobf
vs. wraobf
vs. braobb
vs. aobb

vs. wrbfaoo
vs. wraobf
vs. braobb
vs. aobb

vs. wrbfaoo
vs. waobf
vs. braobb
vs. aobb

vs. wrbfaoo
vs. waobf
vs. wraobf
vs. aobb

vs. wrbfaoo
vs. waobf
vs. wraobf
vs. braobb

Figure 3: The score of each algorithm against others (t=1 hr, i=12). There are 4 groups correspond to the benchmark domain:
grid, pedigree, promedas, and all. In each group, there are 5 subgroups, each of them represents an algorithm score
against the other 4 algorithms. The winner has a score higher than 50. For example, the scores of the WRBFAOO in grid
against WAOBF, WRAOBF, BRAOBB, and AOBB are displayed at 4 left most bars, and it outperformed all other 4 algorithms.

RBFAOO found the optimal solution on the largest num-
ber of instances (59%), WRBFAOO followed it by 56%,
while the remaining algorithms proved optimality for about
50%. Clearly, the newly introduced WRBFAOO, WAOBF,
and WRAOBF provide a significant improvement in terms
of responsiveness as they readily reported a solution on more
than 80% of the instances at 1 second time bound, which is
close to AOBB and BRAOBB, respectively.

Solution Quality of MMAP Algorithms

Figure 3 reports the solution quality obtained by 5 MMAP
algorithms (WRBFAOO, WAOBF, WRAOBF, BRAOBB,
and AOBB) at 1 hour time bound. The i-bound was i =
12, which corresponds to guiding heuristics with moderate
strength. The score is computed as follows. We record the
solutions for each pair of algorithms A and B at a fixed time
bound t. If A won against B (i.e., A’s solution was better
than B’s) on n instances and tied on m instances, the score
of A against B is n+m

2

N , where N is the total number of
instances; the score of B against A is N−n−m

2

N . In grid
and pedigree, WRBFAOO is the winner, WAOBF is sec-
ond, and WRAOBF is third. On the other hand, BRAOBB

is the best algorithm in promedas, and AOBB is second.
The overall score across all domains shows that WRBFAOO
is the winner, WAOBF is second, while AOBB is the worst
among the 5 competing algorithms.

The ranking between algorithms presented above remains
the same on different settings with varying time bounds and
i-bounds, which is not shown in this paper due to the space
limit. BRAOBB is the best performer only in the extreme
cases, typically characterized by very short time bounds (t <
1 sec) or uninformative heuristics (i < 6),
Example: grid instance 75-20-5-I4 in Table 2 is a case
where weighted best-first search algorithms find a good so-
lution in a short time bound. All three algorithms found the
optimal solution in less than 1 minute, although they failed
to prove optimality when the guiding heuristic was weak.

Comparing WRBFAOO and BRAOBB

We investigate further the anytime performance of WRB-
FAOO and BRAOBB based on two problem intrinsic param-
eters, the constrained induced width wc and the conditioned
induced width ws of the summation problem only. Figure 4
visualizes the difficulty of individual problem instances and
the winner at each point.

3260

i=12 i=18

instance algorithm 60 sec 600 sec status 60 sec 600 sec status

(n,m,k,wc ,ws) sol | and map | and (wt) sol | and map | and (wt) (time) sol | and map | and (wt) sol | and map | and (wt) (time)

grid braobb -48.4052 | 2278014 | 2737734 -35.233 | 21747732 | 28300934 t(7200) -22.243 | 2708481 | 2984371 -21.7217 | 13098051 | 13978657 o(230)
75-20-5-I4 waobf -21.7217 | 623084 | 1.13879 -21.7217 | 7812572 | 1.13879 m(999) -21.7217 | 22642 | 1.01638 -21.7217 | 7949237 | 1.00000 o(581)

(400,200,2,123,6) wraobf -21.7217 | 923220 | 1.13879 -21.7217 | 11970690 | 1.13879 m(934) -21.7217 | 721493 | 1.01638 -21.7217 | 1396170 | 1.00000 o(104)
wrbfaoo -21.7217 | 3874836 | 1.13879 -21.7217 | 46299595 | 1.06714 m(711) -21.7217 | 4430190 | 1.01638 -21.7217 | 17433182 | 1.00000 o(218)

grid braobb -37.864 | 146573 | 106869149 t(7200) -21.0226 | 12683535 | 92577919 o(2479)
90-30-5-I0 waobf | 484071 | 64.00000 | 8883291 | 64.00000 m(1351) -78.7471 | 366757 | 64.00000 -21.1774 | 101028 | 1.13879 t(7200)

(900,450,2,45,19) wraobf | 482878 | 64.00000 | 8788862 | 64.00000 m(1279) | 366901 | 64.00000 -21.3243 | 8521297 | 1.06714 o(917)
wrbfaoo | 6468703 | 64.00000 | 78908803 | 64.00000 t(7200) | 1729 | 64.00000 -21.351 | 850834 | 1.29684 o(2537)

pedigree braobb -349.143 | 1628499 | 3623860 -347.953 | 19467699 | 33360344 t(7200) -332.024 | 2127583 | 3547236 -332.024 | 21130781 | 30105390 t(7200)
pedigree39-I4 waobf -337.491 | 1044653 | 2.82843 -335.863 | 5115966 | 1.29684 m(1115) -323.707 | 768400 | 1.29684 -323.707 | 8180376 | 1.13879 m(930)

(1272,636,4,75,4) wraobf -323.651 | 768237 | 1.06714 -323.651 | 9644430 | 1.06714 m(845) -332.04 | 745269 | 1.13879 -312.892 | 9861013 | 1.00816 m(819)
wrbfaoo -319.804 | 3541822 | 1.06714 -319.804 | 45251925 | 1.06714 t(7200) -319.282 | 4529426 | 1.03302 -312.671 | 64996296 | 1.00203 m(931)

promedas braobb -77.5966 | 2176769 | 2208387 -71.5164 | 25231278 | 25278598 t(7200) -30.0158 | 2035020 | 2075806 -30.0158 | 32982167 | 33102113 t(7200)
orchain22fg-I3 waobf | 651909 | 64.00000 | 6917951 | 64.00000 m(911) -84.3913 | 606502 | 64.00000 -84.3913 | 6474805 | 8.00000 m(992)

(1044,522,2,196,5) wraobf | 651897 | 64.00000 | 6884019 | 64.00000 m(876) -84.3913 | 603704 | 64.00000 -84.3913 | 9318074 | 8.00000 m(743)
wrbfaoo | 4765920 | 64.00000 | 50921981 | 64.00000 t(7200) -84.3913 | 4387947 | 64.00000 -84.3913 | 50995351 | 8.00000 t(7200)

promedas braobb -25.3431 | 3690522 | 3706122 -25.3431 | 42605032 | 42637522 t(7200) -25.3147 | 3732389 | 3749229 -19.5736 | 42385217 | 42421823 t(7200)
orchain8fg-I2 waobf | 1209866 | 64.00000 | 12649848 | 64.00000 m(811) -48.7187 | 1114238 | 64.00000 -45.0764 | 11186511 | 8.00000 m(1525)

(1195,597,2,53,4) wraobf | 1193825 |64.00000 | 12605159 | 64.00000 m(769) | 1093969 | 64.00000 -48.7187 | 13252856 | 2.82843 m(686)
wrbfaoo | 6506800 | 64.00000 | 69469031 | 64.00000 t(7200) -86.1035 | 6584968 | 8.00000 -31.2978 | 67551872 | 2.82843 t(7200)

Table 2: Search statistics of anytime algorithms for grid, pedigree, and promedas instances. n is the number of variables,
m is the number of MAP variables, k is the maximum domain size, wc is the constrained induced width, and ws is the
conditional induced width of the summation problem only. The current best solution in log scale, sol, the number of AND map
nodes, and map, are displayed at two time bounds, 60 seconds and 10 minutes, and two i-bounds, 12 and 18. In addition, the
number of AND nodes, and, is shown for BRAOBB, while the weight, wt, is shown for the weighted best-first algorithms. The
t(7200) denotes time out at 7200 seconds, m(t) denotes out of memory at time t, and o(t) indicates optimality found at time t.

10 50 100 150 200 250 300 350 400 450490

Wc

3

5

7

9

11

13

15

17

19

21

23

W
s

tie (63/175)
wrbfaoo (66/175)
braobb (9/175)
braobb only (33/175)
promedas domain

Figure 4: Distribution of wc and ws over our bench-
mark instances, and comparison between WRBFAOO and
BRAOBB (t =1 hr, i=12). Each point’s location (wc, ws)
indicates the instance’s difficulty. The circled points are
promedas, where 23 instances out of 50 were solved by
BRAOBB only.

Tied Region (wc ∈ [10,58]): WRBFAOO and BRAOBB
are tied in this region. WRBFAOO failed to report a single
solution on 2 instances with ws > 20 due to the overhead of
computing the exact solution to the summation subproblem.
WRBFAOO Region (wc ∈ [60,200]): WRBFAOO dom-
inates BRAOBB, consistent with the ranking in Figure 3.
WRBFAOO failed to report any solution when ws > 10.
BRAOBB Region (wc ∈ [202,490]): Only BRAOBB re-
ported a solution in this region, except for 2 instances. Such
extremely hard instances are mostly promedas, consistent

with BRAOBB being a winner on promedas in Figure 3.
Note that, the time bound for determining the winner was

1 hour and the i-bound of the WMB-MM heuristic was 12.
The area of each region changes over different combinations
of the time bounds and the i-bounds, but the trend remains
the same, which is not presented here due to space reasons.
Example: In Table 2, WRBFAOO showed the best anytime
performance in pedigree39-I3. However, best-first al-
gorithms couldn’t find the first solution for two promedas
instances when the guiding heuristic was relatively weak.

Comparing Weighted Best-First Algorithms

We next explore the anytime behavior of the weighted best-
first search algorithms based on the average weight at differ-
ent time bounds. All algorithms used the sqrt policy with
the initial weight 64 (i.e., wi+1 =

√
wi).

WRBFAOO: Figure 5 shows that WRBFAOO has the low-
est average weight after 5 second on both strong and rela-
tively weak heuristics, consistent with the ranking in Figure
3. This implies that the depth-first like node expansion strat-
egy of WRBFAOO can not only avoid the memory issues
but also allows the algorithm to report a tighter w-optimal
solution.
WAOBF vs. WRAOBF: For shorter time bounds (t < 30),
the weight of WRABOF decreased faster than WAOBF and
stronger heuristics foster the speed. This implies that repair-
ing schemes save on the number of node expansions and find
tighter w-optimal solutions when w is high (w ≥ 8).

On the other hand, the average weight of WAOBF and
WRAOBF are indistinguishable at longer time bounds. This
implies that repairing the entire explicated search space in-
curs severe overhead, losing its advantage against expanding
the search space afresh. Furthermore, the solution quality

3261

0.01 sec 0.1 sec 1 sec 5 sec 30 sec 2 min 10 min 1 hr 2 hr
time (log scale)

1.00
1.681.68
2.83

8.00

64.00

A
ve

ra
ge

W
ei

gh
t(

lo
g

sc
al

e)

waobf(i=12)
wraobf(i=12)
wrbfaoo(i=12)
waobf(i=18)
wraobf(i=18)
wrbfaoo(i=18)

Figure 5: Average weights (i =12, i =18). There are two
groups of curves with respect to the i bound. Each curve
shows the average weight over instances with a solution at
2 hours.

of WAOBF is superior to WRAOBF in Figure 3. This im-
plies that restarting scheme effectively escapes from unfruit-
ful search space by discarding the explicated search space.
Example: In Table 2, WRAOBF found the optimal solu-
tion for 90-30-5-I0 more than 2 times faster than other
algorithms. We can see that the weight of WRAOBF at 10
minute was the smallest compared to the other two algo-
rithms.

Conclusion

We introduced new anytime search algorithms for MMAP
that explore the context-minimal AND/OR search space
for graphical models, either depth-first or best-first, and
are guided by static weighted mini-bucket heuristics with
variational cost-shifting. Our extensive empirical evalua-
tion showed that weighted best-first AND/OR search algo-
rithms have a particularly effective anytime performance for
MMAP in terms of both responsiveness and the quality of
solutions. In addition, these schemes were superior to any-
time depth-first search for relatively weak heuristics. Nev-
ertheless, depth-first search is the only possibility when the
heuristic is very weak, or the conditional likelihood evalua-
tion is hard. For future work, we plan to explore approxima-
tions for the summation sub-task and hybrid search schemes
that combine the various anytime algorithms we introduced.

Acknowledgments

We thank the reviewers for their valuable feedback. This
work was supported in part by NSF grants IIS-1065618,
IIS-1526842 and IIS-1254071, and by the US Air Force
under Contract No. FA8750-14-C-0011 under the DARPA
PPAML program.

References

Dechter, R., and Mateescu, R. 2007. AND/OR search spaces
for graphical models. Artificial Intelligence 171(2-3):73–
106.
Dechter, R., and Rish, I. 2003. Mini-buckets: A gen-
eral scheme of approximating inference. Journal of ACM
50(2):107–153.

Elidan, G.; Globerson, A.; and Heinemann, U. 2012.
PASCAL 2011 probabilistic inference challenge.
http://www.cs.huji.ac.il/project/PASCAL/.
Flerova, N.; Marinescu, R.; and Dechter, R. 2013. Any-
time AND/OR best-first search for optimization in graphical
models. In ICML 2013 Workshop on Inferning: Interactions
between Inference and Learning.
Flerova, N.; Marinescu, R.; and Dechter, R. 2014. Weighted
best first search for MAP. In International Symposium on
Artificial Intelligence and Mathematics.
Korf, R. 1993. Linear-space best-first search. Artificial
Intelligence 62:41–78.
Liu, Q., and Ihler, A. 2011. Bounding the partition function
using Hölder’s inequality. In International Conference on
Machine Learning (ICML), 849–856.
Liu, Q., and Ihler, A. 2013. Variational algorithms for
marginal MAP. Journal of Machine Learning Research
14:3165–3200.
Marinescu, R.; Dechter, R.; and Ihler, A. 2014. AND/OR
search for marginal MAP. In Uncertainty in Artificial Intel-
ligence (UAI), 563–572.
Marinescu, R.; Dechter, R.; and Ihler, A. 2015. Pushing
forward marginal MAP with best-first search. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
696–702.
Maua, D., and De Campos, C. 2012. Anytime marginal
MAP inference. In International Conference on Machine
Learning, 1471–1478.
Nilsson, N. J. 1980. Principles of Artificial Intelligence.
Tioga, Palo Alto, CA.
Otten, L., and Dechter, R. 2011. Anytime AND/OR depth-
first search for combinatorial optimization. In International
Symposium on Combinatorial Search, 117–702.
P. Chakrabarti, S. Ghose, S. D. S. 1987. Admissibility of
AO* when heuristics overestimate. Artificial Intelligence
34(1):97–113.
Park, J., and Darwiche, A. 2003. Solving MAP exactly using
systematic search. In Uncertainty in Artificial Intelligence
(UAI), 459–468.
Park, J., and Darwiche, A. 2004. Complexity results and
approximation strategies for MAP explanations. Journal of
Artificial Intelligence Research 21(1):101–133.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence 1(3-4):193–204.
Yuan, C., and Hansen, E. 2009. Efficient computation of
jointree bounds for systematic MAP search. In International
Joint Conference on Artificial Intelligence (IJCAI), 1982–
1989.

3262

