
A Symbolic SAT-Based Algorithm for Almost-Sure
Reachability with Small Strategies in POMDPs∗

Krishnendu Chatterjee
IST Austria

Klosterneuburg, Austria
kchatterjee@ist.ac.at

Martin Chmelı́k
IST Austria

Klosterneuburg, Austria
mchmelik@ist.ac.at

Jessica Davies
IST Austria

Klosterneuburg, Austria
jdavies@ist.ac.at

Abstract

POMDPs are standard models for probabilistic planning prob-
lems, where an agent interacts with an uncertain environment.
We study the problem of almost-sure reachability, where given
a set of target states, the question is to decide whether there is
a policy to ensure that the target set is reached with probability
1 (almost-surely). While in general the problem is EXPTIME-
complete, in many practical cases policies with a small amount
of memory suffice. Moreover, the existing solution to the prob-
lem is explicit, which first requires to construct explicitly an
exponential reduction to a belief-support MDP. In this work,
we first study the existence of observation-stationary strategies,
which is NP-complete, and then small-memory strategies. We
present a symbolic algorithm by an efficient encoding to SAT
and using a SAT solver for the problem. We report experi-
mental results demonstrating the scalability of our symbolic
(SAT-based) approach.

1 Introduction

The de facto model for dynamic systems with probabilis-
tic and nondeterministic behavior are Markov decision pro-
cesses (MDPs) (Howard 1960). MDPs provide the appropri-
ate model to solve control and probabilistic planning prob-
lems (Filar and Vrieze 1997; Puterman 1994), where the non-
determinism represents the choice of the control actions for
the controller (or planner), while the stochastic response of
the system to control actions is represented by the probabilis-
tic behavior. In perfect-observation (or perfect-information)
MDPs, to resolve the nondeterministic choices among control
actions the controller observes the current state of the system
precisely, whereas in partially observable MDPs (POMDPs)
the state space is partitioned according to observations that
the controller can observe, i.e., the controller can only view
the observation of the current state (the partition the state
belongs to), but not the precise state (Papadimitriou and
Tsitsiklis 1987). POMDPs are widely used in several applica-
tions, such as in computational biology (Durbin et al. 1998),
speech processing (Mohri 1997), image processing (Culik

∗The research was partly supported by Austrian Science Fund
(FWF) Grant No P23499-N23, FWF NFN Grant No S11407-N23
(RiSE), ERC Start grant (279307: Graph Games), and Microsoft
faculty fellows award.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Kari 1997), software verification (Cerný et al. 2011),
robot planning (Kress-Gazit, Fainekos, and Pappas 2009;
Kaelbling, Littman, and Cassandra 1998), reinforcement
learning (Kaelbling, Littman, and Moore 1996), to name
a few.

Reachability objectives and their computational problems.
We consider POMDPs with one of the most basic and fun-
damental objectives, namely, reachability objectives. Given
a set of target states, the reachability objective requires that
some state in the target set is visited at least once. The main
computational problems for POMDPs with reachability ob-
jectives are as follows: (a) the quantitative problem asks for
the existence of a policy (that resolves the choice of control
actions) that ensures the reachability objective with probabil-
ity at least 0 < λ ≤ 1; and (b) the qualitative problem is the
special case of the quantitative problem with λ = 1 (i.e., it
asks that the objective is satisfied almost-surely).

Significance of qualitative problems. The qualitative prob-
lem is of great importance as in several applications it is
required that the correct behavior happens with probability 1,
e.g., in the analysis of randomized embedded schedulers,
the important question is whether every thread progresses
with probability 1. Also in applications where it might be
sufficient that the correct behavior happens with probability
at least λ < 1, the correct choice of the threshold λ can
be still challenging, due to simplifications and imprecisions
introduced during modeling. For example, in the analysis of
randomized distributed algorithms it is common to require
correctness with probability 1 (e.g., (Pogosyants, Segala, and
Lynch 2000)). Finally, it has been shown recently (Chatterjee
et al. 2015a) that for the important problem of minimizing
the total expected cost to reach the target set (Bertsekas 1995;
Bonet and Geffner 2009; Kolobov et al. 2011) (under positive
cost functions), it suffices to first compute the almost-sure
winning set, and then apply any finite-horizon algorithm for
approximation. Besides its importance in practical applica-
tions, almost-sure convergence, like convergence in expec-
tation, is a fundamental concept in probability theory, and
provides the strongest probabilistic guarantee (Durrett 1996).

Previous results. The quantitative analysis problem for
POMDPs with reachability objectives is undecidable (Paz
1971) (and the undecidability result even holds for any
approximation (Madani, Hanks, and Condon 2003)). In

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

3225

contrast, the qualitative analysis problem is EXPTIME-
complete (Chatterjee, Doyen, and Henzinger 2010; Baier,
Größer, and Bertrand 2012). The main algorithmic idea to
solve the qualitative problem (that originates from (Chat-
terjee et al. 2006)) is as follows: first construct the belief-
support MDP explicitly (which is an exponential size perfect-
information MDP where every state is the support of a be-
lief), and then solve the qualitative analysis on the perfect-
information MDP. Solving the qualitative analysis problem
on the resulting MDP can be done using any one of sev-
eral known polynomial-time algorithms, which are based
on discrete graph theoretic approaches (Chatterjee, Jur-
dziński, and Henzinger 2003; Chatterjee and Henzinger 2014;
2011). This yields the EXPTIME upper bound for the quali-
tative analysis of POMDPs, and the EXPTIME lower bound
has been established in (Chatterjee, Doyen, and Henzinger
2010).

Drawbacks. There are two major drawbacks of the present
solution for the qualitative problem for POMDPs with reach-
ability objectives. First, the algorithm requires to explicitly
construct an exponential-size MDP, and there is no symbolic
algorithm (that avoids the explicit construction) for the prob-
lem. Second, even though in practice a small amount of
memory in policies might suffice, the construction of the
belief-support MDP always searches for an exponential size
policy (which is only required in the worst case). There is
no algorithmic approach for small-memory policies for the
problem.

Our contributions. In this work our main contributions are as
follows. First, we consider the qualitative analysis problem
with respect to the special case of observation-stationary
(i.e., memoryless) policies. This problem is NP-complete.
Motivated by the impressive performance of state-of-the-art
SAT solvers in applications from AI as well as many other
fields (Biere 2013; Rintanen 2011; Biere et al. 1999), we
present an efficient reduction of our problem to SAT. This
results in a practical, symbolic algorithm for the almost-sure
reachability problem in POMDPs. We then show how our
encoding to SAT can be extended to search for policies that
use only a small amount of memory. Thus we present a
symbolic SAT-based algorithm that determines the existence
of small-memory policies in POMDPs that can ensure that a
target set is reached almost-surely. Our encoding is efficient:
in the worst case it uses a quadratic number of variables and
a cubic number of clauses, as compared to a naive encoding
that uses a quartic (fourth power) number of clauses; and in
practice our encoding uses just a linear number of variables
and a quadratic number of clauses. Moreover, our encoding is
incremental (it incrementally searches over lengths of paths),
which may be further exploited by incremental SAT solvers
(see Remark 1 for details). An important consequence of
our result is that any improvement in SAT-solvers (improved
solvers or parallel solvers), which is an active research area,
carries over to the qualitative problem for POMDPs. We
have implemented our approach and our experimental results
show that our approach scales much better, and can solve
large POMDP instances where the previous method fails.

Comparison with contingent or strong planning. We consider

the qualitative analysis problem which is different as com-
pared to strong or contingent planning (Maliah et al. 2014;
Cimatti et al. 2003; Albore, Palacios, and Geffner 2009).
The strong planning problem has been also considered under
partial observation in (Bertoli et al. 2006; Rintanen 2004;
Bonet, Palacios, and Geffner 2009). The key difference of
strong planning and qualitative analysis is as follows: in
contingent planning the probabilistic aspect is treated as an
adversary, whereas in qualitative analysis though the precise
probabilities do not matter, still the probabilistic aspect needs
to be considered. The related work is summarized in Table 1.
For a detailed discussion with illustrative examples see the
full version (Chatterjee, Chmelik, and J.Davies 2015).

MDP POMDP

Strong planning SAT-based algorithm MBP BDD-based
(Baral, Eiter, and Zhao 2005) (Cimatti et al. 2003)

Strong cyclic planning

SAT-based algorithm BDD-based
(Baral, Eiter, and Zhao 2005) (Bertoli, Cimatti, and Pistore 2006)

MBP BDD-based SAT-based for small strategies
(Cimatti et al. 2003) Theorem 3

Table 1: Comparison of existing algorithms

Comparison with strong cyclic planning. The qualitative
analysis problem is equivalent to the strong cyclic planning
problem. The strong cyclic problem was studied in the per-
fect information setting in (Cimatti et al. 2003) and later ex-
tended to the partial information setting in (Bertoli, Cimatti,
and Pistore 2006). However, there are two crucial differ-
ences of our work w.r.t. (Bertoli, Cimatti, and Pistore 2006):
(i) We consider the problem of finding small strategies as com-
pared to general strategies. We show that our problem is NP-
complete. In contrast, it is known that the qualitative analysis
problem for POMDPs with general strategies is EXPTIME-
complete (Chatterjee, Doyen, and Henzinger 2010; Baier,
Größer, and Bertrand 2012). Thus the strong cyclic planning
with general strategies considered in (Bertoli, Cimatti, and
Pistore 2006) is also EXPTIME-complete, whereas our prob-
lem is NP-complete. Thus there is a significant difference
in the complexity of the problem we consider. (ii) The work
of (Bertoli, Cimatti, and Pistore 2006) presents a BDD-based
implementation, whereas we present a SAT-based implemen-
tation. Note that since (Bertoli, Cimatti, and Pistore 2006)
considers an EXPTIME-complete problem in general there is
no efficient reduction to SAT. (iii) Finally, the equivalence of
strong cyclic planning and qualitative analysis of POMDPs
imply that our results present an efficient SAT-based imple-
mentation to obtain small strategies in strong cyclic planning
(also see the full version (Chatterjee, Chmelik, and J.Davies
2015) for a detailed discussion).

2 Preliminaries

Definition 1 POMDPs. A Partially Observable Markov
Decision Process (POMDP) is defined as a tuple P =
(S,A, δ,Z,O, I) where:

• (i) S is a finite set of states;
• (ii) A is a finite alphabet of actions;

3226

• (iii) δ : S × A → D(S) is a probabilistic transition
function that given a state s and an action a ∈ A gives
the probability distribution over the successor states, i.e.,
δ(s, a)(s′) denotes the transition probability from s to s′
given action a;

• (iv) Z is a finite set of observations;
• (v) I ∈ S is the unique initial state;
• (vi) O : S → Z is an observation function that maps every

state to an observation. For simplicity w.l.o.g. we consider
that O is a deterministic function (see (Chatterjee et al.
2015b, Remark 1)).

Plays and Cones. A play (or a path) in a POMDP is
an infinite sequence (s0, a0, s1, a1, s2, a2, . . .) of states and
actions such that s0 = I and for all i ≥ 0 we have
δ(si, ai)(si+1) > 0. We write Ω for the set of all plays.
For a finite prefix w ∈ (S · A)∗ · S of a play, we denote by
Cone(w) the set of plays with w as the prefix (i.e., the cone
or cylinder of the prefix w), and denote by Last(w) the last
state of w. For a finite prefix w = (s0, a0, s1, a1, . . . , sn) we
denote by O(w) = (O(s0), a0,O(s1), a1, . . . ,O(sn)) the
observation and action sequence associated with w.

Strategies (or policies). A strategy (or a policy) is a recipe
to extend prefixes of plays and is a function σ : (S ·A)∗ ·S →
D(A) that given a finite history (i.e., a finite prefix of a play)
selects a probability distribution over the actions. Since we
consider POMDPs, strategies are observation-based, i.e., for
all histories w = (s0, a0, s1, a1, . . . , an−1, sn) and w′ =
(s′0, a0, s

′
1, a1, . . . , an−1, s

′
n) such that for all 0 ≤ i ≤ n we

have O(si) = O(s′i) (i.e., O(w) = O(w′)), we must have
σ(w) = σ(w′). In other words, if the observation sequence
is the same, then the strategy cannot distinguish between the
prefixes and must play the same. Equivalently, we can define
a POMDP strategy as a function σ : (Z · A)∗ · Z → D(A).

Observation-Stationary (Memoryless) Strategies. A strat-
egy σ is observation-stationary (or memoryless) if it depends
only on the current observation, i.e., whenever for two his-
tories w and w′, we have O(Last(w)) = O(Last(w′)), then
σ(w) = σ(w′). Therefore, a memoryless strategy is just
a mapping from observations to a distribution over actions:
σ : Z → D(A). We may also define a memoryless strat-
egy as a mapping from states to distributions over actions
(i.e., σ : S → D(A)), as long as σ(s) = σ(s′) for all
states s, s′ ∈ S such that O(s) = O(s′). All three defi-
nitions are equivalent, so we will use whichever definition
is most intuitive. We define the set of states that can be
reached using a memoryless strategy recursively: I ∈ Rσ,
and if s ∈ Rσ then s′ ∈ Rσ for all s′ such that there exists
an action a where δ(s, a)(s′) > 0 and σ(s)(a) > 0. Let
πk(s, s

′) = (s1, a1, ..., sk) be a path of length k from s1 = s
to sk = s′. We say that πk(s, s

′) is compatible with σ if
σ(si)(ai) > 0 for all 1 ≤ i < k.

Strategies with Memory. A strategy with memory is a tuple
σ = (σu, σn,M,m0) where: (i) M is a finite set of memory
states. (ii) The function σn : M → D(A) is the action
selection function that given the current memory state gives
the probability distribution over actions. (iii) The function

σu : M×Z×A → D(M) is the memory update function that
given the current memory state, the current observation and
action, updates the memory state probabilistically. (iv) The
memory state m0 ∈ M is the initial memory state.

Probability Measure. Given a strategy σ and a starting
state I , the unique probability measure obtained given σ is
denoted as Pσ

I (·). We first define a measure ρσI (·) on cones.
For w = I we have ρσI (Cone(w)) = 1, and for w = s′
where I �= s′ we have ρσI (Cone(w)) = 0; and for w′ =
w · a · s we have ρσI (Cone(w

′)) = ρσI (Cone(w)) · σ(w)(a) ·
δ(Last(w), a)(s). By Carathéodory’s extension theorem, the
function ρσI (·) can be uniquely extended to a probability
measure P

σ
I (·) over Borel sets of infinite plays (Billingsley

1995).
Given a set of target states, the reachability objective re-

quires that a target state is visited at least once.

Definition 2 Reachability Objective. Given a set T ⊆ S
of target states, the reachability objective is Reach(T) =
{(s0, a0, s1, a1, ...) ∈ Ω|∃i ≥ 0 : si ∈ T}.

In the remainder of the paper, we assume that the set of
target states contains a single goal state, i.e., T = {G} ⊆ S.
We can assume this w.l.o.g. because it is always possible
to add an additional state G with transitions from all target
states in T to G.

Definition 3 Almost-Sure Winning. Given a POMDP P
and a reachability objective Reach(T), a strategy σ is almost-
sure winning iff Pσ

I (Reach(T)) = 1.

In the sequel, whenever we refer to a winning strategy, we
mean an almost-sure winning strategy.

3 Almost-Sure Reachability with

Memoryless Strategies

In this section we present our results concerning the complex-
ity of almost-sure reachability with memoryless strategies.
First, we show that memoryless strategies for almost-sure
reachability take a simple form. The following proposition
states that it does not matter with which positive probability
an action is played.

Proposition 1 A POMDP P with a reachability objective
Reach(T) has a memoryless winning strategy if and only
if it has a memoryless winning strategy σ such that for all
a, a′ ∈ A and s ∈ S, if σ(s)(a) > 0 and σ(s)(a′) > 0 then
σ(s)(a) = σ(s)(a′).

Intuitively, σ only distinguishes between actions that must
not be played, and therefore have probability 0, and those that
may be played (having probabilities > 0). This proposition
implies that we do not need to determine precise values for
the positive probabilities when designing a winning strategy.
In the following, we will for simplicity slightly abuse termi-
nology: when we refer to a strategy or distribution as being
uniform, we actually mean a distribution of this type.

3227

The following result shows that determining whether there
is a memoryless winning strategy reduces to finding finite
paths from states to the target set.

Proposition 2 A memoryless strategy σ is a winning strategy
if and only if for each state s ∈ Rσ, there is a path πk(s,G)
compatible with σ, for some finite k ≤ |S|.

Intuitively, the strategy must prevent the agent from reach-
ing a state from which the target states can not be reached. It
follows that determining whether there exists a memoryless,
almost-sure winning strategy is in the complexity class NP.
An NP-hardness result was established for a similar prob-
lem, namely, memoryless strategies in two-player games
with partial-observation, in (Chatterjee, Kößler, and Schmid
2013, Lemma 1). The reduction constructed a game that is
a DAG (directed acyclic graph), and replacing the adversar-
ial player with a uniform distribution over choices shows
that the almost-sure reachability problem under memoryless
strategies in POMDPs is also NP-hard.

Theorem 1 The problem of determining whether there exists
a memoryless, almost-sure winning strategy for a POMDP
P and reachability objective Reach(T) is NP-complete.

The complexity of the almost-sure reachability problem for
memoryless strategies suggests a possible approach to solve
this problem in practice. We propose to find a memoryless
winning strategy by encoding the problem as an instance of
SAT, and then executing a state-of-the-art SAT solver to find
a satisfying assignment or prove that no memoryless winning
strategy exists.

3.1 SAT Encoding for Memoryless Strategies

Next, we show how to encode the almost-sure reachability
problem for memoryless strategies as a SAT problem. We
will define a propositional formula Φk for an integer parame-
ter k ∈ N, in Conjunctive Normal Form, such that Φk (for a
sufficiently large k) is satisfiable if and only if the POMDP
P has a memoryless, almost-sure winning strategy for reach-
ability objective Reach(G).

By Propositions 1 and 2, we seek a function from states
to subsets of actions, σ : S → P(A) (where P(A) is the
powerset of actions) such that for each state s ∈ Rσ, there
is a path πk(s,G) compatible with σ for some k ≤ |S|. The
value of k will be a parameter of the SAT encoding. If we
take k to be sufficiently large, e.g., k = |S| then one call
to the SAT solver will be sufficient to determine if there
exists a winning strategy. If k = |S| and the SAT solver
determines that Φk is unsatisfiable, it will imply that there is
no memoryless winning strategy.

We describe the CNF formula Φk by first defining all of its
Boolean variables, followed by the clausal constraints over
those variables.

Boolean Variables. The Boolean variables of Φk belong to
three groups, which are defined as follows:
1. {Ai,j}, 1 ≤ i ≤ |S|, 1 ≤ j ≤ |A|. The Boolean variable

Ai,j is the proposition that the probability of playing action
j in state i is greater than zero, i.e., that σ(i)(j) > 0.

2. {Ci}, 1 ≤ i ≤ |S|. The Boolean variable Ci is the propo-
sition that state i is reachable using σ (i.e, these variables
define Rσ).

3. {Pi,j}, 1 ≤ i ≤ |S|, 0 ≤ j ≤ k. The Boolean variable
Pi,j represents the proposition that from state i ∈ S there
is a path to the goal of length at most j, that is compatible
with the strategy.

Logical Constraints. The following clause is defined for
each i ∈ S, to ensure that at least one action is chosen in
each state: ∨

j∈A
Ai,j

To ensure that the strategy is observation-based, it is nec-
essary to ensure that if two states have the same observations,
then the strategy behaves identically. This is achieved by
adding the following constraint for all pairs of states i �= j
such that O(i) = O(j), and all actions r ∈ A:

Ai,r ⇐⇒ Aj,r

The following clauses ensure that the {Ci} variables will
be assigned True, for all states i that are reachable using the
strategy defined by the {Ai,j} variables:

¬Ci ∨ ¬Ai,j ∨ C�

Such a clause is defined for each pair of states i, � ∈ S and
action j ∈ A for which δ(i, j)(�) > 0. Furthermore, the
initial state is reachable by the strategy, which is expressed
by adding the single clause:

CI

We introduce the following unit clauses, which say that
from the goal state, the goal state is reachable using a path of
length at most 0:

(PG,j) for all 0 ≤ j ≤ k

For each state i ∈ S, we introduce the following clause
that ensures if i is reachable, then there is a path from i to the
goal that is compatible with the strategy.

(¬Ci ∨ Pi,k)

Finally, we use the following constraints to define the value
of the {Pi,j} variables in terms of the chosen strategy.

Pi,j ⇐⇒
∨
a∈A

⎡
⎣Ai,a ∧

⎛
⎝ ∨

i′∈S:δ(i,a)(i′)>0

Pi′,j−1

⎞
⎠
⎤
⎦

This constraint is defined for each i ∈ S, and 1 ≤ j ≤ k.
We translate this constraint to clauses using the standard
Tseitin encoding (Tseitin 1968), which introduces additional
variables in order to keep the size of the clausal encoding
linear.

The conjunction of all clauses defined above forms the
CNF formula Φk.

Theorem 2 If Φk is satisfiable, for any k, then a memory-
less winning strategy σ : S → D(A) can be extracted from
the truth assignment to the variables {Ai,j}. If Φk is un-
satisfiable for k = |S| then there is no memoryless winning
strategy.

3228

The number of variables in Φk is O(|S| · |A| + |S| · k),
and the number of clauses is O(|S|2 · |A| · k). Note that the
number of actions, |A|, is usually a small constant, while the
size of the state space, |S|, is typically large. The number
of variables is quadratic in the size of the state space, while
the number of clauses is cubic (recall k ≤ |S|). Note, that
variables Ci overapproximate Rσ .

Remark 1 A naive SAT encoding would introduce a
Boolean variable Xi,j,� for each i, � ∈ S, 1 ≤ j ≤ k, to
represent the proposition that the jth state along a path from
state i to the goal is � ∈ S. However, using such variables
to enforce the existence of paths from every reachable state
to the goal, instead of the variables {Pi,j} which we used
above, results in a formula with a cubic number of variables
and a quartic (fourth power) number of clauses. Thus our
encoding has the theoretical advantage of being considerably
smaller than the naive encoding. Our encoding also offers
two main practical advantages. First, it is possible to find a
winning strategy, if one exists, using k � |S|, by first gen-
erating Φk for small values of k. If the SAT solver finds Φk

to be unsatisfiable, then we can increase the value of k and
try again. Otherwise, if the formula is satisfiable, we have
found a winning strategy and we can stop immediately. In
this way, we are usually able to find a memoryless winning
strategy (if one exists) very quickly, using only small values
of k. So in practice, the size of Φk is actually only quadratic
in |S|. Second, our encoding allows to take advantage of SAT
solvers that offer an incremental interface, which supports the
addition and removal of clauses between calls to the solver
(though this is not exploited in our experimental results).

4 Almost-Sure Reachability with

Small-Memory Strategies

For some POMDPs, a memoryless strategy that wins almost-
surely may not exist. However, in some cases giving the
agent a small amount of memory may help. We extend our
SAT approach to the case of small-memory strategies in this
section.

Definition 4 A small-memory strategy is a strategy with
memory, σ = (σu, σn,M,m0), such that |M | = μ for some
small constant μ.

We will refer to the number of memory states, μ, as the
size of the small-memory strategy. Propositions 1 and 2 and
Theorem 1 carry over to the case of small-memory strategies.

Proposition 3 A POMDP P with reachability objective
Reach(T) has a small-memory winning strategy of size μ
if and only if it has a small-memory winning strategy of size
μ where both the action selection function and the memory
update function are uniform.

We must modify the definition of a compatible path in
the case of small-memory strategies, to also keep track of
the sequence of memory states. Let πk(s,m, s′,m′) =
(s1,m1, a1, ..., sk,mk, ak) be a finite sequence where s =
s1, m = m1, s′ = sk and m′ = mk, and for all 1 ≤ i ≤ k,

si ∈ S, mi ∈ M and ai ∈ A. Then we say that
πk(s,m, s′,m′) is a path compatible with small-memory
strategy σ if for all 1 ≤ i < k, we have δ(si, ai)(si+1) > 0,
σn(mi)(ai) > 0, and σu(mi,O(si), ai)(mi+1) > 0.

Let Rσ be the set of all pairs (s,m) ∈ S ×M such that
there exists a finite-length path πk(I,m0, s,m) that is com-
patible with σ.

Proposition 4 A small-memory strategy σ is winning if and
only if for each (s,m) ∈ Rσ there is a path πk(s,m,G,m′)
for some k ≤ |S| · |M | and some m′ ∈ M , that is compatible
with σ.

Theorem 3 The problem of determining whether there exists
a winning, small-memory strategy of size μ, where μ is a
constant, is NP-complete.

Therefore, we may also find small-memory winning strate-
gies using a SAT-based approach. We remark that Theorem 3
holds even if μ is polynomial in the size of the input POMDP.

4.1 SAT Encoding for Small-Memory Strategies

The SAT encoding from Section 3.1 can be adapted for the
purpose of finding small-memory winning strategies. Given
a POMDP P , reachability objective Reach(G), a finite set of
memory states M of size μ, an initial memory state m0 ∈ M ,
and a path length k ≤ |S| · |M |, we define the CNF formula
Φk,μ as follows.

Boolean Variables. We begin by defining variables to en-
code the action selection function σn. We introduce a
Boolean variable Am,a for each memory-state m ∈ M and
action a ∈ A, to represent that action a is among the possi-
ble actions that can be played by the strategy, given that the
memory-state is m, i.e., that σn(m)(a) > 0.

The next set of Boolean variables encodes the memory
update function. We introduce a Boolean variable Mm,z,a,m′

for each pair of memory-states m,m′ ∈ M , observation z ∈
Z and action a ∈ A. If such a variable is assigned to True, it
indicates that if the current memory-state is m, the current
observation is z, and action a is played, then it is possible
that the new memory-state is m′, i.e., σu(m, z, a)(m′) > 0.

Similarly to the memoryless case, we also introduce the
Boolean variables Ci,m for each state i ∈ S and memory
state m ∈ M , that indicate which (state, memory-state) pairs
are reachable by the strategy.

We define variables {Pi,m,j} for all i ∈ S, m ∈ M , and
0 ≤ j ≤ k, similarly to the memoryless case. The variable
Pi,m,j corresponds to the proposition that there is a path of
length at most j from (i,m) to the goal, that is compatible
with the strategy.

Logical Constraints. We introduce the following clause for
each m ∈ M , to ensure that at least one action is chosen for
each memory state: ∨

j∈A
Am,j

To ensure that the memory update function is well-defined,
we introduce the following clause for each m ∈ M , a ∈ A

3229

and z ∈ Z . ∨
m′∈M

Mm,z,a,m′

The following clauses ensure that the {Ci,m} variables
will be assigned True, for all pairs (i,m) that are reachable
using the strategy.

¬Ci,m ∨ ¬Am,a ∨ ¬Mm,z,a,m′ ∨ Cj,m′

Such a clause is defined for each pair of memory-states
m,m′ ∈ M , each pair of states i, j ∈ S, each observa-
tion z ∈ Z , and each action a ∈ A, such that δ(i, a)(j) > 0
and z = O(j).

Clearly, the initial state and initial memory state are reach-
able. This is enforced by adding the single clause:

(CI,m0
)

We introduce the following unit clause for each m ∈ M
and 0 ≤ j ≤ k, which says that the goal state with
any memory-state is reachable from the goal state and that
memory-state, using a path of length at most 0:

(PG,m,j)

Next, we define the following binary clause for each i ∈ S
and m ∈ M , so that if the (state, memory-state) pair (i,m)
is reachable, then the existence of a path from (i,m) to the
goal is enforced.

¬Ci,m ∨ Pi,m,k

Finally, we use the following constraints to define the value
of the Pi,m,j variables in terms of the chosen strategy.
Pi,m,j ⇐⇒

∨
a∈A

⎡
⎢⎢⎢⎢⎢⎢⎣
Am,a ∧

⎛
⎜⎜⎜⎜⎜⎜⎝

∨

m′∈M,z∈Z,
i′∈S:δ(i,a)(i′)>0

and O(i′)=z

[
Mm,z,a,m′ ∧ Pi′,m′,j−1

]

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

This constraint is defined for each i ∈ S, m ∈ M and 1 ≤ j ≤
k. We use the standard Tseitin encoding to translate this formula to
clauses. The conjunction of all clauses defined above forms the CNF
formula Φk,μ.

Theorem 4 If Φk,μ is satisfiable then there is a winning, small-
memory strategy of size μ, and such a strategy is defined by the truth
assignment to the {Am,a} and {Mm,z,a,m′} variables. If Φk,μ is un-
satisfiable, and k ≥ |S| · μ, then there is no small-memory strategy of
size μ that is winning.

The number of variables in Φk,μ is O(|S| ·μ ·k+μ2 · |Z| · |A|). The
number of clauses is O(|S|2 ·μ2 · |Z| · |A| · k). The number of actions,
|A|, and the number of observations, |Z|, are usually constants. We
also expect that the number of memory states, μ, is small. Since k ≤
|S| · μ, the number of variables is quadratic and the number of clauses
is cubic in the size of the state space, as for memoryless strategies.

The comments in Remark 1 also carry over to the small-memory
case. In practice, we can often find a winning strategy with small values
for k and μ (see Section 5).

Remark 2 Our encoding can be naturally extended to search for deter-
ministic strategies, for details see the full version (Chatterjee, Chmelik,
and J.Davies 2015).

Name Grid # States Explicit Minisat (s)
(s) UNSAT SAT

k μ = 1 k μ = 2

HW1 11× 8 3573 128.9 14 0.1 14 0.6
HW2 11× 9 4189 - 16 0.1 16 0.9
HW3 11× 10 4981 - 18 0.2 18 2.0
HW4 15× 12 9341 - 22 0.6 22 10.4
HW5 19× 14 15245 - 30 2.0 30 81.9
HW6 23× 16 22721 - 35 5.9 35 244.6
HW7 27× 18 31733 - 40 18.0 40 635.7
HW8 29× 20 39273 - 45 55.4 45 1157.1
HW9 31× 22 47581 - 50 127.9 50 -

Table 2: Results of the explicit algorithm and our SAT-based
approach, on the Hallway instances.

5 Experimental Results
In this section we present our experimental results, which show
that small-memory winning strategies do exist for several realistic
POMDPs that arise in practice. Our experimental results clearly
demonstrate the scalability of our SAT-based approach, which yields
good performance even for POMDPs with large state spaces, where
the previous explicit approach performs poorly.

We have implemented the encoding for small-memory strategies,
described in Section 4.1, as a small python program. We compare
against the explicit graph-based algorithm presented in (Chatterjee et al.
2015b). This is the state-of-the-art explicit POMDP solver for almost-
sure reachability based on path-finding algorithms of (Chatterjee and
Henzinger 2014) with a number of heuristics. We used the SAT solver
Minisat, version 2.2.0 (Eén and Sörensson 2004). The experiments
were conducted on a Intel(R) Xeon(R) @ 3.50GHz with a 30 minute
timeout. We do not report the time taken to generate the encoding us-
ing our python script, because it runs in polynomial time, and more
efficient implementations can easily be developed. Also, we do not ex-
ploit incremental SAT in our experimental results (this will be part of
future work). We consider several POMDPs that are similar to well-
known benchmarks. We generated several instances of each POMDP,
of different sizes, in order to test the scalability of our algorithm.

Hallway POMDPs. We considered a family of POMDP instances, in-
spired by the Hallway problem introduced in (Littman, Cassandra, and
Kaelbling 1995) and used later in (Spaan 2004; Smith and Simmons
2004; Bonet and Geffner 2009; Chatterjee et al. 2015b). In the Hall-
way POMDPs, a robot navigates on a rectangular grid. The grid has
barriers where the robot cannot move, as well as trap locations that de-
stroy the robot. The robot must reach a specified goal location. The
robot has three actions: move forward, turn left, and turn right. The
robot can see whether there are barriers around its grid cell, so there
are two observations (wall or no wall) for each direction. The actions
may all fail, in which case the robot’s state remains the same. The
state is therefore comprised of the robot’s location in the grid, and its
orientation. Initially, the robot is randomly located somewhere within
a designated subset of grid locations, and the robot is oriented to the
south (the goal is also to the south). We generated several Hallway
instances, of sizes shown in Table 2. The runtimes for the SAT-based
approach and the explicit approach are also given in the table. Time-
outs (of 30 minutes) are indicated by “-”. In all cases, the number of
memory states required for there to be a winning strategy is 2. There-
fore, the runtimes reported for μ = 1 correspond to the time required
by the SAT solver to prove that Φk,μ is unsatisfiable, while runs where
μ = 2 resulted in the SAT solver finding a solution. We set k to a
sufficiently large value by inspection of the POMDP instance.

Escape POMDPs. The problem is based on a case study published
in (Svorenova et al. 2015), where the goal is to compute a strategy
to control a robot in an uncertain environment. Here, a robot is nav-
igating on a square grid. There is an agent moving around the grid,
and the robot must avoid being captured by the agent, forever. The
robot has four actions: move north, move south, move east, move west.

3230

Name Grid # States Explicit (s) Minisat (s)
UNSAT SAT
k μ = 4 k μ = 5

Escape3 3× 3 84 0.4 8 0.4 2 0.2
Escape4 4× 4 259 0.9 8 1.56 2 1.0
Escape5 5× 5 628 6.8 8 5.0 2 3.3
Escape6 6× 6 1299 20.9 8 15.8 2 9.0
Escape7 7× 7 2404 89.2 8 36.2 2 19.5
Escape8 8× 8 4099 238.6 8 63.4 2 47.1
Escape9 9× 9 6564 688.6 8 113.5 2 60.2
Escape10 10× 10 10003 - 8 212.6 2 113.1
Escape11 11× 11 14644 - 8 303.3 2 210.4
Escape12 12× 12 20739 - 8 535.4 2 505.1

Table 3: Results of the explicit algorithm and our SAT-based
approach, on the Escape instances.

Name # States Explicit (s) Minisat (s)

RS[4] 351 0.4 0.06
RS[5] 909 1.6 0.24
RS[6] 2187 3.4 0.67
RS[7] 5049 14.3 1.58
RS[8] 11367 50.6 4.59
RS[9] 25173 197.3 79.1

Table 4: Results of the explicit algorithm and our SAT-based
approach, on the RockSample instances.

These actions have deterministic effects, i.e., they always succeed. The
robot can observe whether or not there are barriers in each direction,
and it can also observe the position of the agent if the agent is cur-
rently on an adjacent cell. The agent moves randomly. We generated
several instances of the Escape POMDPs, of sizes shown in Table 3.
The runtimes for the SAT-based approach and the explicit approach are
also given in the table, with timeouts indicated by “-”. The number of
memory states was set to μ = 5, which is sufficient for there to be a
small-memory winning strategy. For these POMDPs, there is always a
path directly to the goal state, so setting k = 2 was sufficient to find
a winning strategy. In order to prove that there is no smaller winning
strategy, we increased k to 8 = 2× μ, where μ = 4. The runtimes for
the resulting unsatisfiable formulas are also shown in Table 3.

RockSample POMDPs. We consider a variant of the RockSam-
ple problem introduced in (Smith and Simmons 2004) and used later
in (Bonet and Geffner 2009; Chatterjee et al. 2015b). The RockSample
instances model rover science exploration. The positions of the rover
and the rocks are known, but only some of the rocks have a scientific
value; we will call these rocks good. The type of the rock is not known
to the rover, until the rock site is visited. Whenever a bad rock is sam-
pled the rover is destroyed and a losing absorbing state is reached. If
a sampled rock is sampled for the second time, then with probability
0.5 the action has no effect. With the remaining probability the sam-
ple is destroyed and the rock needs to be sampled one more time. An
instance of the RockSample problem is parametrized with a parameter
[n]: n is the number of rocks on a grid of size 3 × 3. The goal of the
rover is to obtain two samples of good rocks. In this problem we have
set μ = 2 and k = 8, which is sufficient to find a winning strategy for
each instance. However, memoryless strategies are not sufficient as in
some situations sampling is prohibited whereas in other situations it is
required (hence we did not consider μ = 1). The results are presented
in Table 4.

Remark 3 In the unsatisfiable (UNSAT) results of the Hallway and
Escape POMDPs, we have computed, based on the diameter of the un-
derlying graph and the number of memory elements μ, a sufficiently
large k to disprove the existence of an almost-sure winning strategy of

the considered memory size. It follows, that there is no memoryless
strategy for the Hallway POMDPs, and no almost-sure winning strat-
egy for the Escape POMDPs, that uses only 4 memory elements.

Memory requirements. In all runs of the Minisat solver, at most 5.6
GB of memory was used. The runs of the explicit solver consumed
around 30 GB of memory at the timeout.

6 Conclusion and Future Work
In this work we present the first symbolic SAT-based algorithm for
almost-sure reachability in POMDPs. We have illustrated that the sym-
bolic algorithm significantly outperforms the explicit algorithm, on a
number of examples similar to problems from the literature. In future
work we plan to investigate the possibilities of incremental SAT solv-
ing. Incremental SAT solvers can be beneficial in two ways: First, they
may improve the efficiency of algorithms to find the smallest almost-
sure winning strategy. Such an approach can be built on top of our
encoding. Second, incremental SAT solving could help in the case that
the original POMDP is modified slightly, in order to efficiently solve
the updated SAT instance. Investigating the practical impact of incre-
mental SAT solvers for POMDPs is the subject of future work.

References

Albore, A.; Palacios, H.; and Geffner, H. 2009. A translation-based
approach to contingent planning. In IJCAI, 1623–1628.
Baier, C.; Größer, M.; and Bertrand, N. 2012. Probabilistic omega-
automata. J. ACM 59(1).
Baral, C.; Eiter, T.; and Zhao, J. 2005. Using SAT and logic
programming to design polynomial-time algorithms for planning in
non-deterministic domains. In AAAI, volume 20, 578.
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2006.
Strong planning under partial observability. Artificial Intelligence
170(4):337–384.
Bertoli, P.; Cimatti, A.; and Pistore, M. 2006. Strong cyclic planning
under partial observability. ICAPS 141:580.
Bertsekas, D. 1995. Dynamic Programming and Optimal Control.
Athena Scientific. Volumes I and II.
Biere, A.; Cimatti, A.; Clarke, E.; Fujita, M.; and Zhu, Y. 1999.
Symbolic model-checking using SAT procedures instead of BDDs.
In DAC, 317–320.
Biere, A. 2013. Lingeling, plingeling and treengeling entering the
SAT competition 2013. In SAT Comp.
Billingsley, P., ed. 1995. Probability and Measure. Wiley-
Interscience.
Bonet, B., and Geffner, H. 2009. Solving POMDPs: RTDP-Bel vs.
point-based algorithms. In IJCAI, 1641–1646.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic derivation
of memoryless policies and finite-state controllers using classical
planners. In ICAPS. Citeseer.
Cerný, P.; Chatterjee, K.; Henzinger, T. A.; Radhakrishna, A.; and
Singh, R. 2011. Quantitative synthesis for concurrent programs. In
Proc. of CAV, LNCS 6806, 243–259. Springer.
Chatterjee, K., and Henzinger, M. 2011. Faster and dynamic
algorithms for maximal end-component decomposition and related
graph problems in probabilistic verification. In SODA. ACM-SIAM.
Chatterjee, K., and Henzinger, M. 2014. Efficient and dynamic
algorithms for alternating büchi games and maximal end-component
decomposition. J. ACM 61(3):15.
Chatterjee, K.; Doyen, L.; Henzinger, T.; and Raskin, J. 2006.
Algorithms for omega-regular games with imperfect information.
In CSL’06, 287–302. LNCS 4207, Springer.

3231

Chatterjee, K.; Chmelik, M.; Gupta, R.; and Kanodia, A. 2015a.
Optimal Cost Almost-sure Reachability in POMDPs. In AAAI.
Chatterjee, K.; Chmelik, M.; Gupta, R.; and Kanodia, A. 2015b.
Qualitative Analysis of POMDPs with Temporal Logic Specifica-
tions for Robotics Applications. ICRA.
Chatterjee, K.; Chmelik, M.; and J.Davies. 2015. A Symbolic SAT-
based Algorithm for Almost-sure Reachability with Small Strategies
in POMDPs. arXiv preprint arXiv:1511.08456.
Chatterjee, K.; Doyen, L.; and Henzinger, T. A. 2010. Qualitative
analysis of partially-observable Markov decision processes. In
MFCS, 258–269.
Chatterjee, K.; Jurdziński, M.; and Henzinger, T. 2003. Simple
stochastic parity games. In CSL’03, LNCS 2803, 100–113. Springer.
Chatterjee, K.; Kößler, A.; and Schmid, U. 2013. Automated
analysis of real-time scheduling using graph games. In HSCC’13,
163–172.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003. Weak,
strong, and strong cyclic planning via symbolic model checking.
Artificial Intelligence 147(1):35–84.
Culik, K., and Kari, J. 1997. Digital images and formal languages.
Handbook of formal languages 599–616.
Durbin, R.; Eddy, S.; Krogh, A.; and Mitchison, G. 1998. Biological
sequence analysis: probabilistic models of proteins and nucleic
acids. Cambridge Univ. Press.
Durrett, R. 1996. Probability: Theory and Examples (Second
Edition). Duxbury Press.
Eén, N., and Sörensson, N. 2004. An extensible SAT-solver. In
Theory and applications of satisfiability testing, 502–518. Springer.
Filar, J., and Vrieze, K. 1997. Competitive Markov Decision
Processes. Springer-Verlag.
Howard, H. 1960. Dynamic Programming and Markov Processes.
MIT Press.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic domains. Artif.
Intell. 101(1):99–134.
Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996. Rein-
forcement learning: A survey. JAIR 4:237–285.
Kolobov, A.; Mausam; Weld, D.; and Geffner, H. 2011. Heuristic
search for generalized stochastic shortest path MDPs. In ICAPS.
Kress-Gazit, H.; Fainekos, G. E.; and Pappas, G. J. 2009. Temporal-
logic-based reactive mission and motion planning. IEEE Transac-
tions on Robotics 25(6):1370–1381.
Littman, M. L.; Cassandra, A. R.; and Kaelbling, L. P. 1995.
Learning policies for partially observable environments: Scaling up.
In ICML, 362–370.
Madani, O.; Hanks, S.; and Condon, A. 2003. On the undecid-
ability of probabilistic planning and related stochastic optimization
problems. Artif. Intell. 147(1-2):5–34.
Maliah, S.; Brafman, R.; Karpas, E.; and Shani, G. 2014. Partially
observable online contingent planning using landmark heuristics. In
ICAPS.
Mohri, M. 1997. Finite-state transducers in language and speech
processing. Comp. Linguistics 23(2):269–311.
Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The complexity of
Markov decision processes. Mathematics of Operations Research
12:441–450.
Paz, A. 1971. Introduction to probabilistic automata (Computer
science and applied mathematics). Academic Press.

Pogosyants, A.; Segala, R.; and Lynch, N. 2000. Verification of
the randomized consensus algorithm of Aspnes and Herlihy: a case
study. Distributed Computing 13(3):155–186.
Puterman, M. L. 1994. Markov Decision Processes. John Wiley
and Sons.
Rintanen, J. 2004. Complexity of planning with partial observability.
In ICAPS, 345–354.
Rintanen, J. 2011. Planning with SAT, admissible heuristics and
A*. In IJCAI, 2015–2020.
Smith, T., and Simmons, R. 2004. Heuristic search value iteration
for POMDPs. In UAI, 520–527. AUAI Press.
Spaan, M. 2004. A point-based POMDP algorithm for robot
planning. In ICRA, volume 3, 2399–2404. IEEE.
Svorenova, M.; Chmelik, M.; Leahy, K.; Eniser, H. F.; Chatterjee,
K.; Cerna, I.; and Belta, C. 2015. Temporal Logic Motion Planning
using POMDPs with Parity Objectives. In HSCC.
Tseitin, G. 1968. On the complexity of derivation in propositional
calculus. Structures in Constructive Mathematics and Mathematical
Logic, Part II, Seminars in Mathematics 115–125.

3232

