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Ratzeburger Allee 160, 23538 Lübeck, Germany
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Abstract

In practice the vast majority of causal effect estimations from
observational data are computed using adjustment sets which
avoid confounding by adjusting for appropriate covariates.
Recently several graphical criteria for selecting adjustment
sets have been proposed. They handle causal directed acyclic
graphs (DAGs) as well as more general types of graphs
that represent Markov equivalence classes of DAGs, includ-
ing completed partially directed acyclic graphs (CPDAGs).
Though expressed in graphical language, it is not obvious
how the criteria can be used to obtain effective algorithms for
finding adjustment sets. In this paper we provide a new crite-
rion which leads to an efficient algorithmic framework to find,
test and enumerate covariate adjustments for chain graphs –
mixed graphs representing in a compact way a broad range of
Markov equivalence classes of DAGs.

1 Introduction

Covariate adjustment is one of the most widely used tech-
niques to estimate causal effects from observational data. By
a causal effect we mean a probability distribution of some
outcomes in post-treatment period resulting from the treat-
ment (Pearl 2009). The primary difficulty in application of
the adjustment approach is the selection of covariates one
needs to adjust to compute the post-treatment distribution.

The concept of covariate adjustments is well-understood
in cases when the structure encoding the causal relationships
between variables of interest is fully known and represented
as a directed acyclic graph (DAG). Pearl’s back-door crite-
rion (Pearl 1995) is probably the most well-known method
of selecting possible sets for adjustment in DAGs. It is suf-
ficient but not necessary. Due to Shpitser, VanderWeele, and
Robins (2010) we know a criterion expressed in graphical
language that is necessary and sufficient in the sense that it
is satisfied if and only if the adjustment conditions are ful-
filled. This reduces the properties of probability distributions
to properties of causal graphs. Based on the work by Sh-
pitser et.al., Textor and Liśkiewicz (2011) and van der Zan-
der, Liśkiewicz, and Textor (2014) have proposed an algo-
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Figure 1: A chain graph (to the left) which represents two
Markov equivalent DAGs: D1 and D2. Relative to exposure
X and outcome Y , Z = {Z2} is an adjustment set both in
D1 and in D2. Thus Z is an adjustment set in the chain graph.

rithmic framework for effective testing and finding covariate
adjustments in DAGs.

However, in practice the underlying DAG is usually un-
known. Instead several causal DAGs exist which explain
given statistical data and background knowledge. For exam-
ple, the structure learning algorithm proposed by Verma and
Pearl (1990; 1992) constructs, for a given list of conditional
independence statements M, a CPDAG (Andersson et al.
1997) representing all DAGs which are complete causal ex-
planations of M. Meek (1995) extends this algorithm pro-
viding a method to compute a complete causal explanation
for M which is consistent with background knowledge rep-
resented as a set of required and forbidden directed edges. In
this case, the resulting causal explanation is given as a mixed
graph, which might not be a CPDAG anymore.

In our study we assume that the learned causal structure
is represented as a chain graph – a mixed graph containing
no semi-directed cycles (Lauritzen and Wermuth 1989). A
primary benefit of chain graphs is that they provide an ele-
gant framework for modeling and analyzing a broad range
of Markov equivalence classes of DAGs (Verma and Pearl
1990; Andersson et al. 1997).

Given a chain graph and the pre-intervention distribution
we can compute causal effects using the covariate adjust-
ment approach. However, the challenging task now is to find
an adjustment set which is common for every DAG repre-
sented by the chain graph. Figure 1 shows an example for
such adjustment. A naive approach consisting in searching
for adjustment sets in all DAGs leads to exponential time al-
gorithms since the number of DAGs represented by a chain
graph can grow exponentially in the size of the graph.

Recently Perković et al. (2015) have presented a graph-
ical criterion that is necessary and sufficient for CPDAGs.
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But the challenge remains to bridge the gap between the
above criterion and algorithmic effectiveness. In our paper
we solve a more general problem providing effective algo-
rithms for adjustment sets in chain graphs. Thus, if a struc-
ture learning algorithm gives a mixed graph then our algo-
rithms are applicable in all cases when the resulting graph
does not have a semi-directed cycle.

Our algorithms reduce the problems of testing, finding,
and enumeration of adjustment sets to the d-connectivity
problem in a subclass of chain graphs, we call restricted
chain graphs (RCGs). This class includes both DAGs
and CPDAGs and seems to remain a powerful model for
analysing causal relationships. We provide a new adjustment
criterion for the restricted chain graphs which leads to an ef-
ficient algorithmic framework for solving problems involv-
ing covariate adjustments.

The paper is organized as follows. The next two sec-
tions present definitions and backgrounds of covariate ad-
justments. In Section 4 we provide our algorithm for finding
adjustment sets chain graphs. Sections 5 to 8 analyze the
correctness and complexity of the algorithm.

2 Definitions
We consider mixed graphs G = (V,E) with nodes (vertices,
variables) V and directed (A → B) and undirected (A−B)
edges E. By n we denote n = |V|, m = |E|. If a graph
contains only directed edges we call it a directed graph and
denote as D. A DAG is a directed graph with no directed
cycles. Nodes linked by an edge are adjacent. If there is an
edge A → B, A is a parent of B and B a child of A. A path
is a sequence V0, . . . , Vk of pairwise distinct nodes such that
for all i, with 0 ≤ i < k, there exists an edge connecting Vi

and Vi+1. A node Vi on V0, . . . , Vk is a collider if it occurs
on the path as Vi−1 → Vi ← Vi+1, and a non-collider oth-
erwise. A path π = V0, . . . , Vk is called possible directed
(possible causal) from V0 to Vk if for every 0 ≤ i < k,
the edge between Vi and Vi+1 is not into Vi. If such a π
contains only directed edges it is called directed or causal.
A node X is a possible ancestor of Y , and Y is a possible
descendant of X , if X = Y or there exists a possible di-
rected path π from X to Y . If π is a directed path, then X
is an ancestor of Y and Y a descendant of X . Given node
sets X and Y, a path from X ∈ X to Y ∈ Y is called
proper if it does not intersect X except at the endpoint. We
refer to the set of all ancestors or possible ancestors of X as
An(X), resp. possibleAn(X). Similarly, we use De(Y) and
possibleDe(Y) to denote the descendants, resp. possible de-
scendants of Y. For any subset of nodes W ⊆ V of a graph
G = (V,E) the induced subgraph of W, written as GW, is
the graph on nodes W that contains an edge e ∈ E if and
only if both end points of e are in W. The skeleton of any
mixed graph G is the undirected graph resulting from ignor-
ing the directionality of all edges. A v-structure in a mixed
graph G is an ordered triple of nodes (A,B,C) such they
induce the subgraph A → B ← C.

To extend the notion of d-connectivity to mixed graphs we
use the definitions proposed by Zhang (2008). A node V on
a path π in a mixed graph G is called a definite non-collider,
if there is an induced subgraph A ← V or V → B or A −

V −B, where A and B are the nodes preceding/succeeding
V on π. A non-endpoint vertex on π is said to be of definite
status, if it is either a collider or a definite non-collider on π.
A path is said to be of definite status if all its non-endpoint
vertices are of definite status. Given a mixed graph, a path
π between nodes X and Y , and a set Z (possibly empty and
X,Y /∈ Z) we say that π is d-connecting relative to Z if
every non-collider on π is not in Z, and every collider on π
has a descendant in Z. Given pairwise different sets X,Y,
Z, set Z d-separates X and Y if there exists no d-connected
definite status path between any X ∈ X and Y ∈ Y.

A possible directed path V0, . . . , Vk in a mixed graph
G is a semi-directed cycle if there is an edge between Vk

and V0 in G and at least one of the edges is directed as
Vi → Vi+1 for 0 ≤ i ≤ k. Here, Vk+1 = V0. A chain graph
(CG) is a graph without semi-directed cycles (Lauritzen and
Wermuth 1989). A Bayesian network for a set of variables
V = {X1, . . . , Xn} consists of a pair (D, P ), where D is a
DAG with V as the set of nodes, and P is the joint probabil-
ity function over the variables in V that factorizes according
to D as follows P (v) =

∏n
j=1 P (xj |paj), where v denotes

a particular realization of variables V and paj denotes a par-
ticular realization of the parent variables of Xj in D. When
interpreted causally, an edge Xi → Xj is taken to represent
a direct causal effect of Xi on Xj (Pearl 2009). Two DAGs
are Markov equivalent if they imply the same set of condi-
tional independencies. Due to Verma and Pearl (1990) we
know that two DAGs are Markov equivalent if they have the
same skeletons and the same v-structures.

Given a DAG D = (V,E), the class of Markov equiv-
alent graphs to D, denoted as [D], is defined as [D] =
{D′ | D′ is Markov equivalent to D}. The graph represent-
ing [D], called a completed partially directed acyclic graph
(CPDAG) or an essential graph, is a mixed graph denoted
as D∗ = (V,E∗), with the set of edges defined as follows:
A → B is in E∗ if A → B belongs to every D′ ∈ [D] and
A−B is in E∗ if there exist D′, D′′ ∈ [D] such that A → B
is an edge of D′ and A ← B an edge of D′′ (Andersson et al.
1997). A mixed graph G is called a CPDAG if G = D∗ for
some DAG D. Note that in general, it is not true that a DAG
is a CPDAG. A simple counterexample is a DAG: A → B.

Given a chain graph G a DAG D is a consistent DAG ex-
tension of G if and only if (1) G and D have the same skele-
tons, (2) if A → B is in G then A → B is in D, and (3) G
and D have the same v-structures. We refer to all consistent
DAG extensions of a mixed graph G as CE(G). Notice that
if G is a CPDAG for some DAG D then CE(G) = [D].

3 Covariate Adjustment in DAGs and CGs

We start this section with the formal definition of adjust-
ment. Next we present known results for adjustments in
DAGs and CPDAGs.

Let D = (V,E) be a DAG encoding the factorization
of a joint distribution for variables V = {X1, . . . , Xn}.
For disjoint X,Y ⊆ V, the (total) causal effect of X
on Y is P (y|do(x)) where do(x) represents an interven-
tion that sets X = x. This definition models an ideal-
ized experiment in which the variables in X can be set to

3316



D:

X1

X2

X3

Z1

Z2

Z3

Y Dpbd
XY:

X1

X2

X3

Z1

Z2

Z3

Y

G:

X1

X2

X3

Z1

Z2

Z3

Y Gpbd
XY:

X1

X2

X3

Z1

Z2

Z3

Y

Figure 2: Proper back-door graphs for a DAG D and a chain
graph G both with X = {X1, X2, X3},Y = {Y }.

given values. If v is consistent with x, the post-intervention
distribution can be expressed in a truncated factorization
formula: P (v|do(x)) =

∏
Xj∈V\X P (xj |paj). Otherwise

P (v|do(x)) = 0. For DAG D pairwise different subsets of
nodes X,Y, and Z, set Z is called adjustment relative to
(X, Y) if for every distribution P consistent with D we have
P (y|do(x)) = ∑

z P (y|x, z)P (z) (Pearl 2009).
For a chain graph G, a set Z is an adjustment relative to

(X,Y) in G, if Z is an adjustment relative to (X,Y) in any
consistent DAG extension of G.

Relying on the definition it is difficult to decide, if a given
set is an adjustment in a DAG or not. Fortunately due to
Shpitser, VanderWeele, and Robins (2010) we know a nec-
essary and sufficient criterion for this property.
Definition 1 (Adjustment Criterion (AC) for DAGs; (Sh-
pitser, VanderWeele, and Robins 2010; Shpitser 2012)). Let
D = (V,E) be a DAG and let X,Y,Z be pairwise disjoint
subsets of V. The set Z satisfies the adjustment criterion rel-
ative to (X,Y) in D if
(a) no element in Z is a descendant in D of any W ∈ V\X

which lies on a proper causal path from X to Y and
(b) all proper non-causal paths in D from X to Y are

blocked by Z.
Most recently Perković et al. (2015) have generalized the

criterion to CPDAGs and they have proven necessity and
sufficiency of this generalized criterion for CPDAGs.

In (van der Zander, Liśkiewicz, and Textor 2014) there is
proposed a new criterion for DAGs which is equivalent to
the AC (Definition 1). The crucial role here plays the proper
back-door graph, in which the first edge of every proper
causal path from X to Y is removed (see Fig. 2 for an ex-
ample). Based on this notion the so called constructive back-
door criterion for DAGs, is obtained from AC by replacing
condition (b) by the following one: Z d-separates X and Y
in the proper back-door graph. In this way the criterion re-
duces adjustment problems to d-separation problems.

4 Main Results

In this section we propose a method to find adjustment sets
for a given chain graph. To describe our algorithm we in-
troduce first several auxiliary definitions and notations. We
refer to the nodes which lie on a proper possible causal path
from X to Y as PCP(X,Y). So we let PCP(X,Y) =

{W ∈ V \ X | W lies on a proper possible causal path
from X to Y} and generalize the proper back-door graphs
for CGs as follows (for an example see Fig. 2):

Definition 2 (Proper Back-Door Graph for CGs). Let
G = (V,E) be a chain graph, and X,Y be disjoint sub-
sets of nodes of G. The proper back-door graph, denoted as
Gpbd
XY, is obtained from G by removing all edges X → D in

E such that X ∈ X and D ∈ PCP(X,Y).

In order to create efficient algorithms for CGs, we define
a new, simpler kind of paths and provide a generalized back-
door criterion based on those paths.

Definition 3 (Almost Definite Status). Let π be a path in
a mixed graph G = (V,E). A node V on π is called an
almost definite non-collider, if it occurs as A ← V , V →
B or as A − V − B on π, where A and B are the nodes
preceding/succeeding V on π. A non-endpoint vertex V on π
is said to be of almost definite status, if it is either a collider
or an almost definite non-collider on π. A path π is said to
be of almost definite status if all non-endpoint vertices on
the path are of almost definite status.

The property of almost definite status only depends on
the edges in the paths, not on those outside the path, and
is so algorithmically easier to handle than definite status.s

For example in the CG G: A B C D E the path
A− B − C → D ← E is of almost definite status. It is not
of definite status, because A and C are connected and thus
there exists a consistent DAG extension of G that contains a
collider A → B ← C. We state the following criterion by
using these paths.

Definition 4 (Constructive Back-Door Criterion for
CGs). Let G = (V,E) be a chain graph, and let X,Y,Z ⊆
V be pairwise disjoint subsets of variables. Z satisfies the
constructive back-door criterion relative to (X,Y) in G if
(a) Z ⊆ V \ possibleDe(PCP(X,Y)) and
(b) Z blocks every almost definite status path from X to Y

in the proper back-door graph Gpbd
XY.

Now we are ready to describe an algorithm to find in a
given chain graph G an adjustment set relative to a given
pair (X,Y). The rule used in Step 1 is applied to variables
A,B,C if the induced graph of {A,B,C} is A → B −
C. Moreover, recall, that a chain component of G (used in
Step 2) is a connected component of the undirected graph
obtained from G by removing all directed edges, and chordal
means that every cycle of length ≥ 4 possesses a chord i.e.
two nonconsecutive adjacent vertices.

Function FINDADJSET(G,X,Y)
1. Close G under the rule A → B − C ⇒ A → B → C.

If a new v-structure occurs then return ⊥ and exit.
2. If some chain component of the resulting graph is not

chordal then return ⊥ and exit.
3. Let R denote the resulting graph.
4. Return a set Z satisfying the constructive back-door

criterion for R.

Using this algorithm we get our main results.
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Figure 3: An execution of FINDADJSET on an input chain graph G with X = {X1, X2}, Y = {Y }. The RCG R is constructed
from G in Step 1 and it satisfies CE(G) = CE(R). The only chain component {V2, V3, V4} is chordal. Step 4 constructs the
proper back-door graph Rpbd

XY and possibleDe(PCP(X,Y)) = {V1, V2, V3, V4, Y }. The (only) adjustment set is Z = {V0}.

Theorem 5. Given a chain graph G and sets of disjoint
nodes X and Y in G the problem to find an adjustment set
Z relative to (X,Y) can be solved in time O(n4).

Figure 3 illustrates the execution of the algorithm on an
example chain graph. To prove the theorem we first intro-
duce a subclass of chain graphs. Then the proof follows from
the propositions below.
Definition 6 (Restricted Chain Graph). A chain graph G
is a restricted chain graph (RCG) if and only if (1) every
chain component of G is chordal, and (2) the configuration
A → B − C does not exist as induced subgraph of G.
Proposition 7. If CE(G) 
= ∅ then algorithm FINDADJSET
generates in Step 3 an RCG R with CE(G) = CE(R). Oth-
erwise the algorithm returns ⊥. Moreover the Steps 1-2 of
FINDADJSET can be implemented by an algorithm running
in time O(k2m) ≤ O(n4), where k describes the maximum
degree of nodes in G.
Proposition 8. If CE(G) 
= ∅ then algorithm FINDADJSET
computes in Step 4 an adjustment set relative to (X,Y) if
and only if such a set exists. Moreover the resulting adjust-
ment set can be computed in time O(n+m).

We prove Proposition 7 in Section 5. Next, in Section 6
and 7 we discuss properties of RCGs and provide a crite-
rion for covariate adjustments in RCGs which we apply in
Section 8 to prove Proposition 8.

Algorithm FINDADJSET requires O(n4) time in the gen-
eral case. But, if the input graph is already an RCG, only
Step 4 needs to be performed, and the problem can be solved
in linear time. It is easy to see that any DAG is an RCG.
Moreover, every chordal undirected graph is an RCG, too.
From the characterization of CPDAGs given by Andersson
et al. (1997) it follows that every CPDAG is also an RCG.

Using our method we can solve further problems involv-
ing covariate adjustment in chain graphs: testing, enumerat-
ing all adjustment sets, and finding a minimal or minimum
adjustment set. To this end we modify Step 4. Due to the
constructive back-door criterion the problems can be solved
by finding and enumerating separating sets in an RCG. Al-
gorithms for these generalizations are described in Section 8.

5 Reducing a CG to an RCG

The proof that algorithm FINDADJSET, for a given CG G,
computes in Step 3 an appropriate RCG R requires three
lemmas.
Lemma 9. Let G be a chain graph and let Gr be obtained
from G after a single application of the rule A → B−C ⇒

A → B → C. If G and Gr have the same v-structures, then
CE(G) = CE(Gr); Otherwise, if G and Gr do not have the
same v-structures, then CE(G) = ∅.

Lemma 10. Let G be a chain graph and let G∗r be the closure
of G under the rule A → B − C ⇒ A → B → C. Then
G∗r is a chain graph.

Lemma 11. Every chain component of a chain graph G with
CE(G) 
= ∅ is chordal.

It follows from the above lemmas that the algorithm does
not abort with ⊥, if CE(G) 
= ∅, and that CE(R) = CE(G).
It is also guaranteed that R is an RCG.

The stated runtime follows from the straightforward im-
plementation of the algorithm. Chordality can be tested in
linear time by lexicographic breadth-first search (Rose, Tar-
jan, and Lueker 1976).

This completes the proof of Proposition 7.

6 Properties of RCGs

We first show that a possible directed path in an RCG can be
converted to a directed path, if it starts with a directed edge,
which is the key difference between general chain graphs
and RCGs.

Lemma 12. If in an RCG G a possible directed path π =
V1, . . . , Vk from V1 to Vk contains a node Vi with a subpath
Vi−1 → Vi − Vi+1 then in G there exists a possible directed
path π′ = V1, . . . , Vi−1 → Vi+1, . . . , Vk.

The lemma expresses that on every possible directed path,
if it contains as a subpath Vi−1 → Vi−Vi+1 then in the graph
there must exist a directed edge Vi−1 → Vi+1. Thus edge
Vi − Vi+1 can be removed from the path, which iteratively
results in a path in which no such subpaths exist.

From this simple lemma we can conclude properties
which are very useful to analyze RCGs. Particularly, that a
possible directed path between V and W implies the exis-
tence of a path between V and W with at most one undi-
rected subpath followed by a directed subpath. Moreover we
can get various of invariances when transforming the initial
path to the final one, like the this that the possible descen-
dants do not change.

Let us now consider the relationship between definite sta-
tus and almost definite status paths in RCGs:

Lemma 13. Let G be an RCG, X and Y nodes, and let Z
be a subset of nodes of G with X,Y /∈ Z. Then there exists a
d-connected definite status path between X and Y given Z if
and only if there exists a d-connected almost definite status
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path between X and Y given Z. Moreover both paths have
the same directed edges.

Zhang (2008) proves the following lemma for PAGs, and
it is not hard to see that it also holds for RCGs:

Lemma 14. A d-connected given Z definite status path be-
tween X and Y exists in an RCG G if and only if there exists
a d-connected path between X and Y given Z in one (every)
DAG D ∈ CE(G).

In RCGs this lemma also holds for almost definite status
paths due to Lemma 13. Since every definite non-collider is
not a collider in any consistent DAG extension of G, the path
in a DAG corresponding to a definite status path in an RCG
G has exactly the same nodes. This is, however, not true for
the other direction or for almost definite status paths.

D-separation is not monotonic, i.e. adding a node to a sep-
arating set, can unblock a path and result in a non-separating
set. Thus it is helpful, e.g. for finding minimal sets, to con-
vert a d-separation problem to a vertex cut separation prob-
lem in an undirected graph. In DAGs such a conversion can
be done by moralization, which generalizes to RCGs in a
straightforward way:

Definition 15. The moral graph Gm of an RCG G is an undi-
rected graph with the same node set that results from con-
necting all unconnected parents of a common child with an
undirected edge, and replacing every directed edge with an
undirected edge.

Lemma 16. Given an RCG G and three disjoint sets X,Y,
and Z, set Z d-separates X and Y if and only if Z intersects
every path between X and Y in (GpossibleAn(X,Y,Z))

m.

This also shows that in RCGs separation based on (al-
most) definite status paths is equivalent to other definitions
of separation proposed for general chain graphs (Frydenberg
1990; Bouckaert and Studenỳ 1995) that are also equivalent
to separation in the moral graph.

7 Covariate Adjustments in RCGs

In this section we prove the first statement of Proposition 8,
i.e. the correctness of Step 4 of algorithm FINDADJSET,
showing the following:

Theorem 17. Let G be an RCG. Then the constructive back-
door criterion (Definition 4) holds in G for sets X,Y,Z, if
and only if Z is an adjustment set relative to (X,Y) in G.

To prove the theorem we show that the criterion holds for
an arbitrary RCG G if and only if it holds for every DAG
in CE(G). An alternative proof could show that the gener-
alized adjustment criterion (GAC) of (Perković et al. 2015)
can be stated for RCGs and that their proof also applies to
RCGs. The method of (van der Zander, Liśkiewicz, and Tex-
tor 2014) could then be used to transform the modified GAC
in terms of a constructive back-door graph. However, in both
proofs the technical difficulty emerges that not every proper
back-door graph Gpbd

XY of an RCG G is an RCG itself. To
cope with this problem we need two auxiliary lemmas. The
first one shows that the result of Lemma 13 holds in Gpbd

XY

even if Gpbd
XY is not an RCG.

Lemma 18. Let G = (V,E) be an RCG, and let X,Y,Z ⊆
V be pairwise disjoint subsets of variables. In the proper
back-door graph Gpbd

XY the set Z blocks every almost definite
status path between X and Y if and only if Z blocks every
definite status path between X and Y.

The second lemma shows that the proper back-door graph
always is an RCG, if there exists at least one adjustment set.

Lemma 19. If the proper back-door graph Gpbd
XY of an RCG

G is not an RCG, no adjustment set exists relative to (X,Y)
in G.

These lemmas are also useful to obtain fast algorithms.
Due to Lemma 19 the algorithms can assume that the proper
back-door graph RCG is an RCG, as soon as they have
found an adjustment set (possible in linear time) and do not
need to explicitly test the RCG-properties which would take
O(n2.373) time (see the next section).

With the help of Lemma 18 the algorithms can work with
almost definite status paths, which are more convenient to
handle than definite status paths because testing if a path is
of definite status requires O(nm) = O(n3) time to verify
that the nodes surrounding a definite non-collider with undi-
rected edges on the path are not adjacent.

This efficiency becomes relevant, if the input graph is al-
ready an RCG, e.g. a DAG or CPDAG, and we can skip the
O(n4) algorithm to transform it to an RCG.

8 Algorithms for RCGs

Recognition of RCGs. Several structure learning algo-
rithms return a mixed graph making no additional assump-
tions about its properties. Thus, before further processing
could be performed, it is necessary to verify if the returned
graph satisfies required conditions. Our general algorithm
assumes that the input graph is a CG. However, if we know
that it is an RCG, Steps 1 and 2 can be omitted.

Because every class of Markov equivalent DAGs is repre-
sented by a unique CPDAG, it is possible to test if a given
chain graph G is a CPDAG by finding one consistent DAG
extension D of G, generating the CPDAG G′ for D and com-
paring the resulting graph G′ with G. Graph G is a CPDAG,
if and only if G = G′. Using the CG-to-DAG conversion
algorithm of (Andersson, Madigan, and Perlman 1997) and
the DAG-to-CPDAG conversion of (Chickering 1995) this
can be done in time O(m log n). Alternatively, if the de-
gree of the graph is bounded by a constant k, the algo-
rithm of (Chickering 2002) decreases the running time to
O((n+m)k2).

However, to recognize RCGs such an approach does not
work and one needs to test the conditions of Definition 6 di-
rectly. The first property – the chordality of components –
can be tested with lexicographic breadth-first search in lin-
ear time (Rose, Tarjan, and Lueker 1976). A naive test of
the second condition, that A → B − C does not exist as in-
duced subgraph, is possible in time O(nm). Here we present
a more sophisticated method: Let D, U , M be three adja-
cency matrices corresponding to directed, undirected, resp.
missing edges. I.e. D[i, j] = 1 if i → j ∈ E, U [i, j] = 1
if i − j ∈ E and M [i, j] = 1 if no edge exists between
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i and j. All other matrix elements are 0. The trace of the
product Tr[D ·U ·M ] is zero if and only if the second condi-
tion is satisfied by the graph, since it corresponds to cycles
i → j − k -no-edge- i. Thus the second condition can be
verified in time O(nα), with α < 2.373 (Le Gall 2014), us-
ing a fast matrix multiplication algorithm. This dominates
the time complexity of the whole recognition algorithm.

There is no need to consider specific DAG-to-RCG or
RCG-to-DAG conversion algorithms since every DAG al-
ready is an RCG and every RCG is a chain graph, so the
algorithms cited above can be used for latter task. For the
task RCG-to-CPDAG the usual DAG-to-CPDAG algorithms
can be used, because they always generate and continue on
RCGs in intermediate steps.

Testing, computing, and enumerating separating sets.
Before we can describe the algorithms involving adjustment
sets, we need to describe the algorithms for separating sets,
since the constructive back-door criterion reduces adjust-
ment to separation.

A modified Bayes-Ball algorithm (Shachter 1998) can be
used to test if a given set Z d-separates X and Y. Thereby
a standard search is performed and the algorithm only con-
tinues through a node when the entering and leaving edge
form an almost definite status path. As there are only three
kinds of edges tracking the kind of the entering and leaving
edge requires a constant overhead and the algorithm runs in
O(n+m).

The algorithms to find or enumerate separating sets will
take as arguments an RCG, disjoint node sets X,Y, I,R and
will return one or more sets Z that d-separate X from Y un-
der the constraint I ⊆ Z ⊆ R. Later, using these algorithms
for adjustment sets, the constraint given by the set R cor-
responds to the nodes forbidden by the condition (a) of the
criterion (Definition 4). The constraint given by I helps to
enumerate all such sets.

A single d-separator can be found using a closed form
solution that can be constructed in time O(n+m):

Lemma 20. Let X,Y, I,R be sets of nodes with I ⊆ R,
R ∩ (X ∪ Y) = ∅. If there exists a d-separator Z0, with
I ⊆ Z0 ⊆ R then Z = possibleAn(X ∪ Y ∪ I) ∩ R is a
d-separator.

Observing certain variables can be very expensive, so it is
desirable to not just find any d-separator, but a d-separator Z
that contains a minimal number of nodes, in the sense that no
subset Z′ ⊂ Z is a d-separator. The above lemma implies:

Corollary 21. Let X,Y, I be sets of nodes. Every minimal
set over all d-separators containing I is a subset of Z =
possibleAn(X ∪Y ∪ I).

This means that every minimal d-separator Z is a vertex
cut in the moral graph (GpossibleAn(X∪Y∪I))m. Because this
moral graph is independent of Z, it is sufficient to search
a standard vertex cut within this undirected graph. van der
Zander, Liśkiewicz, and Textor (2014) provide the necessary
algorithms, and describe an O(n2) algorithm for testing and
finding a minimal d-separator by searching nodes that are
reachable from X as well as Y in the moral graph. Find-
ing a d-separator that is not just a minimal d-separator, but

a minimum d-separator with a minimum cost according to
some linear cost function that assigns a certain weight to ev-
ery node can be done in O(n3) using a max-flow algorithm.

After finding a single d-separator, it is also interesting
to know which other d-separators exist and enumerate all
of them. For this task the algorithms of van der Zander,
Liśkiewicz, and Textor can also be used, since they can enu-
merate any class of sets given a test for the existence of a
set Z in the class with I ⊆ Z ⊆ R by enumerating all sets
and aborting branches in the search graph that will not lead
to a solution. The runtime has a delay linear to the maximal
set size and complexity of the test, i.e. between every found
d-separator O(n(n + m)) time passes and O(n3) between
every minimal d-separator.

Testing, Computing, and Enumerating Adjustment Sets.
Now we are ready to describe algorithms to find, test and
enumerate arbitrary, minimal and minimum adjustment sets.
For each problem such an algorithm calculates the set
PCP(X,Y), constructs the proper back-door graph in lin-
ear time and solves the corresponding separator problem re-
stricted to R′ = R \ possibleDe(PCP(X,Y)). The algo-
rithm has a runtime that is the same as the runtime of the
corresponding algorithm for d-separation and even the run-
time of the corresponding algorithm for DAGs.

For the testing problems this means, we test if Z ∩
possibleDe(PCP(X,Y)) = ∅. If this is not true, Z is not
an adjustment set, otherwise it is an adjustment set, if and
only if it is a d-separator in the back-door graph.

For a singleton X the d-separation algorithms can be used
directly. For sets X with more than one element, it is also
necessary to test if the back-door graph Gpbd

XY is an RCG. If
not, no adjustment set exists. This test can be done as de-
scribed in Section 8, but it is faster to test in O(n + m)
if Z = possibleAn(X ∪ Y) \ possibleDe(PCP(X,Y)) is
an adjustment set, i.e. a d-separator in Gpbd

XY. This can be
tested with the Bayes-Ball-like search, which will work in
any chain graph, not just RCGs. We know from Lemma 19
that if Z is an adjustment set, the graph is an RCG. If Z is not
an adjustment set, no adjustment set exists and any further
search can be aborted.

This also completes the proof of Proposition 8.

9 Discussion

We have introduced restricted chain graphs as a new graph
class which includes DAGs and CPDAGs and still has an
algorithmic simple notion of d-separation. For these RCGs
we give a constructive back-door criterion that reduces prob-
lems related to adjustment sets to problems involving d-
separation. This leads to efficient algorithms to find, test
and enumerate adjustment sets as well as minimal and min-
imum adjustment sets in chain graphs. The algorithms are
easily implementable and our software is accessible online
at http://dagitty.net. It remains an open problem
to extend our methods to arbitrary mixed graphs.

If a given graph is a CPDAG or an arbitrary RCG, our al-
gorithms run in linear time. It is interesting that the problems
involving adjustment sets for such graphs are not harder than
for DAGs.
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