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Abstract

Many inference problems are naturally formulated using hard
and soft constraints over relational domains: the desired so-
lution must satisfy the hard constraints, while optimizing the
objectives expressed by the soft constraints. Existing tech-
niques for solving such constraints rely on efficiently ground-
ing a sufficient subset of constraints that is tractable to solve.
We present an eager-lazy grounding algorithm that eagerly
exploits proofs and lazily refutes counterexamples. We show
that our algorithm achieves significant speedup over existing
approaches without sacrificing soundness for real-world ap-
plications from information retrieval and program analysis.

1 Introduction

Many inference tasks in diverse application domains such as
machine learning, information retrieval, mathematical opti-
mization, and many others require optimizing certain objec-
tives in addition to satisfying soundness conditions. A nat-
ural specification for such tasks appears in the form of re-
lational constraints with optional weights in logics such as
Markov Logic Networks (Richardson and Domingos 2006)
and Probabilistic Soft Logic (Kimmig et al. 2012). The re-
lational inference problem in such logics seeks a solution
that satisfies all unweighted (“hard”) constraints while max-
imizing the sum of the weights of satisfied weighted (“soft”)
constraints. Hard constraints thus enable to express sound-
ness conditions while soft constraints allow to express the
objectives to optimize.

Figure 1 shows an example that specifies a graph reach-
ability problem using such constraints. Input predicate
e(n1, n2) is true if the graph has an edge from node n1 to
n2. Derived predicate p(n1, n2) is true if the graph has a
path from n1 to n2. Hard constraints (1) and (2) enforce re-
flexivity and transitivity conditions, while soft constraint (3)
ensures that the number of paths derived is minimal. An ex-
ample input and solution are shown in Figure 2.

Existing techniques reduce the relational inference
problem to the Weighted Partial Maximum Satisfiability
(WPMS) problem (Papadimitriou 1994). This reduction
happens via grounding, which is the process of instantiat-
ing the predicates or relations over all constants in the cor-
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∀n1, p(n1, n1) (1)∧ ∀n1, n2, n3, p(n1, n2) ∧ e(n2, n3) ⇒ p(n1, n3) (2)∧
1.5 : ∀n1, n2, ¬p(n1, n2) (3)

Figure 1: Graph reachability using relational constraints.
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Input facts: Output facts:
e(0, 1) e(0, 2) p(0, 0) p(0, 1)
e(1, 3) e(1, 4) p(0, 2) p(0, 3)
e(2, 5) e(2, 6) p(0, 4) p(0, 5)

...

Figure 2: Example graph reachability input and solution.

responding input domains. The WPMS problem is compu-
tationally hard. To reduce the burden on the WPMS solver,
the key challenge is to efficiently ground a sufficient subset
of constraints that is tractable to solve. For the example in
Figure 1, eagerly grounding constraint (2) entails instanti-
ating n1, n2, n3 over all nodes in the graph, producing N3

grounded constraints, where N is the number of nodes.
Several techniques have been proposed to lazily ground

constraints (Niu et al. 2011; Kok et al. 2007; Chaganty
et al. 2013; Noessner, Niepert, and Stuckenschmidt 2013;
Riedel 2008; 2009). For the scale of problems we con-
sider, however, these techniques are either too lazy and
converge very slowly, or too eager and produce instances
that are beyond the reach of sound WPMS solvers. For in-
stance, a recent technique (Chaganty et al. 2013) grounds
hard constraints too lazily and soft constraints too eagerly.
Specifically, for the graph reachability problem in Figure 1,
this technique takes L iterations to lazily ground hard con-
straint (2) (where L is the length of the longest path in the
input graph), and generates N2 constraints upfront by ea-
gerly grounding soft constraint (3).

In this paper, we propose an iterative eager-lazy algorithm
that strikes a balance between eager grounding and lazy
grounding. Our key underlying idea comprises two comple-
mentary optimizations: eagerly exploiting proofs and lazily
refuting counterexamples.

To eagerly exploit proofs, our algorithm uses an efficient
procedure to upfront ground constraints that will necessarily
be grounded during the iterative process. As a concrete in-
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stance of this procedure, we use a Datalog solver, which effi-
ciently computes the least solution of a set of recursive Horn
constraints. 1 In practice, most constraints in many inference
tasks are Horn, allowing to effectively leverage a Datalog
solver. For instance, both hard constraints (1) and (2) in our
graph reachability example are Horn. Our algorithm there-
fore applies a Datalog solver to efficiently ground them up-
front. On the example graph in Figure 2, this produces 7
ground instances of (1) and only 10 instances of (2).

To lazily refute counterexamples, our algorithm uses an
efficient procedure to check for violations of constraints
by the WPMS solution to the set of ground constraints in
each iteration, terminating the iterative process in the ab-
sence of violations. We use a Datalog solver as a con-
crete instance of this procedure as well. Existing lazy tech-
niques, such as Cutting Plane Inference (CPI) (Riedel 2008;
2009) and SoftCegar (Chaganty et al. 2013), can be viewed
as special cases of our algorithm in that they only lazily
refute counterexamples. For this purpose, CPI uses a rela-
tional database query engine and SoftCegar uses a satisfia-
bility modulo theories or SMT theorem prover (de Moura
and Bjørner 2008), whereas we use a Datalog solver; engi-
neering differences aside, the key motivation underlying all
three approaches is the same: to use a separate procedure
that is efficient at refuting counterexamples. Our main tech-
nical insight is to apply this idea analogously to eagerly ex-
ploit proofs. Our resulting strategy of guiding the grounding
process based on both proofs and counterexamples gains the
benefits of both eager and lazy grounding without suffering
from the disadvantages of either.

We apply our algorithm to enable sound and efficient in-
ference for large problem instances from two different appli-
cation domains: information retrieval, which concerns dis-
covering relevant information from large, unstructured data
collections, and program analysis, which concerns discover-
ing relevant information from large, structured programs—
this information includes specifications, proofs of correct-
ness properties, witnesses of harmful bugs and vulnerabili-
ties, and resource bounds.

The graph reachability example illustrates important as-
pects of inference tasks in both these domains. In the infor-
mation retrieval domain, an example task is the entity res-
olution problem for removing duplicate entries in a citation
database (Singla and Domingos 2005). In this problem, a
hard constraint similar to transitivity constraint (2) in Fig-
ure 1 encodes an axiom about the equivalence of citations:

sameBib(v1, v2) ∧ sameBib(v2, v3) ⇒ sameBib(v1, v3)

Likewise, in the program analysis domain, many emerg-
ing tasks require optimizing certain objectives in addition
to satisfying soundness conditions. Consider, for instance,
the taint analysis problem which determines whether a given
program may leak sensitive data to untrusted users (Myers
1999; Livshits and Lam 2005). In this problem, hard con-
straints encode soundness conditions of the analysis, such

1A Horn constraint is a disjunction of literals with at most one
positive (i.e., unnegated) literal. It is typically written in the form
of an inference rule (u1 ∧ ... ∧ un) ⇒ u. Datalog is a decidable
logic based on Horn constraints (Ceri, Gottlob, and Tanca 1989).

as: if variable v2 contains sensitive data, and the program
contains a statement of the form v1 = v2, then variable v1
also contains sensitive data.

tainted(v2) ∧ assign(v1, v2) ⇒ tainted(v1)

This constraint is akin to transitivity constraint (2) in Fig-
ure 1. Many program analysis problems besides taint anal-
ysis can be expressed solely using such Horn constraints
(Whaley et al. 2005; Bravenboer and Smaragdakis 2009;
Smaragdakis and Bravenboer 2010). Soft constraints, on the
other hand, express optimizing diverse objectives common
to different analysis problems, such as minimizing assump-
tions about unknown information (Kremenek et al. 2006;
Kremenek, Ng, and Engler 2007; Livshits et al. 2009;
Beckman and Nori 2011; Zhu, Dillig, and Dillig 2013),
minimizing interaction with analysis users (Dillig, Dillig,
and Aiken 2012; Bastani, Anand, and Aiken 2015), maxi-
mizing preferences of analysis users (Mangal et al. 2015),
and striking various analysis tradeoffs (Zhang et al. 2014;
Larraz et al. 2013; 2014).

We evaluate our algorithm on three benchmarks with
three different input datasets generated from real-world in-
formation retrieval and program analysis applications. Our
empirical evaluation shows that our approach achieves sig-
nificant improvement over three state-of-art approaches,
CPI (Riedel 2008; 2009), RockIt (Noessner, Niepert, and
Stuckenschmidt 2013), and Tuffy (Niu et al. 2011), in run-
ning time as well as the quality of the solution.

2 Preliminaries

Figure 3 defines the abstract syntax of the relational con-
straints that we consider in this paper. A system of relational
constraints C consists of a set of hard constraints H , and a
set of soft constraints S.

A hard constraint h ∈ H is an inference rule A ⇒ B,
where A is a conjunction of facts and B is a disjunction of
facts. A fact t consists of a relation name together with a
tuple of arguments, which include variables and constants; a
fact is a ground fact g when all arguments are constants.

A soft constraint s ∈ S is a hard constraint along with a
positive real weight w. A weight has a natural probabilis-
tic interpretation, where the confidence associated with a
soft constraint increases with the weight. For more details
on the precise semantics of weights, the reader is referred
to (Domingos and Lowd 2009).

For convenience, we augment the constraint system with
an input P which defines a set of ground facts (extensional
database or EDB). The solution to the constraints, output
Q, defines a set of ground facts that are true (intensional
database or IDB).

Example. The graph reachability problem applied to the
graph in Figure 2 can be formulated as a system of con-
straints (H,S) where H is a set that contains the hard con-
straints (1) and (2) in Figure 1, and S is a set that contains
the soft constraint (3) with weight 1.5. Further, the input P
consists of all ground facts in relation e(n1, n2), denoting all
edges in the graph, while output Q contains all ground facts
in relation p(n1, n2), denoting all paths in the graph. �
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(relation) r ∈ R
(constant) c ∈ C
(variable) v ∈ V

(valuation) σ ∈ V → C

(argument) a ∈ A = V ∪C
(fact) t ∈ T = R×A∗

(ground fact) g ∈ G = R×C∗

(weight) w ∈ R+ = (0,∞]

(hard constraints) H ::= {h1, ..., hn}, h ::=
∧n

i=1 ti ⇒
∨m

i=1 t
′
i

(soft constraints) S ::= {s1, ..., sn}, s ::= (h,w)

(constraints) C ::= (H,S)
(input, output) P,Q ⊆ G

Figure 3: Abstract syntax of relational constraints.

�(H,S)� = (�H�, �S�)
�{h1, ..., hn}� =

∧n
i=1 �hi�

�{s1, ..., sn}� =
∧n

i=1 �si�
�h� =

∧
σ�h�σ

�(h,w)� =
∧

σ(�h�σ, w)
�
∧n

i=1 ti ⇒
∨m

i=1 t
′
i�σ = (

∨n
i=1 ¬�ti�σ ∨∨m

i=1 �t′i�σ)
�r(a1, ..., an)�σ = r(�a1�σ, ..., �an�σ)

�v�σ = σ(v)
�c�σ = c

(ground clause) ρ ::=
∨n

i=1 ¬gi ∨
∨m

i=1 g
′
i

(hard clauses) φ ::=
∧n

i=1 ρi
(soft clauses) ψ ::=

∧n
i=1 (ρi, wi)

Figure 4: From constraints to ground clauses.

Grounding. Constraints are grounded by instantiating the
relations over all constants in their respective input domain.
The grounding procedure is shown in Figure 4. The pro-
cedure grounds each constraint into a set of corresponding
clauses. In particular, the conversion �h� =

∧
σ�h�σ grounds

hard constraint h by enumerating all possible groundings σ
of variables to constants, yielding a different clause for each
unique valuation to the variables in h. Enumerating all pos-
sible valuations, called full grounding, does not scale to real-
world problems.

Example. Figure 5 shows a subset of the ground clauses
constructed for the constraints from Figure 1 applied to the
graph in Figure 2. Along with the input ground facts from
relation e(n1, n2), hard constraints (1) and (2) in the graph
reachability problem are grounded to construct the shown
set of hard clauses, while soft constraint (3) is grounded to
produce the shown set of soft clauses. �

Solving. A set of ground clauses is solved to produce a
solution that satisfies all hard clauses and maximizes the
sum of the weights of satisfied soft clauses. This prob-
lem is called Weighted Partial Maximum Satisfiability or
WPMS (Papadimitriou 1994). In the solving process, ground
clauses are first converted into a Boolean WPMS formula by
replacing each unique ground fact with a separate Boolean
variable. Every WPMS solver must satisfy the specification

Grounded constraints:
Hard clauses: e(0, 1) ∧

e(0, 2) ∧
p(0, 0) ∧
p(1, 1) ∧

(¬p(0, 0) ∨ ¬e(0, 1) ∨ p(0, 1)) ∧
(¬p(0, 1) ∨ ¬e(1, 3) ∨ p(0, 3)) ∧

...
Soft clauses: 1.5 : (¬p(0, 1)) ∧

1.5 : (¬p(1, 1)) ∧
...

WPMS formula:
b0 ∧
b1 ∧
b2 ∧
b3 ∧

(¬b2 ∨ ¬b0 ∨ b4) ∧
(¬b4 ∨ ¬b5 ∨ b6) ∧

...
1.5 : (¬b4) ∧
1.5 : (¬b3) ∧

...

Figure 5: Example grounded constraints and corresponding
WPMS formula.

WPMS(φ,
∧n

i=1 (ρi, wi)) =⎧⎨
⎩

UNSAT if �Q : Q |= φ

Q such that
[
Q |= φ and
Σn

i=1{wi | Q |= ρi} is maximized

]
otherwise

Q |= ∧n
i=1 ρi iff ∀i : Q |= ρi

Q |= ∨n
i=1 ¬gi ∨

∨m
i=1 g

′
i iff ∃i : gi /∈ Q or ∃i : g′i ∈ Q

Weight(Q,
∧n

i=1 (ρi, wi)) = Σn
i=1{ wi | Q |= ρi }

Figure 6: Specification for solving WPMS formulae.

shown in Figure 6. A WPMS solver takes as input a set of
grounded hard and soft constraints (φ, ψ), and returns: (1)
UNSAT, if no assignment of truth values to the Boolean vari-
ables satisfies the set of hard clauses φ, or (2) a solution Q,
denoting the assignment “λg.(g ∈ Q) ? true : false” that sets
variables corresponding to ground facts contained in Q to
true, and the rest to false. Solution Q not only satisfies all
hard clauses in φ (it is sound), but it also maximizes the sum
of the weights of satisfied soft clauses in ψ (it is optimal).
Q is not necessarily unique; two solutions Q1 and Q2 are
equivalent if Weight(Q1, ψ) = Weight(Q2, ψ).

Example. Figure 5 shows a snippet of the WPMS formula
constructed for the system of constraints from Figure 1 ap-
plied to the graph in Figure 2. The formula is constructed
from the hard and soft ground clauses, shown in the same
figure, by replacing each unique ground fact with a separate
Boolean variable. It is then fed to a WPMS solver to gener-
ate the final solution Q. �

Note that reducing relational constraints to WPMS via full
grounding (the eager approach) is not tractable as the size
of such generated WPMS instances is beyond the scope of
the state-of-the-art solvers. Existing techniques (Kok et al.
2007; Niu et al. 2011; Chaganty et al. 2013; Riedel 2008;
2009; Noessner, Niepert, and Stuckenschmidt 2013) reduce
the burden on the WPMS solver by considering subsets of
the full grounding (the lazy approach) in an iterative manner.
These approaches, however, are either overly conservative
in growing the considered subsets resulting in too many it-
erations, or are excessively aggressive leading to intractable
instances. Our algorithm, described in the next section, ex-
plores a sweet spot between both these approaches.
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3 The IPR Algorithm

We propose an efficient iterative algorithm IPR (Inference
via Proof and Refutation) for solving relational constraint
systems described in the previous section. The algorithm has
the following key features:

1. Eager proof exploitation. IPR eagerly explores the log-
ical structure of the relational constraints to generate an
initial grounding, which has the effect of speeding up the
convergence of the algorithm. When the relational con-
straints are in the form of Horn constraints, we show that
such an initial grounding is optimal (Theorem 3.2).

2. Lazy counterexample refutation. After solving the con-
straints in the initial grounding, IPR applies a refutation-
based technique to refine the solution: it lazily grounds
the constraints that are violated by the current solution,
and solves the accumulated grounded constraints in an it-
erative manner.

3. Termination with soundness and optimality. IPR per-
forms a termination check that guarantees the sound-
ness and optimality of the solution if an exact WPMS
solver is used. Moreover, this check is more precise than
the termination checks in existing refutation-based algo-
rithms (Riedel 2008; 2009; Chaganty et al. 2013), there-
fore leading to faster convergence.

Algorithm 1 IPR: the eager-lazy algorithm.
1: INPUT (H,S): Relational constraints.
2: OUTPUT Q: Solution (assumes �H� is satisfiable).
3: φ := any

∧n
i=1 ρi such that ∀i :∃h ∈ H :∃σ :ρi = �h�σ

4: ψ := any
∧n

i=1 ρi such that ∀i :∃s ∈ S :∃σ :ρi = �s�σ
5: Q := ∅; w := 0
6: while true do
7: φ′ :=

∧
h∈H

∧
Violations(h,Q)

8: ψ′ :=
∧

(h,w)∈S

∧{ (ρ, w) | ρ ∈ Violations(h,Q) }
9: (φ, ψ) := (φ ∧ φ′, ψ ∧ ψ′)

10: Q′ := WPMS(φ, ψ)
11: w′ := Weight(Q′, ψ)
12: if (w′ = w ∧ φ′ = true) then return Q
13: Q := Q′; w := w′
14: end while

IPR (Algorithm 1) takes relational constraints (H,S) as
input and produces a Boolean assignment Q as output.1 We
next explain each component of IPR separately.

Eager proof exploitation. To start with, IPR computes an
initial set of hard clauses φ and soft clauses ψ by exploit-
ing the logical structure of the constraints (line 3–4 of Al-
gorithm 1). The sets φ and ψ can be arbitrary subsets of the
hard clauses and soft clauses in the full grounding. When φ
and ψ are both empty, the behavior of IPR defaults to lazy
approaches like CPI (Riedel 2008; 2009) (Definition 3.1).

1We assume that any input P is encoded as part of the hard
constraints H . For clarity, we also assume that the hard constraints
H are satisfiable, allowing us to elide showing UNSAT as a possible
alternative to output Q.

As a concrete instance of eager proof exploitation, when
a subset of the relational constraints have a recursive Horn
form, IPR applies a Datalog solver to efficiently compute
the least solution of this set of recursive Horn constraints,
and find a relevant subset of clauses to be grounded upfront.
In particular, when all the hard constraints are Horn, IPR
prescribes a recipe for generating an optimal initial set of
grounded constraints.

Theorem 3.2 shows that for hard relational constraints in
Horn form, lazy approaches like CPI ground at least as many
hard clauses as the number of true ground facts in the least
solution of such Horn constraints. Also, and more impor-
tantly, we show there exists a strategy that can upfront dis-
cover the set of all these necessary hard clauses and guar-
antee that no more clauses, besides those in the initial set,
will be grounded. In practice, eager proof exploitation is em-
ployed for both hard and soft Horn clauses. Theorem 3.2
guarantees that if upfront grounding is applied to hard Horn
clauses, then only relevant clauses are grounded. While this
guarantee does not apply to upfront grounding of soft Horn
clauses, we observe empirically that most such grounded
clauses are relevant. Moreover, as Section 4 shows, using
this strategy for initial grounding allows the iterative pro-
cess to terminate in far fewer iterations while ensuring that
each iteration does approximately as much work as before
(without initial grounding).

Definition 3.1 (Lazy Algorithm) Algorithm Lazy is an in-
stance of IPR with φ = ψ = ∅ as the initial grounding.

Theorem 3.2 (Optimal initial grounding for Horn
clauses) If a relational constraint system contains a set
of hard constraints H , each of which is a Horn clause∧n

i=1 ti⇒ t0, whose least solution is desired:

G = lfp λG′. G′ ∪ { �t0�σ | (∧n
i=1 ti ⇒ t0) ∈ H

and ∀i ∈ [1..n] : �ti�σ ∈ G′ },
then for such a system, (a) Lazy(H, ∅) grounds at least |G|
clauses, and (b) IPR(H, ∅) with the initial grounding φ does
not ground any more clauses where:

φ =
∧{ ∨n

i=1 ¬�ti�σ ∨ �t0�σ | (∧n
i=1 ti ⇒ t0) ∈ H and

∀i ∈ [0..n] : �ti�σ ∈ G }.
Proof. See Appendix A. �

Lazy counterexample refutation. After generating the
initial grounding, IPR iteratively grounds more clauses and
refines the solution by refutation (lines 6–14 of Algo-
rithm 1). In each iteration, the algorithm keeps track of the
previous solution Q, and the weight w of the solution Q by
calling the Weight procedure specified in Figure 6. Initially,
the solution is empty with weight zero (line 5).

In line 7, IPR computes all the violations of the hard con-
straints for the previous solution Q. The related procedure
Violations is formally defined below:

Violations(h,Q) = { �h�σ | Q 
|= �h�σ }.
Similarly, in line 8, the set of soft clauses ψ′ violated by
the previous solution Q is computed. In line 9, both sets of
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Initial Iteration 1
¬p(0, 0) ∨ ¬e(0, 1) ∨ p(0, 1) ¬p(0, 0) ∨ ¬e(0, 2) ∨ p(0, 2) p(0, 0)
¬p(1, 1) ∨ ¬e(1, 3) ∨ p(1, 3) ¬p(1, 1) ∨ ¬e(1, 4) ∨ p(1, 4) p(1, 1)
¬p(2, 2) ∨ ¬e(2, 5) ∨ p(2, 5) ¬p(2, 2) ∨ ¬e(2, 6) ∨ p(2, 6) p(2, 2)
¬p(0, 1) ∨ ¬e(1, 3) ∨ p(0, 3) ¬p(0, 1) ∨ ¬e(1, 4) ∨ p(0, 4) p(3, 3)
¬p(0, 2) ∨ ¬e(2, 5) ∨ p(0, 5) ¬p(0, 2) ∨ ¬e(2, 6) ∨ p(0, 6) p(4, 4)

p(5, 5) p(6, 6)

1.5 : ¬p(0, 0) 1.5 : ¬p(1, 1) 1.5 : ¬p(2, 2)
1.5 : ¬p(3, 3) 1.5 : ¬p(4, 4) 1.5 : ¬p(5, 5)
1.5 : ¬p(6, 6) 1.5 : ¬p(0, 1) 1.5 : ¬p(0, 2)
1.5 : ¬p(1, 3) 1.5 : ¬p(1, 4) 1.5 : ¬p(2, 5)
1.5 : ¬p(2, 6) 1.5 : ¬p(0, 3) 1.5 : ¬p(0, 4)
1.5 : ¬p(0, 5) 1.5 : ¬p(0, 6)

Table 1: Clauses in the initial grounding and additional clauses grounded in each iteration of IPR for graph reachability example.

violations φ′ and ψ′ are added to the corresponding sets of
grounded hard clauses φ and grounded soft clauses ψ re-
spectively. The intuition for adding violated hard clauses φ′
to the set φ is straightforward—the set of hard clauses φ is
not sufficient to prevent the WPMS procedure from producing
a solution Q that violates the set of hard constraints H . The
intuition for soft clauses is similar—since the goal of WPMS
is to maximize the sum of the weights of satisfied soft con-
straints in S, and all weights in our relational constraint sys-
tem are positive, any violation of a soft clause possibly leads
to a sub-optimal solution which could have been avoided if
the violated clause was present in the set of soft clauses ψ.

In line 10, this updated set φ of hard clauses and set ψ of
soft clauses are fed to the WPMS procedure to produce a new
solution Q′ and its corresponding weight w′. At this point,
in line 12, the algorithm checks if the terminating condition
is satisfied by the solution Q′.

Termination check. IPR terminates when no hard clauses
are violated by current solution (φ′ = true) and the current
objective cannot be improved by adding more soft clauses
(w′ = w). This termination check improves upon that in
previous works (Riedel 2008; 2009; Chaganty et al. 2013),
and speeds up the convergence of the algorithm in practice.
Theorem 3.3 shows that our IPR algorithm always termi-
nates with a sound and optimum solution if the underlying
WPMS solver is exact.
Theorem 3.3 (Soundness and Optimality of IPR) For any
relational constraint system (H,S) where H is satisfiable,
IPR(H,S) produces a sound and optimal solution.
Proof. See Appendix B. �
Example. The IPR algorithm takes two iterations and
grounds 17 hard clauses and 17 soft clauses to solve the
graph reachability example in Figures 1 and 2. Table 1 shows
the clauses in the initial grounding computed using a Data-
log solver and additional clauses grounded in each iteration
of IPR. IPR grounds no additional clauses in Iteration 2.
Therefore, the related column is omitted in Table 1.

On the other hand, an eager approach with full grounding
needs to ground 392 hard clauses and 49 soft clauses, which
is 12× of the number of clauses grounded in IPR. Moreover,
the eager approach generates clauses such as ¬p(0, 1) ∨
¬e(1, 5) ∨ p(1, 5) and ¬p(1, 4) ∨ ¬e(4, 2) ∨ p(1, 2), that
are trivially satisfied given the input edge relation.

A lazy approach with an empty initial grounding grounds
the same number of hard clauses and soft clauses as IPR.
However, it takes 5 iterations to terminate, which is 2.5× of
the number of iterations needed by IPR.

# rela- # rules # EDB tuples # clauses in full grounding
tions E1 E2 E3 E1 E2 E3

PA 94 89 1,274 3.9 ×106 1.1× 107 2× 1010 1.6 ×1028 1.2 ×1030

AR 14 24 607 3,595 7,010 1.7 ×108 1.1 ×109 2.4×1010

RC 5 17 1,656 3,190 7,766 7.9 ×1011 1.2 ×1013 3.8 ×1014

Table 2: Statistics of application constraints and datasets.

The results on the graph reachability example show that,
IPR combines the benefits of the eager approach and the lazy
approach while avoiding their drawbacks. �

4 Empirical Evaluation

In this section, we evaluate IPR and compare it with
three state-of-the-art approaches, CPI (Riedel 2008; 2009),
ROCKIT (Noessner, Niepert, and Stuckenschmidt 2013), and
TUFFY (Niu et al. 2011), on three different benchmarks with
three different-sized inputs per benchmark.

We implemented IPR in roughly 10,000 lines of Java. To
compute the initial grounded constraints, we use bddbddb
(Whaley and Lam 2004), a Datalog solver. The same solver
is used to identify grounded constraints that are violated by
a solution. For our evaluation, we use two different instances
of IPR, referred as IPR1 and IPR2, that vary in the underly-
ing solver used for solving the constraints. For IPR1, we use
LBX (Mencia, Previti, and Marques-Silva 2015) as the under-
lying WPMS solver which guarantees soundness of the so-
lution (i.e., does not violate any hard clauses). Though LBX
does not guarantee the optimality of the solution, in practice,
we find the cost of the solution computed by LBX is close to
that of the solution computed by an exact solver. For IPR2,
we use GUROBI as the underlying solver. GUROBI is an inte-
ger linear program (ILP) solver which guarantees soundness
of the solution. Additionally, it guarantees that the cost of
the generated solution is within a limited bound from that of
the optimal solution. We incorporate it in our approach by
replacing the call to WPMS (line 10 of Algorithm 1) with a
call to an ILP encoder followed by a call to GUROBI. The
ILP encoder translates the WPMS problem to an equivalent
ILP formulation.

All experiments were done using Oracle HotSpot JVM
1.6.0 on a Linux server with 64GB RAM and 3.0GHz pro-
cessors. The three benchmarks are as follows:
Program Analysis (PA): This application performs pointer
analysis, a foundational program analysis that approximates
which program variables point to which memory locations.
The hard constraints here express the soundness conditions
of the analysis while the soft constraints encode user prefer-
ences about the analysis results as described in (Mangal et
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EDB # iterations total time
(m = min., s = sec.)

# ground clauses
(K = thousand, M = million)

solution cost
(K = thousand, M = million)

CP
I
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R1

RO
CK
IT

IP
R2

CP
I

IP
R1

RO
CK
IT

IP
R2

TU
FF
Y

CP
I

IP
R1

RO
CK
IT

IP
R2

TU
FF
Y

CP
I

IP
R1

RO
CK
IT

IP
R2

TU
FF
Y

PA
E1 23 6 19 3 29s 28s 53s 13s 6m56s 0.6K 0.6K 0.6K 0.6K 0.6K 0 0 0 0 743
E2 171 8 185 3 235m 23m 286m 150m – 3M 3.2M 2.9M 3.2M – 46 46 35 35 –
E3 – 11 – – – 114m – – – – 13M – – – – 345 – – –

AR
E1 6 5 4 3 8s 8s 4s 8s 2m25s 9.8K 9.8K 27K 83K 589K 6.4K 6.4K 5.8K 6.1K 7K
E2 6 6 7 7 34m 36m 37s 42s – 2.3M 2.3M 0.4M 0.4M – 0.4M 0.4M 0.39M 0.39M –
E3 6 6 7 7 141m 124m 1m45s 2m1s – 8M 8M 1.4M 1.4M – 0.68M 0.68M 0.67M 0.67M –

RC
E1 17 6 5 4 3m5s 1m4s 6s 6s 11s 0.5M 0.3M 55K 68K 28K 5.7K 5.7K 5.7K 5.7K 160K
E2 8 8 5 3 6m19s 3m41s 9s 10s 2m28s 2.4M 1.3M 0.11M 0.17M 64K 10.7K 10.7K 10.6K 10.6K 42.7K
E3 17 13 20 20 150m 46m20s 2m35s 2m54s 180m 14M 4.5M 0.5M 1.2M 0.35M 25.1K 25.1K 24.9K 24.9K 0.25M

Table 3: Results of evaluating CPI, IPR1, ROCKIT, IPR2, and TUFFY, on three benchmark applications. CPI and IPR1 use LBX
as the underlying solver, while ROCKIT and IPR2 use GUROBI. In all experiments, we used a memory limit of 64GB and a time
limit of 24 hours. Timed out experiments (denoted ‘–’) exceeded either of these limits.

al. 2015). The datasets for this application are derived from
three real-world Java programs ranging in size from 1.4K to
190K lines of code.
Advisor Recommendation (AR): This is an advisor recom-
mendation system to aid new graduate students in finding
good PhD advisors. The datasets for this application were
generated from the AI Genealogy Project (http://aigp.eecs.
umich.edu) and from DBLP (http://dblp.uni-trier.de).
Relational Classification (RC): In this application, papers
from the Cora dataset (McCallum et al. 2000) are classified
into different categories based on the authors and their main
area of research.

Table 2 shows statistics of our three benchmarks (PA, AR,
RC) and the corresponding EDBs used in our evaluation.

We compare IPR1 and IPR2 with three state-of-the-art
techniques, CPI, ROCKIT, and TUFFY.
TUFFY employs a non-iterative approach which is com-

posed of two steps: first, it generates an initial set of
grounded constraints that is expected to be a superset of
all the required grounded constraints; next, TUFFY uses
a highly efficient but approximate WPMS solver to solve
these grounded constraints. In our evaluation, we use the
TUFFY executable available from its website http://i.stanford.
edu/hazy/hazy/tuffy/.
CPI is a fully lazy iterative approach, which refutes coun-

terexamples in a way similar to IPR. However, CPI does not
employ proof exploitation and applies a more conservative
termination check. In order to ensure a fair comparison be-
tween IPR and CPI, we implement CPI in our framework
by incorporating the above two differences and use LBX as
the underlying solver.
ROCKIT is also a fully lazy iterative approach similar

to CPI. Additionally, like CPI, ROCKIT does not employ
proof exploitation and its termination check is as conser-
vative as CPI. The main innovation of ROCKIT is a clever
ILP encoding for solving the underlying constraints. This
reduces the time per iteration for solving, but does not nec-
essarily reduce the number of iterations. In our evaluation,
we use the ROCKIT executable available from its website
https://code.google.com/p/rockit/.

The primary innovation of ROCKIT is complementary to
our approach. In fact, to ensure a fair comparison between
IPR and ROCKIT, in IPR2 we use the same ILP encoding as
used by ROCKIT. This combined approach yields the bene-

fits of both ROCKIT and our approach.
Table 3 summarizes the results of running CPI, IPR1,

ROCKIT, IPR2, and TUFFY on our benchmarks. IPR1 signif-
icantly outperforms CPI in terms of running time. Similarly,
IPR2 outperforms ROCKIT in running time and the number
of iterations needed while TUFFY has the worst performance.
IPR1 terminates under all nine experiment settings, while
IPR2, CPI and ROCKIT terminate under eight settings and
TUFFY only terminates under five settings. In terms of the
quality of the solution, IPR1 and CPI produce solutions with
similar costs under all settings. IPR2 and ROCKIT produce
solutions with slightly lower costs as they employ an ILP
solver that guarantees a solution whose cost is within a fixed
bounded from that of the optimal solution. TUFFY produces
solutions with significantly higher costs. We next study the
results for each benchmark more closely.

Program Analysis (PA): For PA, we first compare IPR1
with CPI. IPR1 significantly outperforms CPI on larger
datasets, with CPI not terminating on E3 even after 24 hours
while IPR1 terminates in under two hours. This is because
most of the relational constraints in PA are Horn, allowing
IPR1 to effectively perform eager proof exploitation, and
ground relevant clauses upfront. This is also reflected in the
reduced number of iterations for IPR1 compared to CPI.
IPR2, that also uses eager proof exploitation, similarly out-
performs ROCKIT on E1 and E2. However, both IPR2 and
ROCKIT fail to terminate on E3. This indicates that the un-
derlying type of solver plays an important role in the perfor-
mance of these approaches. For PA, the WPMS solver em-
ployed by IPR1 is better suited to the problem compared
to the ILP solver employed by IPR2. TUFFY performs the
worst out of all the approaches, only terminating on the
smallest dataset E1. Even for E1, the cost of the final solu-
tion generated by TUFFY is significantly higher compared to
the other approaches. More acutely, TUFFY violates ten hard
clauses on E1 which is absolutely unacceptable for program
analysis benchmarks.

Advisor Recommendation (AR): On AR, IPR1, IPR2,
CPI and ROCKIT terminate on all three datasets and produce
similar results while TUFFY only terminates on the small-
est dataset. IPR1 and CPI have comparable performance on
AR as a fully lazy approach suffices to solve the relational
constraint system efficiently. Similarly, IPR2 and ROCKIT
have similar performance. However, both IPR2 and ROCKIT
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significantly outperform IPR1 and CPI in terms of the run-
ning time although they need similar number of iterations.
This indicates that for AR, the smart ILP encoding leads to
fewer constraints and also that the ILP solver is better suited
than the WPMS solver, leading to a lower running time per
iteration. Note that, all theses approaches except TUFFY ter-
minate within seven iterations on all three datasets. On the
other hand, TUFFY times out on the two larger datasets with-
out passing its grounding phase, reflecting the need for lazily
grounding the constraints.

Relational Classification (RC): All the approaches ter-
minate on RC for all the three datasets. However, IPR1 out-
performs CPI and TUFFY significantly in terms of runtime
on the largest dataset. On the other hand, IPR2 and ROCKIT
outperform IPR1. This is again due to the faster solving time
per iteration enabled by the smart ILP encoding and the use
of ILP solver. Unlike other benchmarks, the running time of
TUFFY is comparable to the other approaches. However, the
costs of its solutions are on average 14× more than the costs
of the solutions produced by the other approaches.

5 Related Work

A large body of work exists to solve weighted relational con-
straints in a lazy manner. Lazy inference techniques (Singla
and Domingos 2006; Poon, Domingos, and Sumner 2008)
rely on the observation that most ground facts in the final so-
lution to a relational inference problem have default values
(a value appearing much more often than the others). These
techniques start by assuming a default value for all ground
facts, and gradually ground clauses as the values of facts
are determined to be changed for a better objective. Such
techniques apply a loose termination check, and therefore do
not guarantee soundness nor optimality of the final solution.
Iterative ground-and-solve approaches such as CPI (Riedel
2008) and RockIt (Noessner, Niepert, and Stuckenschmidt
2013) solve constraints lazily by iteratively grounding only
those constraints that are violated by the current solution.
Compared to lazy inference techniques, they apply a con-
servative termination check which guarantees the soundness
and optimality of the solution. Compared to our approach,
all of the above techniques either need more iterations to
converge or have to terminate prematurely with potentially
unsound and suboptimal solutions.

Tuffy (Niu et al. 2011) applies a non-iterative technique
which is divided into a grounding phase and a solving phase.
In the grounding phase, Tuffy grounds a set of clauses that
it deems relevant to the solution of the inference problem.
In practice, this set is often imprecise, which either hinders
the scalability of the overall process (when the set is too
large), or degrades the quality of the solution (when the set
is too small). Soft-CEGAR (Chaganty et al. 2013) grounds
the soft constraints eagerly and solves the hard constraints
in a lazy manner. It uses a SMT solver to efficiently find
the hard constraints violated by a solution. Lifted inference
techniques (Braz, Amir, and Roth 2005; Milch et al. 2008;
Poole 2003) use approaches from first-order logic, like vari-
able elimination, to simplify the system of relational con-
straints. Such techniques can be used in conjunction with

various iterative techniques including our approach for solv-
ing such constraints.

6 Conclusion

We presented a new technique for solving weighted rela-
tional constraints. Existing approaches either ground the
constraints too eagerly, which produces intractably large
propositional instances to WPMS solvers, or they ground
the constraints too lazily, which prohibitively slows down
the convergence of the overall process. Our approach strikes
a balance between these two extremes by applying two
complementary optimizations: eagerly exploiting proofs and
lazily refuting counterexamples. Our empirical evaluation
showed that our technique achieves significant improvement
over two existing techniques in both performance and qual-
ity of the solution.
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A Proof of Theorem 3.2

Theorem A.1 (Optimal Initial Grounding for Horn
Rules) If a relational constraint system contains a set
of hard constraints H , each of which is a Horn clause∧n

i=1 ti⇒ t0, whose least solution is desired:

G = lfp λG′. G′ ∪ { �t0�σ | (∧n
i=1 ti ⇒ t0) ∈ H

and ∀i ∈ [1..n] : �ti�σ ∈ G′ },
then for such a system, (a) Lazy(H, ∅) grounds at least |G|
clauses, and (b) IPR(H, ∅) with the initial grounding φ does
not ground any more clauses where:

φ =
∧{ ∨n

i=1 ¬�ti�σ ∨ �t0�σ | (∧n
i=1 ti ⇒ t0) ∈ H and

∀i ∈ [0..n] : �ti�σ ∈ G }.
Proof. To prove (a), we will show that for each g ∈ G,
Lazy(H, ∅) must ground some clause with g on the r.h.s. Let
the sequence of sets of clauses grounded in the iterations of
this procedure be C1, ..., Cn. Then, we have:
Proposition (1): each clause

∧m
i=1 gi ⇒ g′ in any Qj was

added because the previous solution set all gi to true and g′
to false. This follows from the assumption that all rules in
H are Horn rules. Let x ∈ [1..n] be the earliest iteration in
whose solution g was set to true. Then, we claim that g must
be on the r.h.s. of some clause ρ in Qx. Suppose for the sake
of contradiction that no clause in Qx has g on the r.h.s. Then,
it must be the case that there is some clause ρ′ in Qx where
g is on the l.h.s. (the WPMS procedure will not set variables
to true that do not even appear in any clause in Qx). Sup-
pose clause ρ′ was added in some iteration y < x. Applying
proposition (1) above to clause ρ′ and j = x, it must be that
g was true in the solution to iteration y, contradicting the
assumption above that x was the earliest iteration in whose
solution g was set to true.

To prove (b), suppose IPR(H, ∅) grounds an additional
clause, that is, there exists a (

∧n
i=1 ti ⇒ t0) ∈ H and a σ
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such that G 
|= ∨n
i=1 ¬�ti�σ ∨ �t0�σ . The only way by which

this can hold is if ∀i ∈ [1..n] : �ti�σ ∈ G and �t0�σ /∈ G,
but this contradicts the definition of G. �

B Proof of Theorem 3.3

Theorem B.1 (Soundness and Optimality of IPR) For
any relational constraint system (H,S) where H is satis-
fiable, IPR(H,S) produces a sound and optimal solution.

Proof. We extend the function Weight (Figure 6) to hard
clauses, yielding −∞ if any such clause is violated:

W = λ(Q,φ ∪ ψ). if (∃ρ ∈ φ : Q 
|= ρ) then −∞
else Weight(Q,ψ).

It suffices to show that the solution produced by IPR(H,S)
has the same weight as the solution produced by the eager
approach. The eager approach (denoted by Eager) generates
the solution by posing clauses generated from full grounding
to a WPMS solver.

First, observe that IPR(H,S) terminates: in each iteration
of the loop in line 6 of Algorithm 1, it must be the case that
at least one new hard clause is added to φ or at least one new
soft clause is added to ψ, because otherwise the condition on
line 12 will hold and the loop will be exited.

Now, suppose that in last iteration of the loop in line 6 for
computing IPR(H,S), we have:
(1) gc1 = hgc1 ∪ sgc1 is the set of hard and soft clauses
accumulated in (φ, ψ) so far (line 9);
(2) Q1 = ∅ and w1 = 0 (line 5), or Q1 = WPMS(hgc1, sgc1)
and its weight is w1 (lines 10 and 11);
(3) gc2 = hgc2 ∪ sgc2 is the set of all hard and soft clauses
that are violated by Q1 (lines 7 and 8);
(4) Q2 = WPMS(hgc1 ∪ hgc2, sgc1 ∪ sgc2) and its weight is
w2 (lines 10 and 11);
and the condition on line 12 holds as this is the last iteration:
(5) w1 = w2 and hgc2 = ∅.
Then, the result of IPR(H,S) is Q1. On the other hand, the
result of Eager(H,S) is:
(6) Qf = WPMS(hgcf , sgcf ) where:
(7) gcf = hgcf ∪ sgcf is the set of fully grounded hard and
soft clauses (Figure 4).
Thus, it suffices to show that Q1 and Qf are equivalent.
Define gcm = gc2 \ gc1.
(8) For any Q, we have:

W(Q, gc1 ∪ gc2) = W(Q, gc1) + W(Q, gcm)
= W(Q, gc1) + W(Q, hgc2 \ hgc1)+

W(Q, sgc2 \ sgc1)
= W(Q, gc1) + W(Q, sgc2 \ sgc1) [a]
≥ W(Q, gc1) [b]

where [a] follows from (5), and [b] from W(Q, sgc2) >= 0
(i.e., soft clauses do not have negative weights). Instan-
tiating (8) with Q1, we have: (9): W(Q1, gc1 ∪ gc2) ≥
W(Q1, gc1). Combining (2), (4), and (5), we have: (10):
W(Q1, gc1) = W(Q2, gc1∪gc2). Combining (9) and (10), we
have: (11)W(Q1, gc1 ∪ gc2) ≥ W(Q2, gc1 ∪ gc2). This means
Q1 is a better solution than Q2 on gc1 ∪ gc2. But from (4),
we have that Q2 is an optimum solution to gc1 ∪ gc2, so we
have: (12): Q1 is also an optimum solution to gc1 ∪ gc2.

It remains to show that Q1 is also an optimum solution
to the set of fully grounded hard and soft clauses gcf , from
which it will follow that Q1 and Qf are equivalent. Define
gcr = gcf \ (gc1 ∪ gc2). For any Q, we have:

W(Q, gcf ) = W(Q, gc1 ∪ gc2 ∪ gcr)
= W(Q, gc1 ∪ gc2) + W(Q, gcr)
≤ W(Q1, gc1 ∪ gc2) + W(Q, gcr) [c]
≤ W(Q1, gc1 ∪ gc2) + W(Q1, gcr) [d]
= W(Q1, gc1 ∪ gc2 ∪ gcr)
= W(Q1, gcf )

i.e. ∀Q, W(Q, gcf ) ≤ W(Q1, gcf ), proving that Q1 is an op-
timum solution to gcf . Inequality [c] follows from (11), that
is, Q1 is an optimum solution to gc1 ∪ gc2. Inequality [d]
holds because from (3), all clauses that Q1 possibly violates
are in gc2, whence Q1 satisfies all clauses in gcr, whence
W(Q, gcr) ≤ W(Q1, gcr). �
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