
Learning Ensembles of Cutset Networks

Tahrima Rahman and Vibhav Gogate
Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75080, USA.
{tahrima.rahman,vibhav.gogate}@utdallas.edu

Abstract

Cutset networks — OR (decision) trees that have Bayesian
networks whose treewidth is bounded by one at each leaf —
are a new class of tractable probabilistic models that admit
fast, polynomial-time inference and learning algorithms. This
is unlike other state-of-the-art tractable models such as thin
junction trees, arithmetic circuits and sum-product networks
in which inference is fast and efficient but learning can be no-
toriously slow. In this paper, we take advantage of this unique
property to develop fast algorithms for learning ensembles of
cutset networks. Specifically, we consider generalized ad-
ditive mixtures of cutset networks and develop sequential
boosting-based and parallel bagging-based approaches for
learning them from data. We demonstrate, via a thorough
experimental evaluation, that our new algorithms are superior
to competing approaches in terms of test-set log-likelihood
score and learning time.

Introduction

Learning tractable probabilistic models, namely models that
admit polynomial-time marginal and maximum-a-posteriori
inference, has been the subject of much recent research
(Poon and Domingos 2011; Gens and Domingos 2013;
Rooshenas and Lowd 2014; Rahman, Kothalkar, and Gogate
2014; Choi, Van den Broeck, and Darwiche 2015). Al-
though, these models have higher bias and are a strict sub-
class of the general class of probabilistic models, it has been
shown in numerous empirical studies that they typically
have higher predictive accuracy than the latter (Rooshenas
and Lowd 2014). The key reason for this superior perfor-
mance is the accuracy of inference; since exact inference
in real-world probabilistic models is often computationally
infeasible, one has to resort to approximate inference ap-
proaches which can be quite unreliable and inaccurate in
practice. Learning tractable models helps circumvent these
issues associated with approximate inference.

In this paper, we consider a sub-class of tractable mod-
els called cutset networks (Rahman, Kothalkar, and Gogate
2014) or CNets in short. Roughly speaking, cutset net-
works are rooted OR trees that have a Bayesian network
whose treewidth is bounded by one at each leaf. Infer-

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ence over them is linear in the size of the network us-
ing a straight-forward generalization of Pearl and Dechter’s
cutset conditioning algorithm (Pearl 1988; Dechter 1990).
Unlike other state-of-the-art models such as arithmetic cir-
cuits (Darwiche 2003; Lowd and Domingos 2008), sum-
product networks (Poon and Domingos 2011), and thin junc-
tion trees (Bach and Jordan 2001) in which learning is
computationally expensive, CNets admit tractable learn-
ing algorithms assuming that the number of nodes in the
OR tree is bounded by a constant. Moreover, fast, heuris-
tic algorithms for learning CNets often yield performance
that is close in terms of test-set log-likelihood to the exact
learning algorithm (Rahman, Kothalkar, and Gogate 2014;
Di Mauro, Vergari, and Esposito 2015). We take advantage
of this fast learnability property of CNets to learn their en-
sembles, namely we develop techniques that combine mul-
tiple CNets to improve the prediction accuracy.

We make the following contributions. First, we de-
velop several sequential boosting-based as well as paral-
lel bagging-based algorithms for learning CNets from data
leveraging vast amount of previous work on boosting and
bagging algorithms (cf. (Zhou 2012)) as well as their gen-
eralizations for density estimation (Rosset and Segal 2002;
Ridgeway 2002; Welling, Zemel, and Hinton 2002). Sec-
ond, we perform and report on a comprehensive empiri-
cal evaluation, comparing our new algorithms with several
state-of-the-art systems such as sum-product networks with
direct and indirect interactions (Rooshenas and Lowd 2014),
latent tree models (Choi et al. 2011) and mixtures of cut-
set networks (Rahman, Kothalkar, and Gogate 2014) on a
wide variety of benchmark datasets. Our empirical evalua-
tion clearly demonstrates the power of our new approaches;
our new algorithms are better than competing systems on 13
out of 20 datasets in terms of test-set log-likelihood. This is
significant because we compare with well-engineered, state-
of-the-art systems.

Background

Let X = {X1, . . . , Xn} be a set of n discrete random vari-
ables. We assume that each variable Xi can be assigned a
value from a finite set Δi, called its domain. Let x denote
an assignment to all variables in X .

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

3301

OR Trees

An OR tree represents the search space explored during
probabilistic inference by conditioning. Each internal node
v in the OR tree is labeled with a variable. Each edge ema-
nating from v represents the conditioning of the variable at
v, say Xi, by a value xi ∈ Δi and is labeled by the condi-
tional probability of the variable-value assignment Xi = xi

given the assignment along the path from the root node to v.
The leaf nodes have no labels. An OR tree, denoted by o,
represents the following probability distribution:

o(x) =
∏

(vi,vj)∈patho(x)

ρ(vi, vj) (1)

where patho(x) is the sequence of edges from the root to a
unique leaf corresponding to the assignment x and ρ(vi, vj)
is the label (conditional probability) of the edge between
vi and vj . It takes O(s) time to compute marginal and
maximum-a-posteriori (MAP) estimates using an OR tree
where s is the number of OR nodes in the tree.

Tree Bayesian Networks

A tree Bayesian network is a Bayesian network (Pearl 1988)
in which each variable has at most one parent. The treewidth
of these networks equals one and therefore both marginal
and maximum-a-posteriori (MAP) inference queries can be
answered in O(nδ2max) time and space where δmax is the
maximum domain size. Unlike general Bayesian networks
in which learning the structure and parameters of the net-
work given data is NP-hard in general, in tree Bayesian net-
works both structure and parameter learning tasks can be
solved in polynomial time using the classic Chow-Liu algo-
rithm (Chow and Liu 1968). The time complexity of this
algorithm is O(n2e) where n is the number of variables and
e is the number of training examples.

A tree Bayesian network represents the following distri-
bution:

T (x) =
∏

Xi∈X

P (x{Xi}|x{pa(Xi)}) (2)

where x is an assignment of values to all variables in X ,
x{Xi} denotes the projection of x on the variables in the set
{Xi} and pa(Xi) denotes the parent of Xi in T .

Cutset Networks

Cutset networks (CNets) enhance the power of tree
Bayesian networks by combining them with OR trees. For-
mally, a CNet denoted by c, is a pair 〈o, T 〉 where o is a
rooted OR search tree having L leaves and T = {Tl}Ll=1
is a collection of tree Bayesian networks such that Tl is as-
sociated with the l-th leaf of o. It represents the following
probability distribution:

c(x) =

⎛
⎝ ∏

(vi,vj)∈patho(x)

ρ(vi, vj)

⎞
⎠(

Tl(x)(xV (Tl(x)))
)

(3)
where l(x) is the index of the leaf node corresponding to the
assignment x in o and V (Tl) is the subset of variables over
which Tl is defined. Both marginal and MAP inference over

CNets can be answered in O(nδ2maxl + s) time where l is
the number of leaf nodes in the OR tree and other quantities
are defined as before. CNets also admit a polynomial-time
learning algorithm when the number of nodes s in the OR
tree is bounded by a constant. A straight-forward approach
is to generate all possible CNets having s OR nodes (which
is polynomial in n) and select the one that has the highest
log-likelihood score on the training data.

Although learning is tractable in CNets, it has high poly-
nomial complexity. To remedy this problem, (Rahman,
Kothalkar, and Gogate 2014) proposed a heuristic, recursive
algorithm (having low polynomial complexity) to learn them
from data. In this method, the OR tree is built in a top-down
manner. At each recursive step, a variable that maximally
reduces the expected entropy is selected and conditioned on.
Then the algorithm recurses on each part of the two-way
partition of the data (assuming binary variables) created by
conditioning on the variable until some termination condi-
tion is satisfied (e.g., the number of examples or the entropy
of the data at the node is small). At this point, the algo-
rithm uses the Chow-Liu algorithm to learn a tree Bayesian
network over the remaining variables. To avoid overfitting,
Rahman et al. proposed to post-prune the network, by re-
placing an internal node of the OR tree by a tree Bayesian
network in a bottom up fashion until the likelihood on the
held-out set stops improving. Recently, (Di Mauro, Vergari,
and Esposito 2015) proposed a Bayesian learning approach
to prevent overfitting, in lieu of the costly post-pruning step.

In this paper, instead of using costly methods such as
post-pruning and Bayesian learning to avoid overfitting, we
propose to limit the depth of the OR tree, yielding a weak
learner. We then improve the accuracy of these weak learn-
ers using ensemble methods. We also use a different heuris-
tic than Rahman et al. for choosing the next variable to con-
dition on. We score each variable Xi using Score(Xi) =∑

Xj∈X\{Xi} I(Xi, Xj) where I(Xi, Xj) is the mutual in-
formation between Xi and Xj and choose a variable having
the highest score. The rationale for this heuristic is that vari-
ables having a large score are likely to be involved in a large
number of edges and thus likely to be a part of a cutset. In
our experiments, we found that this heuristic is much supe-
rior to the one used by Rahman et al.

Ensembles of CNets

We define an ensemble of cutset networks (ECNets), de-
noted by fM , as a collection of pairs {〈αm, cm〉}Mm=1 where
cm is a CNet and αm is its associated weight or coefficient
such that αm ≥ 0 and

∑M
m=1 αm = 1. fM represents the

following probability distribution.

fM (x) =

M∑
m=1

αmcm(x)

where x is an assignment of values to all variables in X and
cm(x) is the probability of x w.r.t. cm. We assume that each
cutset network cm in the ensemble is a member of some class
Qd of cutset networks, such that the depth of the OR tree of
all networks in the class Qd is bounded by d. Frequently, we
will refer to the cutset networks as the base models of fM .

3302

Given training data D = {x(1), ..., x(N)}, we can learn
fM by solving the following optimization problem:

f∗
M = argmax

fM

L(fM ;D) (4)

where L(fM ;D) =
∑N

i=1 log(fM (x(i))) is the log-
likelihood of D. Since αm’s cannot be directly estimated
from data (they are not observed), the optimization prob-
lem is multi-modal. Therefore, we seek approximate heuris-
tic approaches to solve it. One such approach is to fix
M and then use the EM algorithm (Dempster, Laird, and
Rubin 1977) to solve the optimization problem. This ap-
proach yields the MCNet algorithm described in (Rahman,
Kothalkar, and Gogate 2014).

In this paper, we propose to solve the optimization prob-
lem using sequential boosting-based approaches as well as
parallel bootstrapping (bagging) approaches. Intuitively, our
new algorithms are likely to yield more accurate models than
the conventional EM algorithm which updates all base mod-
els and mixture weights simultaneously because they will
have better convergence properties (Neal and Hinton 1998),
smaller computational complexity (since networks will be
added sequentially or via bootstrapping), and superior abil-
ity to escape local maxima than the latter. As we will de-
scribe in the section on experiments, our experimental re-
sults clearly validate this intuition.

Boosting Cutset Networks

In this subsection, we present three approaches for boosting
CNets. The first approach is based on the boosting density
estimation approach of (Rosset and Segal 2002) (henceforth,
called the BDE method); the second is based on a kernel-
based generalization of the BDE method; and the third ap-
proach uses the sequential (or incremental) EM algorithm.
We describe the three approaches in order next.

The BDEmethod sequentially grows the ensemble, adding
a weak base learner at each stage. Formally, at each boost-
ing stage m it seeks to find a weak learner cm belonging
to a class Qd and a coefficient ηm to add to the current
model fm−1 such that the log-likelihood of the new model
fm = (1−ηm)fm−1+ηmcm, denoted by L(fm;D), is max-
imized. Since optimizing the log-likelihood is hard (there is
no closed form solution), the log-likelihood is approximated
using the following expression (derived using Taylor series).

L(fm;D) ≈ L(fm−1;D) +
ηm

1− ηm

∑
i

cm(x(i))

fm−1(x(i))
(5)

Assuming that ηm is a (small) constant, L(fm;D) can be

maximized by maximizing
∑

i
cm(x(i))

fm−1(x(i))
. To maximize the

latter, at each boosting step m, we search for a CNet cm ∈
Qd that maximizes the weighted log-likelihood of data, in
which each example x(i) is weighted by 1

fm−1(x(i))
. In other

words, examples which have lower probability according to
the previous model receive higher weight and vice versa.

An algorithmic description of a scheme that uses the BDE
method for boosting CNets is given in Algorithm 1. The
algorithm begins by initializing the model f0 to the uniform

Algorithm 1: CNet-Boosting
Input : Dataset D, An integer M , maximum-depth d
Output: fM

1 begin
2 f0 = uniform distribution
3 for m = 1 to M do

4 ω
(i)
m = 1

fm−1(x(i))
∀x(i) ∈ D

5 cm = argmax
c

∑
i

ω
(i)
m c(x(i)) from Qd

6 ηm =

argmax
η

∑
i

log((1−η)fm−1(x
(i))+ηcm(x(i)))

7 fm = (1− ηm)fm−1 + ηmcm

8 return fM

distribution. Then, at each iteration m, it updates the weight
ω
(i)
m of each example x(i) to 1

fm−1(x(i))
(step 4), learns a new

CNet cm that maximizes the weighted log-likelihood using
the algorithm described in (Rahman, Kothalkar, and Gogate
2014; Di Mauro, Vergari, and Esposito 2015) (step 5), finds a
weighting co-efficient ηm for the new model by performing
a line search (step 6), and finally updates the model fm with
the new weighting co-efficient (step 7).

Next, we derive an AdaBoost (Freund and Schapire 1997)
style algorithm for learning ECNets by generalizing the
weight update rule in step 4 of Algorithm 1. To derive this
rule, we rewrite the weight as

ω
(i)
m+1 =

1

fm(x(i))
=

1

(1− ηm)fm−1(x(i)) + ηmcm(x(i))

Dividing both the numerator and the denominator by
fm−1(x

(i)) and factoring out ηm we get:

ω
(i)
m+1 =

ω
(i)
m

1 + ηm(cm(x(i))
fm−1(x(i))

− 1)
(6)

From (6), we can see that the ratio cm(x(i))
fm−1(x(i))

determines the

relationship between ω
(i)
m and ω

(i)
m+1:

• Case 1:
cm(x(i))

fm−1(x(i))
≥ 1 ⇒ ω

(i)
m+1 ≤ ω

(i)
m : the weight of

an example having higher probability in cm than fm−1 is
decreased.

• Case 2:
cm(x(i))

fm−1(x(i))
< 1 ⇒ ω

(i)
m+1 > ω

(i)
m : the weight of

an example having higher probability in fm−1 than cm is
increased.

We can express the relationship between ω
(i)
m+1 and ω

(i)
m , in

a more general form using the following expression:

ω
(i)
m+1 =

ω
(i)
m

1 + βmK(cm(x(i)), fm−1(x(i)), ε)
(7)

where K is a kernel-function for smoothing the (gradient)
updates, βm ∈ (0, 1) is the step size and ε is a tolerance

3303

Table 1: Test set log-likelihood scores of boosting algorithms. Winning scores are bolded and underlines highlight GBDE over
BDE. FD:= Fixed Depth and VD:=Variable Depth.

Datasets
CNet MCNet

FD VD FD VD
BDE GBDE SEQEM BDE GBDE SEQEM BDE GBDE SEQEM BDE GBDE SEQEM

NLTCS -6.03 -6.01 -6.01 -6.03 -6.02 -6.01 -6.00 -6.00 -6.00 -6.00 -6.02 -6.02
MSNBC -6.26 -6.21 -6.15 -6.25 -6.23 -6.15 -6.21 -6.17 -6.25 -6.22 -6.23 -6.24
KDDCup2K -2.19 -2.15 -2.15 -2.18 -2.17 -2.15 -2.14 -2.13 -2.13 -2.15 -2.14 -2.14
Plants -13.03 -12.76 -12.72 -13.42 -13.11 -12.65 -12.44 -12.42 -12.32 -12.58 -12.69 -12.64
Audio -40.59 -40.37 -39.94 -40.95 -40.67 -39.84 -39.80 -39.86 -39.67 -39.89 -40.08 -40.11
Jester -53.25 -52.98 -52.87 -53.55 -53.45 -52.82 -52.57 -52.69 -52.44 -52.82 -52.94 -52.78
Netflix -56.76 -56.73 -56.47 -57.62 -57.61 -56.44 -56.29 -56.39 -56.13 -56.47 -56.65 -56.65
Accidents -30.09 -30.09 -29.45 -30.52 -30.42 -29.45 -29.41 -29.33 -29.27 -29.50 -29.67 -30.26
Retail -10.93 -10.89 -10.81 -10.96 -10.88 -10.82 -10.83 -10.85 -10.79 -10.84 -10.83 -10.83
Pumsb-star -24.08 -24.09 -23.45 -24.37 -24.25 -23.47 -23.43 -23.48 -23.37 -23.53 -23.80 -26.03
DNA -86.24 -86.30 -86.12 -86.18 -85.82 -85.67 -85.00 -84.93 -82.67 -84.03 -84.68 -85.12
Kosarek -11.03 -10.77 -10.62 -10.83 -10.78 -10.60 -10.57 -10.57 -10.54 -10.58 -10.59 -10.56
MSWeb -10.04 -9.86 -9.73 -10.03 -9.89 -9.75 -9.85 -9.80 -9.72 -9.89 -9.83 -9.79
Book -36.08 -35.91 -34.46 -36.02 -35.74 -34.48 -33.93 -33.85 -33.95 -33.99 -33.85 -33.78
EachMovie -55.18 -53.46 -52.00 -54.61 -53.87 -51.53 -51.63 -51.75 -51.14 -51.75 -51.48 -51.92
WebKB -156.46 -155.08 -152.86 -154.95 -155.10 -152.53 -151.64 -151.45 -151.60 -151.51 -150.71 -150.84
Reuters-52 -85.82 -84.90 -84.03 -85.16 -84.83 -83.69 -83.65 -83.61 -82.29 -84.09 -83.73 -82.65
20Newsgrp. -156.16 -155.61 -153.57 -155.85 -155.77 -153.12 -153.52 -152.90 -151.75 -152.59 -152.89 -153.17
BBC -247.01 -247.44 -251.96 -250.92 -249.53 -251.81 -244.61 -237.87 -237.94 -242.43 -238.59 -248.32
Ad -15.74 -15.90 -14.37 -15.75 -16.09 -14.36 -14.48 -14.97 -14.58 -14.65 -14.65 -14.50
Average LL -55.15 -54.87 -54.49 -55.31 -55.11 -54.37 -53.90 -53.67 -53.23 -53.78 -53.60 -54.22

Table 2: Runtime comparison (in seconds). †indicates that the algorithm did not terminate in 48 hrs.

Datasets
Boosting Bagging MCNet ID-SPN ACMNBDE GBDE SEQEM

CNet MCNet CNet MCNet CNet MCNet CNet MCNet
NLTCS 27.60 512.80 82.60 289.51 181.17 193.04 2.90 116.42 36.57 307.00 242.40
MSNBC 366.28 4224.64 992.60 5787.68 14962.22 106.38 671.81 1689.74 2177.73 90354.00 579.90
KDDCup2K 600.73 15454.69 6966.55 13703.42 5785.30 1731.47 1344.17 2745.99 1988.49 38223.00 645.50
Plants 973.17 2494.60 2668.30 1829.74 2773.67 2340.01 54.80 824.44 135.00 10590.00 119.40
Audio 1384.60 2744.51 1529.60 2045.94 2889.43 2865.37 89.39 743.71 187.78 14231.00 1663.90
Jester 1539.95 1695.21 3354.30 1063.90 2152.58 6437.08 52.52 939.97 101.15 † 3665.80
Netflix 5610.40 3328.44 3982.86 2243.79 4569.44 5321.28 106.41 679.76 224.38 † 1837.40
Accidents 2049.23 3484.30 1888.71 2334.04 3385.86 7228.44 100.93 496.82 195.49 † 793.40
Retail 213.41 4416.32 285.11 1132.00 7641.05 4065.44 247.30 813.84 104.67 2116.00 12.50
Pumsb-star 1055.03 4173.11 1015.13 2908.71 4419.91 3864.32 141.54 386.63 233.79 18219.00 374.00
DNA 89.69 446.61 128.02 331.83 421.34 153.18 30.49 119.26 57.69 150850.00 39.90
Kosarek 967.93 9474.57 2564.82 5693.66 13352.09 10891.22 1264.40 624.03 141.16 † 585.40
MSWeb 1309.71 13207.53 3646.54 12260.44 17431.33 16136.63 3515.94 1987.20 642.80 † 286.30
Book 411.21 6650.12 4451.52 1484.70 8756.64 5451.08 2349.20 1673.81 154.42 125480.00 3035.00
EachMovie 3053.31 4646.34 2973.99 3560.84 4037.28 2073.33 648.18 1318.09 204.81 78982.00 9881.10
WebKB 493.07 4754.49 1185.25 1643.65 2537.48 2038.20 943.17 1346.62 160.40 † 7098.30
Reuters-52 5309.41 14995.21 5770.73 4637.31 10680.87 5268.56 2109.27 1901.74 1525.20 † 2709.60
20Newsgrp. 12950.45 27310.00 7463.05 7774.85 25961.20 10045.16 3867.26 2899.56 1177.16 † 16255.30
BBC 2353.06 3774.40 1497.82 1823.51 1190.47 1697.80 810.38 619.17 70.21 4157.00 1862.20
Ad 2314.91 7834.92 263.50 3188.44 8800.22 3040.97 1744.25 720.76 155.38 † 6496.40
Average Time 2153.66 6781.14 2635.55 3786.90 7096.48 4547.45 1004.72 1132.38 483.71 † 2909.19

measure. For example, the following function can be used
to smooth the updates:

K(cm(x), fm−1(x), ε) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1 if (cm(x)
fm−1(x)

− 1) > ε

−1 if (1− cm(x)
fm−1(x)

) > ε

0 otherwise
(8)

Using (7) (with K given by (8)) instead of the rule given in
step 4 of Algorithm 1 yields smooth updates in the follow-
ing sense. In the BDE method, all weights change at each

iteration by a different amount. When a smooth K such as
the one given in (8) is used, a weight ω(i)

m+1 is updated iff the
relative difference between cm(x(i)) and fm−1(x

(i)) for the
corresponding example x(i) is larger than the tolerance mea-
sure ε. Moreover, all weights (that are updated) are updated
by the same amount, similar to AdaBoost (which updates all
misclassified examples).

Our third approach uses the EM algorithm (Dempster,
Laird, and Rubin 1977) to solve the optimization problem
at each iteration m. Note that in the approximation given in
(5), ηm is assumed to be a (small) constant. In our EM-based

3304

approach similar to (Ridgeway 2002), we remove this relax-
ation and jointly optimize ηm and cm, keeping fm−1 fixed.1
The algorithm operates as follows. At each iteration m, the
algorithm randomly guesses ηm and cm. It then alternates
between the following expectation (E-Step) and maximiza-
tion steps (M-Step) until convergence:

• E-Step : γ(i)
m = ηmcm(x(i))

(1−ηm)fm−1(x(i))+ηmcm(x(i))

• M-step :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ηm = 1
N

N∑
i=1

γ
(i)
m

cm = argmax
c

N∑
i=1

γ
(i)
m log(c(x(i))), c ∈ Qd

Bagging Cutset Networks

Bootstrap aggregation (Bagging) is a method for combining
several high variance models of the same kind trained on
different subsets of the data (Breiman 2001). The subsets are
called bootstrap samples and are generated by sampling the
original data with replacement. In various empirical studies,
Bagging has been shown to improve the accuracy of several
supervised learning algorithms by reducing the variance of
the learning algorithm when data is scarce. In this paper, we
use the following straight-forward extension of the general
bagging method to learn ECNets.

Each constituent CNet cm in the ensemble is learned by
generating bootstrap samples from the data, and then max-
imizing the log-likelihood of the generated samples. The
coefficients αm’s can be learned in several ways. One ap-
proach is to attach the same weight 1/M to each cm, yield-
ing a simple average mixture. Another approach is to weigh
each cm by a value that is proportional to its likelihood. In
this paper, we use the latter approach because it often per-
forms better than simple averaging in practice. Note that the
negative log-likelihood measures the error of the base mod-
els and thus our one-shot weighing technique assigns high
weight to low error models and vice versa. Since each boot-
strap uses roughly 63.2% of the unique examples of D, this
measure takes into account the out-of-bag sample error and
therefore exempts us from using a validation set to estimate
the coefficients.

To de-correlate the cutset networks in the bagged ensem-
ble, we use the following random forests inspired approach
(Breiman 2001). At each node of the OR tree, we pick
r variables uniformly at random and then use the splitting
heuristic to select the best variable from these r variables.

Experiments

We evaluated the performance of ECNets on 20 real
world benchmark datasets (Lowd and Davis 2010; Gens
and Domingos 2013; Rooshenas and Lowd 2014; Rahman,
Kothalkar, and Gogate 2014; Van Haaren and Davis 2012;

1The difference between this EM-based method and the EM-
based MCNet algorithm proposed in (Rahman, Kothalkar, and
Gogate 2014) is that in the latter at each EM iteration, all cutset
networks cj and coefficients ηj for j = 1 to m are updated simul-
taneously while in the former only cm and ηm are updated.

Table 3: Test set log-likelihood scores of bagged CNets and
MCNets. Bold values indicate the winning scores. FD:=
Fixed Depth and VD:=Variable Depth.

Dataset
CNet MCNet

FD VD FD VD
NLTCS -6.00 -6.02 -6.00 -6.00
MSNBC -6.08 -6.12 -6.06 -6.05
KDDCup 2K -2.14 -2.14 -2.13 -2.13
Plants -12.32 -12.44 -12.19 -12.20
Audio -40.09 -40.37 -39.74 -39.88
Jester -52.88 -53.04 -52.62 -52.59
Netflix -56.55 -56.99 -56.22 -56.43
Accidents -29.88 -30.16 -29.25 -29.46
Retail -10.84 -10.84 -10.79 -10.78
Pumsb-star -23.98 -24.27 -23.34 -23.56
DNA -83.55 -81.07 -83.03 -80.66
Kosarek -10.75 -10.74 -10.70 -10.55
MSWeb -9.77 -9.80 -9.74 -9.70
Book -35.84 -35.55 -34.97 -33.96
EachMovie -53.37 -53.00 -52.00 -51.22

WebKB -158.12 -153.12 -156.14 -150.10
Reuters-52 -84.36 -83.71 -83.77 -82.19
20Newsgrp. -156.60 -155.09 -156.34 -153.00
BBC -239.88 -237.42 -241.46 -236.82
Ad -15.28 -15.32 -15.09 -14.67

Average LL -54.41 -53.86 -54.08 -53.10

Davis and Domingos 2010) listed in Table 4. The number
of variables range from 16 to 1556 and the number of train-
ing examples vary from 1.6K to 291K examples. All vari-
ables are binary. We ran all our experiments on a quad-core
Intel i7 2.7 GHz machine with 16GB RAM and ran each
algorithm for 48 hours or until termination, whichever was
earlier.

Our chosen base models are CNets and small MCNets
with the number of components fixed to either 2 or 3 in an
ensemble(chosen by the validation set). We also ensured
that the total number of component Nets learned does not
exceed 40. This was done to make fair comparisons with
other tractable model learners. We introduced two types of
randomizations in learning the base models: randomizing
the pool of cutset variables at each splitting node, and ran-
domizing the maximum depth of the OR tree. The former
is equivalent to learning an ensemble of randomized cutset
networks as done in random forests – at each splitting node
we randomly sample without return 50% of the variables
and apply our heuristic to choose the best one. The latter
is similar to stacking – combining models of different com-
plexities. At each iteration we randomly picked an integer
depth 0 ≤
 ≤ max depth to learn the next base model.
Here max depth is the maximum depth that a cutset net-
work can have in an ensemble. Therefore, both boosting
and bagging are performed using fixed depth as well as vari-
able depth base models leading to four categories of algo-
rithms: learning with fixed depth CNets, learning with vari-
able depth CNets, learning with fixed depth MCNets, and
learning with variable depth MCNets. We used 1-laplace
smoothing for the parameters.

3305

Table 4: Test set log-likelihood comparison. (Ties are not bolded).

Dataset #Var #Train #Valid #Test ECNet MCNet ID-SPN ACMN MT SPN LTMBag Boost
NLTCS 16 16181 2157 3236 -6.00 -6.00 -6.00 -6.02 -6.00 -6.01 -6.11 -6.49
MSNBC 17 291326 38843 58265 -6.05 -6.15 -6.04 -6.04 -6.04 -6.07 -6.11 -6.52
KDDCup2K 64 180092 19907 34955 -2.13 -2.13 -2.12 -2.13 -2.17 -2.13 -2.18 -2.18
Plants 69 17412 2321 3482 -12.19 -12.32 -12.74 -12.54 -12.80 -12.95 -12.98 -16.39
Audio 100 15000 2000 3000 -39.74 -39.67 -39.73 -39.79 -40.32 -40.08 -40.50 -41.90
Jester 100 9000 1000 4116 -52.59 -52.44 -52.57 -52.86 -53.31 -53.08 -53.48 -55.17
Netflix 100 15000 2000 3000 -56.22 -56.13 -56.32 -56.36 -57.22 -56.74 -57.33 -58.53
Accidents 111 12758 1700 2551 -29.25 -29.27 -29.96 -26.98 -27.11 -29.63 -30.04 -33.05
Retail 135 22041 2938 4408 -10.78 -10.79 -10.82 -10.85 -10.88 -10.83 -11.04 -10.92
Pumsb-star 163 12262 1635 2452 -23.34 -23.37 -24.18 -22.40 -23.55 -23.71 -24.78 -31.32
DNA 180 1600 400 1186 -80.66 -82.67 -85.82 -81.21 -80.03 -85.14 -82.52 -87.60
Kosarek 190 33375 4450 6675 -10.55 -10.54 -10.58 -10.60 -10.84 -10.62 -10.99 -10.87
MSWeb 294 29441 32750 5000 -9.70 -9.72 -9.79 -9.73 -9.77 -9.85 -10.25 -10.21
Book 500 8700 1159 1739 -33.96 -33.78 -33.96 -34.14 -36.56 -34.63 -35.89 -34.22
EachMovie 500 4524 1002 591 -51.22 -51.14 -51.39 -51.51 -55.80 -54.60 -52.49 †
WebKB 839 2803 558 838 -150.10 -150.71 -153.22 -151.84 -159.13 -156.86 -158.20 -156.84
Reuters-52 889 6532 1028 1540 -82.19 -82.29 -86.11 -83.35 -90.23 -85.90 -85.07 -91.23
20Newsgrp. 910 11293 3764 3764 -153.00 -151.75 -151.29 -151.47 -161.13 -154.24 -155.93 -156.77
BBC 1058 1670 225 330 -236.82 -237.87 -250.58 -248.93 -257.10 -261.84 -250.69 -255.76
Ad 1556 2461 327 491 -14.67 -14.36 -16.68 -19.00 -16.53 -16.02 -19.73 †

Average LL -53.06 -53.16 -54.50 -53.89 -55.83 -55.55 -55.32 †

Boosting Performance

We compare the following three different boosting tech-
niques using CNets and MCNets as base models:
the BDE method, our proposed modification to the
BDE method (see Eq. (8)) which we call the GBDE
and the sequential EM-algorithm which we refer to as
SEQEM in brief. For the GBDE, we tried the follow-
ing values for ε: {0.1,0.3,0.5,0.7,0.9} and βm:
{0.01,0.05,0.2,0.4,0.6,0.8}. The best values
were selected based on the accuracy attained on the vali-
dation set. In all three algorithms, we added a base model
to the ensemble until the validation set likelihood decreased
or the total number of boosting iterations reached 40. The
maximum depth of CNets and MCNets was varied from
0 to 5 and the best depth was also chosen by the validation
set. To learn simpler models than fully connected Chow-
Liu trees at the leaves of the base models (and thus avoid
overfitting), we removed all edges from the Chow-Liu trees
whose mutual information was smaller than 0.005. For
learning MCNets we generated bootstrap samples from the
weighted datasets in both BDE and GBDE algorithms (Fre-
und and Schapire 1996). The parameters of the mixture were
then optimized via the EM algorithm using the original train-
ing set for 50 iterations or until convergence.

Table 1 reports the test set log-likelihood scores achieved
by each algorithm in four different categories of algorithms.
The last row reports the average score on all datasets for
each algorithm and represents a quick shot statistic for com-
paring the performance of the various algorithms. SEQEM-
boosting with fixed depth MCNets is the best performing
algorithm scoring the highest average log-likelihood. GBDE
yields better generalization performance than the BDE in all
four categories. Table 2 compares the running time of these
algorithms. Because of space restrictions, we are only re-

porting the running time for fixed depth boosted models. We
see that SEQEM was the slowest while GBDE and BDE were
the fastest, clearly demonstrating the time versus accuracy
trade-off for the three boosting algorithms.

Bagging Performance

We varied the number of bags from 5 to 40 with incre-
ments of 5. The maximum depth of the OR trees was var-
ied from 5 to 10. The number of bags and the depth was
chosen based on the accuracy on the validation set. In bag-
ging MCNets, we randomized the structure using bootstrap
replicates and then learned the best parameters for that struc-
ture on the training set (Ammar et al. 2010). EM was run
for 100 iterations or until convergence and no restarts were
performed. The test set log-likelihood scores are given in
Table 3. Bag of variable depth MCNets performs the best
out of the four bagging schemes. Comparing the time for
Bagging from Table 2 with that of Boosting, we see that
bagging is the fastest algorithm among the ensemble learn-
ing techniques for cutset networks. Unlike boosting, larger
depth trees and randomization significantly improves the ac-
curacy of the model.

Comparison with State-of-the-art

We also compared the accuracy and learning efficiency of
ECNets to five other well-cited state-of-the-art tractable
model learners: learning sum-product network with di-
rect and indirect variable interactions (ID-SPN), learning
Markov networks using arithmetic circuits (ACMN) (Lowd
and Rooshenas 2013), learning mixtures of trees(MT)
(Meila and Jordan 2001), learning sum-product networks
(SPN) and learning latent tree models (LTM). Table 4 re-
ports the performance of these algorithms. These results
were taken from (2014; 2014). For bagging and boosting

3306

we are only reporting results for settings selected using the
validation set for a fair comparison. ECNets algorithms
are clearly the best performing algorithms outperforming the
competition on 13 out of the 20 datasets with 1 tie. Fast bag-
ging methods perform slightly better than boosting on high-
dimensional datasets having few examples. This is possibly
because of superior randomization in bagging which helps
reduce the variance. ECNets are almost always better than
MCNets. This shows that our new bootstrap and sequential
optimization approaches are superior to the non-sequential
EM algorithm used in MCNets.

Summary

In this paper we presented novel boosting and bagging al-
gorithms for learning cutset networks from data. We per-
formed a comprehensive empirical evaluation comparing
our algorithms to state-of-the-art algorithms as well as to
each other. Our results clearly show that our new addi-
tive models are quite powerful and superior to state-of-the-
art algorithms. Future work includes: learning ensembles
of tractable lifted CNets (Gogate and Domingos 2010);
adding AND or product nodes to CNets; inducing OR
graphs instead of OR trees; etc.

Acknowledgments. We gratefully acknowledge the sup-
port of the Defense Advanced Research Projects Agency
(DARPA) Probabilistic Programming for Advanced Ma-
chine Learning Program under Air Force Research Labora-
tory (AFRL) prime contract number FA8750-14-C-0005.

References
Ammar, S.; Leray, P.; Schnitzler, F.; et al. 2010. Subquadratic
Markov tree mixture learning based on randomizations of the
Chow-Liu algorithm. In Proceedings of the 5th European Work-
shop on Probabilistic Graphical Models, 17–24.
Bach, F. R., and Jordan, M. I. 2001. Thin Junction Trees. In
Advances in Neural Information Processing Systems, 569–576.
Breiman, L. 2001. Random forests. Machine learning 45(1):5–32.
Choi, M. J.; Tan, V. Y.; Anandkumar, A.; and Willsky, A. S. 2011.
Learning latent tree graphical models. The Journal of Machine
Learning Research 12:1771–1812.
Choi, A.; Van den Broeck, G.; and Darwiche, A. 2015. Tractable
learning for structured probability spaces: A case study in learning
preference distributions. In Proceedings of the 24th International
Joint Conference on Artificial Intelligence, 2861–2868.
Chow, C., and Liu, C. 1968. Approximating discrete probability
distributions with dependence trees. IEEE Transactions on Infor-
mation Theory 14(3):462–467.
Darwiche, A. 2003. A Differential Approach to Inference in
Bayesian Networks. Journal of the ACM 50:280–305.
Davis, J., and Domingos, P. 2010. Bottom-up learning of markov
network structure. In Proceedings of the 27th International Con-
ference on Machine Learning, 271–278.
Dechter, R. 1990. Enhancement schemes for constraint process-
ing: Backjumping, learning, and cutset decomposition. Artificial
Intelligence 41(3):273–312.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Maximum
Likelihood from Incomplete Data Via the EM Algorithm. Journal
of the Royal Statistical Society, Series B 39:1–38.

Di Mauro, N.; Vergari, A.; and Esposito, F. 2015. Learning accu-
rate cutset networks by exploiting decomposability. In AI*IA 2015
Advances in Artificial Intelligence, 221–232.
Freund, Y., and Schapire, R. E. 1996. Experiments with a new
boosting algorithm. In Proceedings of the 13th International Con-
ference on Machine Learning, 148–156.
Freund, Y., and Schapire, R. E. 1997. A decision-theoretic gener-
alization of on-line learning and an application to boosting. Jour-
nal of computer and system sciences 55(1):119–139.
Gens, R., and Domingos, P. 2013. Learning the structure of sum-
product networks. In Proceedings of The 30th International Con-
ference on Machine Learning, 873–880.
Gogate, V., and Domingos, P. 2010. Exploiting Logical Struc-
ture in Lifted Probabilistic Inference. In AAAI 2010 Workshop on
Statistical Relational Learning.
Lowd, D., and Davis, J. 2010. Learning Markov network struc-
ture with decision trees. In Proceedings of the 10th International
Conference on Data Mining, 334–343.
Lowd, D., and Domingos, P. 2008. Learning Arithmetic Circuits.
In Proceedings of the 24th International Conference on Uncer-
tainty in Artificial Intelligence, 383–392.
Lowd, D., and Rooshenas, A. 2013. Learning markov networks
with arithmetic circuits. In Proceedings of the Sixteenth Interna-
tional Conference on Artificial Intelligence and Statistics, 406–
414.
Meila, M., and Jordan, M. I. 2001. Learning with mixtures of
trees. The Journal of Machine Learning Research 1:1–48.
Neal, R. M., and Hinton, G. E. 1998. A view of the EM algorithm
that justifies incremental, sparse, and other variants. In Learning
in graphical models. Springer. 355–368.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann.
Poon, H., and Domingos, P. 2011. Sum-Product Networks: A
New Deep Architecture. In Proceedings of the 27th Conference
on Uncertainty in Artificial Intelligence, 337–346.
Rahman, T.; Kothalkar, P.; and Gogate, V. 2014. Cutset networks:
A simple, tractable, and scalable approach for improving the ac-
curacy of chow-liu trees. In Proceesings of ECML and PKDD,
630–645.
Ridgeway, G. 2002. Looking for lumps: Boosting and bagging
for density estimation. Computational Statistics & Data Analysis
38(4):379–392.
Rooshenas, A., and Lowd, D. 2014. Learning sum-product net-
works with direct and indirect variable interactions. In Proceed-
ings of The 31st International Conference on Machine Learning,
710–718.
Rosset, S., and Segal, E. 2002. Boosting density estimation. In
Advances in Neural Information Processing Systems, 641–648.
Van Haaren, J., and Davis, J. 2012. Markov network structure
learning: A randomized feature generation approach. In Proceed-
ings of the 26th AAAI Conference on Artificial Intelligence, 1148–
1154.
Welling, M.; Zemel, R. S.; and Hinton, G. E. 2002. Self supervised
boosting. In Advances in Neural Information Processing Systems,
665–672.
Zhou, Z.-H. 2012. Ensemble Methods: Foundations and Algo-
rithms. Chapman & Hall/CRC, 1st edition.

3307

