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Abstract

The efficient extraction of one maximal information
subset that does not conflict with multiple contexts or
additional information sources is a key basic issue in
many A.L. domains, especially when these contexts or
sources can be mutually conflicting. In this paper, this
question is addressed from a computational point of
view in clausal Boolean logic. A new approach is in-
troduced that experimentally outperforms the currently
most efficient technique.

Introduction

The efficient extraction of one maximal information subset
that does not conflict with multiple contexts or additional
information sources is a key basic issue in many A.L. do-
mains, especially when these contexts or sources can be mu-
tually conflicting. As illustrated in (Besnard, Grégoire, and
Lagniez 2015), it is central in belief change, model-based di-
agnosis, planning, decision making, argumentation and non-
monotonic reasoning, among other A.I. fields.

Consider for example a logic-based agent that needs to
take her decisions under very tight time constraints and on
the basis of the part of her information that does not conflict
with mutually conflicting assumptions about what she does
not know for sure. Specifically, her decisions must be com-
patible with any of these assumptions since it can eventually
be true. Due to the time constraints, she quickly extracts one
maximal information subset that does not contradict any as-
sumption and considers this subset as a satisfactory basis for
decision making. Indeed, every assumption remains compat-
ible with this set and adopting any additional piece of the
available information would violate at least one of the as-
sumptions. Alternatively, this extraction can be the kernel of
a method that aims at enumerating all these maximal sub-
sets when enough computing time is available. It can also be
adapted to obey some preference ordering between informa-
tion pieces.

The extraction of one maximal information subset that
does not contradict possibly mutually conflicting sources
can also play a role in negotiation and multi-agent systems
since it can amount to finding one maximal subset that does
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not conflict with any goal of any of the involved agents or
negotiators.

In this paper, this issue is investigated from a computa-
tional point of view in clausal Boolean logic, when maxi-
mality is about set-theoretic inclusion. An original method
is proposed that experimentally outperforms the most effi-
cient current technique.

The paper is organized as follows. In the next section,
the main logical and computational concepts used in the pa-
per are recalled. Then, the problem is defined formally. The
currently most efficient approaches are described before our
original algorithm is introduced in a progressive way. Exper-
imentations that compare the new approach with its competi-
tors are then reported and discussed. Finally, the conclusion
elaborates on promising paths for further research.

Technical Background

We consider standard clausal Boolean logic. -, V, A and =
represent the negation, disjunction, conjunction and mate-
rial implication connective, respectively. A clause is a dis-
junction of literals and literals are possibly negated Boolean
variables, denoted by a, b . . ., which can thus be assigned ei-
ther true or false. Clauses are denoted by «, 3,7, ... Sets
of clauses are denoted by A, 3, ... Sets of sets of clauses
are denoted by C, D, ... The cardinality of a set A is writ-
ten card(A). A set of clauses A is satisfiable iff there ex-
ists at least one model of A, namely a truth assignment of
all Boolean variables of A making all clauses of A to be
true according to usual compositional rules. SAT is the NP-
complete problem that consists in checking whether a finite
set of clauses is satisfiable (Cook 1971).

From now on, we assume that A is a finite set of clauses,
that ® and ¥ are subsets of A and that C is a finite set of fi-
nite sets ['; of Boolean clauses, each of the I'; being (individ-
ually) satisfiable and representing one context. Key concepts
in this paper are inclusion-Maximal and Minimal Correction
Subsets.

Definition 1. ® is an (inclusion-)Maximal Satisfiable Sub-
set of A (in short, ® is a MSS(A)) iff @ is satisfiable and
VYa € A\ @, & U {«a} is unsatisfiable.

A Minimal Correction Subset (MCS) (also called Co-
MSS) of A is the set-theoretical complement in A of the
corresponding MSS.



Definition 2. ¥ is a Minimal Correction Subset of A (in
short, ¥ is a MCS(A)) iff ¥ = A\ ® where ® is a MSS of
A.

Accordingly, A can always be partitioned into a pair made
of one MSS and one MCS. Unless P=NP, extracting one
such partition is intractable in the worst case since this prob-
lem belongs to the FPNP[wit,log] class, i.., the set of
function problems that can be computed in polynomial time
by executing a logarithmic number of calls to an NP oracle
that returns a witness for the positive outcome (Marques-
Silva and Janota 2014). Techniques to compute one such
partition that prove very often efficient are described for ex-
ample in (Grégoire, Lagniez, and Mazure 2014; Marques-
Silva et al. 2013; Mencia, Previti, and Marques-Silva 2015).
Note that in the worst case the number of MSSes is expo-
nential in the number of clauses in A.

The well-known concept of Minimally Unsatisfiable Sub-
set (MUS) of an unsatisfiable set of clauses A will also
be useful in the sequel: one MUS of A is an unsatisfiable
subset of A that is minimal in the sense that dropping any
clause from the subset makes this latter one become satisfi-
able. See for example (Bailey and Stuckey 2005; Birnbaum
and Lozinskii 2003; Previti and Marques-Silva 2013; Liffi-
ton and Malik 2013; Belov, Heule, and Marques-Silva 2014;
Grégoire, Mazure, and Piette 2009; Liffiton and Sakallah
2008) among numerous studies about MUS.

Problem Statement

We follow (Besnard, Grégoire, and Lagniez 2015) where
Maximal Satisfiable and Minimal Correction Subsets under
a set of assumptive contexts are defined as follows.

Definition 3. ® is a Maximal Satisfiable Subset of A under
a set of assumptive contexts C, (@ is an AC-MSS(A, C) for
short), iff

1. ® is a satisfiable subset of A, and

2.VT; € C,® UT, is satisfiable, and

3.Va € A\®, PU{«a}UT, is unsatisfiable for some I'; € C.

Example 1. Let A = {aVb,aVc,dVb,eVc,—b,~c} and
C = {{—a}, {—d},{—e}}. Note that this example is simple
in the sense that (1) A is satisfiable, (2) all contexts are
merely unary clauses, and (3) the contexts are not mutually
logically conflicting. In the general case these three prop-
erties need not be satisfied. Fig. 1 depicts all clauses from
both sets. In this example, the figure shows how the various
contexts of C conflict with clauses in A. The encircled sets
of clauses represent the MUSes from A U C containing one
context from C. In this example, {aV b,aV ¢,dV b,eV c} is
one AC-MSS(A, C), among several ones.

Definition 4. W is a Minimal Correction Subset of A under
a set of assumptive contexts C, denoted AC-MCS(A, C), iff
A =T U ® where ¢ is an AC-MSS(A,C).

Example 2. In Example 1, {a V b,a V ¢,d V bye V ¢},
{a Vb,dV b,~c}, {aV eV, b} and {—c,—b} are all
AC-MCS(A,C).

We will focus on the extraction of either one AC-
MSS(A, C) or one AC-MCS(A,C) interchangeably in the
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Figure 1: Example 1.

paper, according to the corresponding algorithm that is the
easiest one to present. When one such set is obtained, its
dual can be derived in a straightforward manner since they
partition A.

Useful approximations of AC-MSS(A,C) and AC-
MCS(A, C) are defined as follows.

Definition 5. & is a Satisfiable Subset of A under a set of
assumptive contexts C, in short AC-SS(A, C), iff there exists
at least one set of clauses ®' s.t. ® C & C A and @’ is an
AC-MSS(A,C).

Definition 6. VU is a Correction Subset of A under a set
of assumptive contexts C, in short AC-CS(A,C), iff there
exists at least one set of clauses ¥/ s.t. &/ C ¥ C A and ¥’
isan AC-MCS(A,C).

Notice that neither A nor the conjunction of all the as-
sumptive contexts I'; of C are required to be satisfiable in
the definitions. The I'; are used in a point-wise manner: any
AC-MSS(A, C) must be satisfiable together with any con-
text I';, taken individually. Examples showing why the I';
cannot be replaced by one single context made of their con-
junction or disjunction, even when the I'; do not conflict one
another, are given in (Besnard, Grégoire, and Lagniez 2015).

Transformational Approach

The currently most efficient technique to extract one AC-
MSS(A,C) for large A has been proposed in (Besnard,
Grégoire, and Lagniez 2015). It was motivated by the lim-
its of the Greedy-AC-SS procedure, which is useful to
recall here. Greedy—-AC-SS starts with one MSS of A
as temporary result, denoted A’. Then, it considers each
I';, iteratively. At each iteration step, it expels a mini-
mal number of clauses from A’ so that A’ becomes sat-
isfiable with I';. However, the final set A’ is not nec-
essary an AC-MSS(A,C). Indeed, some clauses that are
dropped at some iteration step can sometimes render unnec-
essary the previous elimination of other clauses. Actually,
Greedy-AC-SS(A,(C) merely partitions A into one AC-
CS(A,C) and one AC-SS(A,C).

Example 3. Let A = {-a V b,—b,bV d}. Let C = {T'; =
{a},T2 = {—d}}. Greedy-AC-SS(A,C) works as fol-
lows. Assume that ' is considered first and —a V b is se-
lected and dropped from A at this step. Then, assume that
—b is dropped to make A" become satisfiable with T'y. The
final set A" = {bV d} is not an AC-MSS(A,C). Indeed,
only dropping —b from A would have delivered the bigger
set {=aVb,bVd}, which appears to be one AC-MSS(A, C).



Accordingly, (Besnard, Grégoire, and Lagniez 2015) con-
sidered one elementary brute-force approach to extract one
AC-MSS(A,C). This approach amounts to considering all
possible orderings for the different I'; and for each ordering,
to computing every possible solution of Greedy-AC-SS,
before a final solution is extracted. As there can be an expo-
nential number of MSSes in a set of clauses, this approach
is intractable both in the worst case and in many expectedly-
easier situations.

To address this computational blow up, at least to some
extent, (Besnard, Grégoire, and Lagniez 2015) have pro-
posed an encoding schema that allows the problem to be
rewritten into one single computation of one (mere) MSS
together with some additional calls to a SAT solver. More
precisely, when m is the number of I'; in C, n’ the largest
number of clauses in any I';, n the number of clauses in A,
that method requires in the worst case O(m) calls to a SAT-
solver on an instance of size O(n + n’), plus a logarithmic
number of calls to a SAT-solver on an instance of initial size
O(m(n + n')) that is divided by two at each call. Not sur-
prisingly, this Transformational Approach appears
more efficient than the brute-force one for many instances.
But, as the authors recognize it, large numbers m of differ-
ent I'; remain problematic since the size of the transformed
instance is proportional to m.

A Basic Incremental Algorithm

Algorithm 1. Incremental;-AC-MSS

: A aset of clauses;
C ={I'1,T2,...,T',}: asetof satisfiable sets of clauses;
Output : ® s.t. D is an AC-MSS(A, C);

T+ (A\ D);

Input

P < Greedy—-AC-SS(A, C);
foreach o € ¥ do
all-T';-satisfied < true; 14+ 1;
while ¢ < nand al1-T';-satisfied do
all-T';-satisfied < ®U{a}UT; is satisfiable;
i1+ 1;

if all-T';-satisfied then @ « ® U {a};

0 N AU AW -

return P;

Actually, it is possible to avoid both the Transformational
approach and the brute-force one in order to partition A into
one AC-MSS(A, C) and one AC-MCS(A,C).

Incremental;-AC-MSS depicted in Algorithm 1 de-
livers such an alternative method. It starts with one AC-
SS(A,C), denoted ® and delivered by the aforementioned
Greedy-AC-SS procedure. Then, it augments ® with
clauses a of A\ ® such that, at each step, ® U {a} is sat-
isfiable with every I';. The correctness of this algorithm is
easily established by considering the three items of Defini-
tion 3: the satisfiability of ® is ensured at each step; the final
set ® does not contradict any I'; by construction and every
clause o from A\ @ is such that ®U{a } UT; is unsatisfiable
for at least one I';.

Example 4. Let us run Tncremental,-AC-MSS on Ex-
ample 1. Assume that {a V b,a V c,e V ¢} is delivered by
Greedy—-AC-SS. ® is initialized with this set, and thus
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U = {d V b,—e,—b} (line 1). Each clause from U is then
considered, successively. When o = d V' b, ® U {a} is sat-
isfiable with each context and ® is thus augmented with «.
When oo = —c (and when o = —b), as ® U {a} is unsatisfi-
able, a is not inserted in the solution under construction.

Independently of the computational cost of the
Greedy-AC-SS procedure, Incremental;-AC-MSS
requires mn calls to a SAT solver in the worst case, where
m and n are card(C) and card(A), respectively.

Algorithm 2. Greedy-AC-SS

Input : A: asetof clauses; C: a set of satisfiable sets of clauses;
Output: & C A s.t. @ is one AC-SS(A, C);
W+ A; &+ 0; cpt + 0;
repeat
T <+ U;
foreach I'; € C do
Let I be amodel of I'; U &,
T+ YN{a € ¥st I(a) =true};

P—DPUYT; U U\T; cpt + cpt+1;
until T = @ or cpt > #iteration-max ;
return ®;

o T AU R W N -

Actually, we have opted for an experimentally more ef-
ficient version of the Greedy—-AC—-SS procedure (see Al-
gorithm 2). It refines through a main iteration loop a parti-
tion (P,¥) of A by incrementally extending ®, the current
AC-SS(A, (), and downsizing W, the current AC—-CS(A, C).
The exit conditions are either the absence of any refinement
during the last iteration step or a preset maximal number of
iterations that has been reached. For each I';, a model I of
I'; U ® is searched. T records all the clauses of W that are
satified by all those I; ® (resp. V) is then assigned ¥ U T
(resp. ¥ \ T). Following (Grégoire, Lagniez, and Mazure
2014) the selection for initial interpretations is performed
by calling a SAT solver on A; the so-called progress saving
interpretation, which gives the largest encountered number
of satisfied clauses, gives an initial assignment of variables
for the search of a model of I'; U ®.

We will present and discuss the actual performance of
the Incremental;-AC-MSS algorithm with this pre-
treatment on benchmarks later in the paper. First, let us
present the more elaborate technique that we have developed
and that is experimentally more efficient.

Useful Properties

To build more efficient incremental-like algorithms, we
focus on computationally-exploitable circumstances under
which some additional clauses can be permanently moved
inside the AC-MSS(A,C) or the AC-MCS(A,C), when
these sets are under progressive construction. From now on,
we will focus on the extraction of one AC-MCS(A, C) since
this will ease the presentation of our results.

A first useful property is intuitively as follows. If we dis-
cover a clause o such that the current AC-CS augmented
with o makes the corresponding AC-SS become now satisfi-
able not only with an additional context but with all of them
then we can augment the current AC-CS with a. Indeed,in
this case there always exists at least one AC-MCS that is



included in the current AC-CS augmented with o. Further-
more, all these AC-MCS necessarily contain o. Formally:

Property 1. Assume that © C A and that o« € (A '\ ©).
If3C st.C"CCand3T; €l st. VI, €C\C
1. (A\ ©)UT); is satisfiable;
2. (A\ ©) UT; is unsatisfiable;
3. VI, €, (A\(®©U{a})) ULy is satisfiable

then there exists at least one AC-MCS(A,C), say ¥, s.t.
(1) ¥ C OU{a}, and
(2) V¥ that are AC-MCS(A,C) s.t. ¥ COU{a}:a e T,

To grasp the intuition of why this property holds, simply
notice that (1) follows in part from the fact that, as expressed
by condition 3, removing « from A will allow the so-far
unsatisfied or unchecked contexts to become satisfied. (2)
is easily understood by reasoning by contradiction. Assume
at the same time 3 ¥ such that ¥ is one AC-MCS(A,C),
U C OU{a} and o ¢ V. Accordingly, U C O and thanks to
condition 2 we have that (A\ ¥) UT'; is unsatisfiable, which
contradicts the hypothesis that ¥ is one AC-MCS(A, C).

Example 5. Consider A and C from Example 1. Assume
that ©® = {a VvV b,dV b,-b}, C' = {{—-a},{—e}}, a = ¢
and I'; = {—a}. All conditions for Property 1 to apply are
satisfied. Thus, o belongs to all the AC-MCS that can be
obtained from A and C and that are included in {a V b,d V
b, —b, —c} (ie., {{aV b,bV d,~c},{-b,—c}})

Actually, we have exploited a generalization of this prop-
erty in order to propose an algorithm that extracts one AC-
MCS(A, C). The following notation a la Partial-MaxSAT is
useful to express the extended property.

Definition 7. Let 2; and 25 be two sets of clauses, where
Q, is satisfiable. The Partial-MCS(Q,2s) procedure
delivers one inclusion-minimal set of clauses ¥ of {25 s.t.
Q4 U (Q2 \ X) is satisfiable. The clauses from 2, are called
strict and clauses of 25 are called soft. For convenience, we
will also use the name of this procedure to represent its out-
put.

Interestingly, Partial-MCS(£1, ) is thus a variant
of a procedure that extracts one MCS, and can be imple-
mented as such: it can naturally benefit from the aforemen-
tioned recent practical progress about computing MCSes
(e.g., (Grégoire, Lagniez, and Mazure 2014; Mencia, Previti,
and Marques-Silva 2015)).

The generalization is as follows. We can replace « in
Property 1 by any Partial-MCS((A\T)UT;, T\ O).
Intuitively, we can augment the AC-CS under construction
with a minimal set of clauses that allows the correspond-
ing AC-SS to become satisfiable with an additional context,
provided that the augmented AC-CS actually makes the cor-
responding AC-SS become satisfiable with all contexts.

Property 2. Assume that Y is an AC-CS(A,C), (OUX) C
Tand®NY = (.

If3C st.C"CCand3T; €C' 5. VT; € C\C'
1. (A\ ©)UT; is satisfiable;
2. (A\ ©) UT; is unsatisfiable;
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3. Yisone Partial-MCS((A\Y)UT;, T\O);
4. VT, €C', (A\ (©UX))UTy is satisfiable
then there exists at least one U that is an AC-MCS(A, C)s.t.

()Y COUX, and
(2)VV s.t. ¥isan AC-MCS(A,C) and ¥ C O U XX C .

Example 6. Let us consider again A and C from Example
1. Let © = {d Vv b}, C" = {{—a},{—-e}}, ¥ = {—¢,b}
and T'; = {—a}. All conditions of Property 2 are satisfied.
Thus, X belongs to every AC-MCS(A, C) included in {d vV
b, —b, —c}.

Now, the question is how to exploit this property to en-
hance the extraction of one AC-MCS(A, C). That is what we
show in the next section.

An Enhanced Incremental Algorithm

An original algorithm for the extraction of one
AC-MCS(A,C) is depicted in Algorithm 3. Let us de-
scribe it progressively and in an intuitive manner.

By abuse of notation, we will write that ¥ solves I'; when
Property 2 applies (referring to X and I'; in Property 2): in
this case Y. is a subset of clauses from A that will belong to
the final AC-MCS that is currently under construction.

¥ is the AC-MCS under construction: it is initialized to
the empty set (line 1). Importantly, we make use of a map-
ping o(T';) that associates to each I'; one subset of A. Ini-
tially, ¢ is assigned 1 and all these subsets are empty, except
o(I'y), which is assigned A \ Greedy-AC-SS(A,T"). For
easy understanding, assume for the moment that there is no
preprocessing and that line 4 actually contains o (T';) « A.

Then we enter a main iteration loop. In this iteration
loop, we make sure that ¥ U (Jr. .. o(T';) always remains
one AC-CS(A, C). This constraint is obviously satisfied be-
fore entering the loop since this set is A. Consider the
first iteration loop. ¢ 1 and in line 7, we compute
Partial-MCS(I'1,A) and store the result in X. Several
cases can occur. Either ¥ = ¢(T';): in this first iteration, we
actually then have A = ¥ = o(I';). In such a situation,
we have all the conditions for Property 2 to apply that are
satisfied and we can thus augment the solution under con-
struction ¥ with X (line 8). We insert the empty set in o (T';)
to express that I'; has been solved. ¢ is then decremented and
the loop terminates since ¢ contains now 0: the output is U.
In another very basic case, ¢ = m = 1: there is one context
in C, only. Again, we have found the solution, which is X,
but contrary to the previous case, > might be a strict subset
of A. In the last case (else case), we know that X is a set of
clauses whose removal would allow to satisfy I';. However,
not all I'; have been successfully solved so far and there is
no guarantee that ¥ can be fully included in the solution
since Property 2 does not apply. Hence, we put the remain-
ing clauses o(I';) \ ¥ within o(T';11) whereas X is recorded
within o (I';). The idea is that we keep trace in o (I';) of the
subset of clauses that would have been sufficient to solve I';,
whereas all the other currently remaining clauses will now
be considered with respect to I';; ;. In some sense, there is
thus a forward move in ¢ that pushes ahead and makes the
remaining clauses to consider available for the next iteration,



while at the same time, we keep in o(I';) a discovered set
of clauses that could make I'; satisfiable with the AC-MSS
under construction together with U;;ll o(T'). Conversely,
when at line 7 Property 2 applies, ¢ is decremented. This
gives rise to a kind of one-step backward move: I'; has been
solved, we can now go back and examine I';_; at the next
iteration step. All this is done in such a way that o(I';) = 0)
for all j > 7 at the beginning and the end of each iteration
step.

Now, we are in a better position to understand the con-
tents of the while loop and its first instruction at line 6.
A\ (W UJj-, o(T';)) gives the AC-SS under construction.
By construction, it is satisfiable with I';. Now, Partial-
MCS((A\(YUUj, o(T;)))UT;, o(T';)) gives one smallest
subset of all the remaining clauses that have been cumulated
in o(T';) that need to be dropped from o (I;) in order for the
corresponding remaining subset of o(T';) to become satis-
fiable with the first argument of Partial-MCS. The idea is
that when all clauses of o(I';) must be dropped in this way,
namely when ¥ = o(T';) (line 7), we are exactly under the
conditions for Property 2 to apply. Indeed, we have found
¥ =Partial-MCS((A\Y)UT;, T\O) such that increas-
ing the current AC-CS with X will lead to a corresponding
AC-CS that is satisfiable with each I'; since there will be no
remaining clauses in o(I';). When ¢ = m, a same operation
can be done: indeed, by making the current AC-SS satisfi-
able with I',,,, we have ensured that all I'; are solved. In both
cases, we can now decrement ¢: in the next iteration loop,
we will try to solve I';_; for which clauses were possibly
recorded in o(T";_1). Indeed, when Property 2 cannot apply,
we keep in o (I';) the subset of clauses found to solve I'; (but
that were not able to solve all other I'; at the same time) and
put in a forward movement the remaining clauses in 043
that will be addressed at the next iteration step, which will
attempt to solve I'; 1. Note that when 3(T';) = (), the call to
Partial-MCS yields the empty set, leading to decrement
7 at line 10.

Example 7. Let us run Tncrementals—-AC-MCS on Ex-

ample 1, where T'1v = {-a}, Ts = {-e} and T's =

{—d}. Let {a V b,a V c,e V c} be the AC-SS delivered by

Greedy—-AC-SS. Before the iteration loop begins, we have

i =19 =0 o) = {-b,-c,dV b} and 6(T2) =

O'(Fg) = @

e [teration loop #1: ¥ = {-b,—c}. Because ¥ # o(T'1)
and i # 3, the else part is run. Thus, i = 2, ¥ = (),
a(Ty) = {=b,—c}, o(Ty) = {d V b} and o(T'3) = 0.

e [teration loop #2: ¥ = (. Similarly to the second iter-
ation, the else part is reached. Thus, i = 3, ¥ = (),
a(Ty) = {=b,—¢c}, o(Ty) =0 and o(T'3) = {dV b}.

e [Iteration loop #3: X = (. Since i = n, the if part is
run. Thus, i =2, ¥ = 0, o(T'y) = {=b, ~c} and o (T'3) =

e lteration loop #4: 3 = ). Since o(I'3)
is selected. Thus, 1 = 1, ¥ = (), o(T'1)
U(Fz) = O'(].—‘d) = (Z)

o [teration loop #5: ¥ = {=b,~c}, ¥ = o(T'y). The if
part is selected. Thus, i = 0, ¥ = {=b,~c}, o(T'1) =

the 1if part

=0,
= {=b, ¢} and
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J(Fg) = 0’(1—‘3) = @
The loop ends and the algorithm returns VU, which is an
AC-MCS(A,C).

Algorithm 3. Incrementals—AC-MCS

Input : A: asetof clauses;

C ={I'1,T2,...,,, }: asetof satisfiable sets of clauses;
Output: ¥ s.t. ¥ is an AC-MCS(A, C);

1 7+ ¢

2 o amap that associates to each I'; € C a set of clauses, initially all empty;
3 i<+ 1;

4 o(T';) « A\ Greedy-AC-S5(A,C);

5 whilei > 0do

6 ¥ ¢ Partial-MCS((A \ (W U Ui, o(T;))) UTy, 0(T4));
7 if X = o(I';) or i = m then

8 U VU3

9 O'(F‘L) «— 0
10 P41 —1;
11 else
12 o(Tiq1) < o(Ti)\ X
13 o(T;) +
14 P41+ 1;
15 return V;

Property 3. Incrementals—-AC-MCS(A,C) always re-
turns one AC-MCS(A,C). In the worst case, this procedure
requires O(nm) calls to Partial-MCS(y,Qs), where
n = card(A) and m = card(C).

Before we present our experimental study, let us stress
that the structure of the Incrementals—AC-MCS pro-
cedure allows us to benefit from incremental SAT-solvers.
More precisely, we have implemented Partial-MCS, us-
ing a technique similar to the one presented in (Audemard,
Lagniez, and Simon 2013), on top of Glucose (Aude-
mard and Simon 2014) (http://www.labri.fr/perso/lsimon/
glucose/) in order to get a system that reuses as much as
possible the search already performed during the calls to the
SAT solver (inside a same call to partial-MCS and from
one call to the next one). Let us stress that our actual imple-
mentation benefits also from other optimizations. Especially,
in the main loop, useless calls to partial-MCS(...,0) are
avoided. It also uses all the very recent advanced tech-
nical features for computing MSSes and MCSes, as pro-
posed recently in (Grégoire, Lagniez, and Mazure 2014),
and used in (Besnard, Grégoire, and Lagniez 2015) in the
Transformational Approach.

Experimental Study

We have compared the Transformational
Approach, Incremental;—AC-MSS and
Incrementals-AC-MCS  through  extensive  ex-
perimentations. To this end, we have focused on
the 295 different unsatisfiable benchmarks from the
last MUS extraction competition http://www.cril.univ-
artois.fr/SAT11/results/results. php?idev=48 as instances of A.
We have considered the following values for card(C):
2,5,10, 15, 20, 25, 30, 35,40,45 and 50, thus representing
various numbers of different contexts. Then, using the
variables from A, we have randomly generated each I'; as
a satisfiable set of 50 binary clauses. All experimentations
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have been conducted on Intel Xeon E5-2643 (3.30GHz)
processors with 8Gb RAM on Linux CentOS. Time limit
was set to 900 seconds per instance and per test. We have run
the Transformational Approach software available
from its authors at http://www.cril.fr/AAAI15-BGL. We have
implemented all the other algorithms in C++ on top of
Glucose (http://www.labri.fr/perso/lsimon/glucose/). Our
software, as well as all data and results from these experi-
mentations are available at http://www.cril.fr/AAAI16-GIL.
The iteration-max constant in Greedy—-AC—-SS was set to
10.

The results clearly show that Incrementalys—AC-MCS
is better than its competitors. As illustrated in Figure 2,
for every considered value for the cardinality of C it
solves more instances than any of the other tested meth-
ods; the difference increases with card(C). Interestingly,
these results do not change when Greedy-AC-SS is
skipped in Incrementals—AC-MCS, showing that
the performance of the algorithm is really due to the
specific properties of AC-MCSes that have been estab-
lished in this study. Incremental;-AC-MSS proves
less competitive but often solves more instances than
the Transformational Approach, provided that
it includes Greedy-AC-SS. The number of instances
that were solved by Incrementals—AC-MCS ranged
from 266 to 284 (on a total of 295 tested instances) de-
pending on card(C). Likewise, most instances are solved
in the fastest manner by Incrementals—AC-MCS.
Figure 3 compares this latter approach with the
Transformational one in terms of the CPU time
in seconds that was spent to solve each instance, for each
value of card(C). This figure makes use of a logarithmic
scale; it clearly shows that Incrementals—-AC-MCS
is the most efficient approach, most often. Figure 4
shows similar results when Incrementals—AC-MCS
and Incremental;—-AC-MSS are compared. The full
detailed results of our experimental study are available at
http://www.cril fr/AAAI16-GIL.

3409

1000

XA O v
(2" Ny QAS A%’ = §:‘A *ev T
@% * ®>€+O + AF < Al
+
5} é% gt Eh' ‘o :
g N Of 5y X0 o X0
® 1&7 LI ow* £
o o]
M X X
= o Y *
o a] * +
< o] % o o
X
= * e + ¥ x
b + R X o
S F =
g + ¥ o "
E 2L card(C) = 2 +
H e m card(C) = 3 X
& o card(C) = 5 ¥ ¥
a o . v card(C) = 10 O
o X card(C) =15 m
H o card(C) =20  ©
*°yea card(C) = 25 o
© A card(C) = 30 a
AR’ 4 o cad(C) =35 4
EoIEN Y o § Q=10 v
i n card(C) =45 y v
0 ‘& a0 o = *
i o . a a card(C) =80 "o

10 100
Incrementaly-AC-MCS

1000

Figure 3: Incrementals—AC-MCS Vs.
Transformational Approach.
1000
¢ ‘.gg * g0 % iz
A o I R oY B8R ¥
ov A L] *
AR ron IR S A K
a w7 . )
@ ‘A'.M.fg o i@iuo%% X X x
a a . Y * .
0 Eb ol %‘? o «® o)
N X2y 0 K B D;? *
R R e I x
5 1o AW vig x> BT o
g S vﬁf N s v
=] K d(C) =2
2 N %%* e X x card(C) =3 M
9 hai o ¥4 m x card(C) =5 *
& 45 Ye %ﬁ' card(C) =10 %O
X . card(C) =15 ' m
.. 0 + card(C) =20 ©
>+ L] + cargg 7% o
care = A
d(C) = a
R . mad e
* + card(C) =45 v
card(C) = 50 ©
10
10 100 1000
Incrementaly-AC-MCS
Figure 4: Incrementals—-AC-MCS vs.

Incremental;—AC-MSS.

Conclusion

The ability to capture one maximal subset of information
that must be satisfiable with a series of mutually-conflicting
context is a key building-block in many A.I. subfields. In this
paper, we have proposed an original method that allows one
such subset to be extracted in clausal Boolean logic. Inter-
estingly, it performs better than its competitors. Clearly, the
results in this paper could be extended in several promising
directions. Noticeably, the Partial-MCS procedure that ex-
ploits the incremental feature of advanced SAT-solvers could
also benefit from the specific optimizations of other kinds
of MCS finders like (Mencia, Previti, and Marques-Silva
2015). Also, the technique in this paper could be the kernel
of an approach that enumerates all such maximal informa-
tion subsets (at least when computational blow-up does not
occur). A key issue in this respect would be how to re-use
the information that could be derived during the search for
one subset in the extraction of the next ones. Finally, ex-



porting the main results from this paper to build a directly
incremental method to extract cardinality-maximal subsets
that are satisfiable with multiple contexts remains an open
but exciting challenge.
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