
Counting-Based Search for
Constraint Optimization Problems

Gilles Pesant
École Polytechnique de Montréal, Montreal, Canada
CIRRELT, Université de Montréal, Montreal, Canada

gilles.pesant@polymtl.ca

Abstract

Branching heuristics based on counting solutions in con-
straints have been quite good at guiding search to solve con-
straint satisfaction problems. But do they perform as well
for constraint optimization problems? We propose an adap-
tation of counting-based search for optimization, show how
to modify solution density computation for some of the most
frequently-occurring constraints, and empirically evaluate its
performance on several benchmark problems.

Introduction

Designing robust generic branching heuristics (e.g. (Bousse-
mart et al. 2004; Refalo 2004; Zanarini and Pesant 2007;
Michel and Van Hentenryck 2012)) is an important step
in making Constraint Programming (CP) competitive with
other approaches to combinatorial problem solving which
adopt a “model-and-solve” philosophy, without the user hav-
ing to design a dedicated search strategy. Among such
branching heuristics, counting-based search exploits the
structure of a model by querying each constraint about how
frequently a given variable-value assignment appears in so-
lutions. Branching heuristics based on such information
guide search towards areas of the search space likely to con-
tain solutions. These heuristics perform very well to solve
constraint satisfaction problems (Pesant, Quimper, and Za-
narini 2012).

But many combinatorial problems seek a solution that is
optimal with respect to some objective and are more nat-
urally framed as constraint optimization problems. How
well does counting-based search perform when we are not
merely looking for any solution but for an optimal one? Un-
less the best solutions are uniformly distributed in the space
of solutions, orienting the search where most solutions are
may not guide us very well. In this paper we investigate an
adaptation of counting-based search for combinatorial opti-
mization problems. The next section provides some back-
ground concepts and reviews the relevant literature. Then
we present our contribution of counting-based search for op-
timization. Finally we describe its empirical evaluation.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Background

In CP a combinatorial problem is represented using a finite
set of discrete variables X = {x1, x2, . . . , xn} each tak-
ing its value from a finite domain, xi ∈ Di ⊂ Z, 1 ≤
i ≤ n, and a finite set of constraints (i.e. relations) C =
{c1, c2, . . . , cm} each expressed on a subset of the variables,
cj(xj1 , xj2 , . . . , xjk) ⊂ Z

k, 1 ≤ j ≤ m. One must find
a combination of values from the domain of each variable
that simultaneously satisfies every constraint (i.e. belongs
to every relation). This formalism is called the Constraint
Satisfaction Problem. So at its core CP is designed to handle
combinatorial existence problems.

Although constraints can be arbitrary relations, typically
they each correspond to an important combinatorial sub-
structure of the problem. This explicit access to structure has
been the cornerstone of inference in CP , giving rise to many
distinct filtering algorithms encapsulated in so-called global
constraints, and can also be used to guide search. Gener-
ally the exploration of the solution space takes the form of
a search tree in which branches correspond to fixing some
variable to a value in its domain. This decision process is
broken down into a variable-selection heuristic and a value-
selection heuristic.

Counting-based search relies on computing the solu-
tion density of each variable-value assignment for a con-
straint in order to build an integrated variable-selection
and value-selection heuristic (Zanarini and Pesant 2007).
Given a constraint c(x1, . . . , xk), its number of solutions
#c(x1, . . . , xk), respective finite domains Di 1≤i≤k, a vari-
able xi in the scope of c, and a value d ∈ Di, we call

σ(xi, d, c) =
#c(x1, . . . , xi−1, d, xi+1, . . . , xk)

#c(x1, . . . , xk)

the solution density of pair (xi, d) in c. It measures how of-
ten a certain assignment is part of a solution to c. We can ex-
ploit the combinatorial structure of the constraint to design
efficient algorithms computing solution densities. Generally
speaking such a problem falls within the realm of enumera-
tive combinatorics and is even harder than the usual filtering
to achieve consistency, akin to existential combinatorics.

Constraint optimization problems are traditionally ap-
proached as a succession of constraint satisfaction problems,
raising the bar for the objective value at each step until the

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

3441

last step which is a proof of optimality (alternatively di-
chotomic search on the objective has also been used). We
typically define an additional variable, say z, representing
the objective value and add a constraint to link it to the objec-
tive function. Whenever a solution is found, thereby fixing
z to some value v, the constraint z < v (if we are minimiz-
ing) is automatically added in order to constrain the search
to better solutions until none can be found, proving the opti-
mality of the latest solution. Because filtering algorithms are
a multiway process, domain changes for the variables in X
can trigger changes in z’s domain and changes in the latter,
typically when we add a stronger bound, can in turn impact
X . However this so-called back-propagation may be rather
weak, especially when the objective function is expressed
as a sum. As for guiding search, whenever the objective
function is separable, i.e. expressed as a sum of costs on
individual variables, (Caseau and Laburthe 1997) propose
the generic regret branching heuristic in which we select a
variable maximizing the difference between its best and sec-
ond best cost for a value in its domain and select the value
featuring that best cost.

Optimization constraints were defined in an effort to
encapsulate optimization aspects in constraints. Given a
constraint c(x1, . . . , xk), let f : D → R (with D =
D1 × · · · × Dk) associate a cost to each combination
of values for the variables appearing in that constraint
and z ∈ [mint∈D f(t),maxt∈D f(t)] be a bounded-
domain continuous variable. An optimization constraint
c�(x1, x2, . . . , xk, z, f) holds if c(x1, x2, . . . , xk) is satis-
fied and z = f(x1, x2, . . . , xk). This is a useful concept
if the objective function of the problem can be expressed
using the z variables of some optimization constraints (or,
even better, a single one). (Focacci, Lodi, and Milano
1999) introduce cost-based domain filtering to remove val-
ues based on optimality reasoning: a relaxation of the op-
timization constraint is solved to optimality and a gradient
function on variable-value pairs is used to identify assign-
ments which cannot lead to a solution better than the current
best one. This typically yields stronger back-propagation.
Of particular interest here, they also use the gradient to guide
search: they investigate a variable-selection heuristic com-
puting regrets based on gradient information and a value-
selection heuristic favouring the assignments exhibited in
the optimal solution of the relaxed constraint. Their pa-
per instantiates this idea for the alldifferent and path
constraints. Follow up work includes (Sellmann 2003) for
the shorter path constraint and (Demassey, Pesant, and
Rousseau 2006) for the cost regular constraint. Still in
the context of optimization constraints, (Zanarini 2010) pro-
poses using the average cost of solutions featuring a given
variable-value pair as a branching heuristic for optimization
problems.

Solution Densities of Best Solutions
Past efforts to guide search in CP when confronted with a
combinatorial optimization problem are not fully satisfac-
tory. The regret heuristic only applies if the objective func-
tion is separable and is overly optimistic since it implicitly
assumes that the best and second best values of a given vari-

able are compatible with the same combinations of values
for the other variables, thereby justifying the evaluation of a
cost difference based solely on the value taken by that vari-
able.

Using a gradient function to compute regrets is an im-
provement because cost is taken into account in a more
global way (since it does so with respect to an optimization
constraint representing a combinatorial substructure) but in
general it comes from solving a relaxation of the problem so
its accuracy depends on the strength of the relaxation. It is
also rather flat information: two variables of equal gradient-
based regret may have best values of very different robust-
ness, i.e. one may be compatible with many more combi-
nations of values for the other variables while retaining the
optimal cost. The whole idea behind regret is ”If that best
value becomes incompatible because of future choices for
the other variables, what will be the impact on cost?”. There-
fore it could be useful to know how frequently that best value
occurs in very good solutions to the constraint.

We propose to generalize the concept of solution density
presented in the previous section to that of cost-based solu-
tion density. Without loss of generality we consider min-
imization problems. Let ε ≥ 0 be a small real number
and #c�ε (x1, . . . , xk, z, f) denote the number of solutions to
c�(x1, . . . , xk, z, f) with z ≤ (1+ ε) ·mint∈c(x1,...,xk) f(t).
We will call

σ�(xi, d, c
�, ε) =

#c�ε (x1, . . . , xi−1, d, xi+1, . . . , xk, z, f)

#c�ε (x1, . . . , xk, z, f)

the cost-based solution density of pair (xi, d) in c�. If ε = 0
this corresponds to the solution density over the optimal so-
lutions to the constraint with respect to f and if there is a
single optimal solution then this identifies the corresponding
assignment to xi with a solution density of 1. A positive ε
gives a margin to include close-to-optimal solutions. Among
the good solutions being considered we favour a variable-
value pair that occurs frequently, aiming to branch on a sub-
problem that will still contain several good solutions with
respect to that constraint because we recognize that there are
likely other constraints to satisfy. This is very much in the
spirit of counting-based search for satisfaction problems.

The following subsections describe cost-based solution-
density algorithms for a few common constraint families.

MinWeightAlldifferent constraints

Constraint alldifferent(X), requiring that all variables
in X take distinct values, is probably the most ubiquitous
constraint in CP. The original domain filtering algorithm
exploits the correspondence between its solutions and max-
imum matchings in an associated bipartite graph (Régin
1994). Computing solution densities then translates to
counting such matchings, which in turn corresponds to
computing the permanent of a 0-1 matrix (the adjacency
matrix of the bipartite graph), well known to be #P -
complete (Valiant 1979). The permanent of a n × n matrix
A = (aij) is defined as

per(A) = Σp∈PΠn
i=1ai,p(i)

where P denotes the set of all permutations of 1..n. With
A as the adjacency matrix it is not hard to see that a given

3442

product inside that sum will be equal to 1 if and only if the
corresponding entries denote a matching, and so that sum
gives the number of matchings. Exact algorithms for the per-
manent being too time consuming, a few heuristic methods
have been proposed. Among them the one computing a ratio
of upper bounds on the permanent of 0-1 matrices offers the
best compromise between runtime and accuracy (Zanarini
and Pesant 2010).

The MinWeightAlldifferent(X, z,Γ) optimization
constraint adds a cost variable z equal to the sum of
the variable-value assignment costs given by cost matrix
Γ (Caseau and Laburthe 1997). We build on the previ-
ous idea of using upper bounds on the permanent but ap-
ply it to ”cost-aware” matrices. As a first step we compute
a minimum-weight bipartite matching, say of cost z�, us-
ing the Hungarian algorithm as did (Focacci, Lodi, and Mi-
lano 1999). As a by-product of this computation we get a
reduced-cost matrix with at least one zero entry in each row
and column identifying the minimum-weight matching and
all other entries nonnegative. Entry aij tells how much of an
increase in cost we can expect if we assign value j to xi in-
stead of the value from the computed matching. As a second
step we apply the following transformation

aij ← max(0,
(εz� + 1)− aij

εz� + 1
)

which maps the entries of the matrix to the real interval
[0, 1], with value 1 corresponding to a reduced cost of 0
and value 0 corresponding to any reduced cost signalling
a variable-value assignment whose cost would exceed our
ε margin. Now the permanent of this transformed matrix
can be used as an approximation of the number of solutions
of cost at most (1 + ε)z�, as required. Since upper bounds
on the permanent of more general nonnegative matrices are
also known (e.g. (Soules 2003)) as a final step we approxi-
mate solution densities as a ratio of such upper bounds (here
bound U1 from the previous reference).

cost regular constraints

Constraint regular(X,A) holds if the values taken by
the sequence of variables X spell out a word belonging
to the regular language described by the automaton A =
(Q,Σ, δ, q0, F) (Pesant 2004). It provides a very flexible
way of expressing rules about sequences of values appear-
ing in a solution. The domain filtering algorithm associated
with this constraint is based on the computation of paths in
a layered directed acyclic graph generated by unfolding the
automaton on X: each such path corresponds to a solution
to the constraint but since paths may share arcs this repre-
sentation of solutions is compact (in fact, the total number
of arcs is at most linear in the number of states in A, vari-
ables, and values). A variable-value pair is represented by
arcs in the graph and is supported by paths through these
arcs; otherwise it can be filtered out. Since we have on hand
an explicit representation of every solution, (Zanarini and
Pesant 2007) compute exact solution densities by storing at
each vertex of the graph the number of partial paths from the
first and to the last layers: the number of solutions featuring

a given variable-value pair equals the sum over all corre-
sponding arcs of the product of the appropriate number of
partial paths at their endpoints. The solution density is then
the ratio of that number to the total number of solutions.

Optimization constraint cost regular(X,A, z,Γ) adds
a cost variable z equal to the sum of the state-variable-value
transition costs given by cost matrix Γ = (γqxd) (Demassey,
Pesant, and Rousseau 2006). Observe that these costs de-
pend not only on the variable-value assignment (x = d) but
also on the current state q of the automaton, making them
possibly sequence-dependent. The cost-based domain filter-
ing algorithm associated with this constraint is based on the
computation of weighted paths in the same graph. At each
vertex we store as well the length of the shortest and longest
partial paths from the first and to the last layers. Then in
time linear in the number of arcs corresponding to a given
variable-value pair we can discard that value from the do-
main if every such arc belongs to paths (i.e. solutions) that
are either too short or too long with respect to the bounds on
z. If z is only bounded from below or above but not both,
we achieve domain consistency on X . (We refer the reader
to the previous references for details.)

In keeping with minimization problems consider an upper
bounded cost variable z. Extending the above to cost-based
solution densities with ε = 0 is a simple matter of storing
instead the number of shortest partial paths since in a di-
rected acyclic graph shortest paths are composed of short-
est partial paths. The number of shortest paths featuring a
given variable-value pair then becomes the sum over all cor-
responding arcs of the product of the appropriate number of
shortest partial paths at their endpoints, provided their com-
position makes a shortest path. For ε > 0 we need to restrict
our attention to solutions whose cost lies within 1 + ε of
the lowest cost for a solution. The number of shortest par-
tial paths is no longer sufficient: we need to keep track of
the number of partial paths of each different length (up to
some threshold) because these could be combined into paths
within the 1 + ε margin.

We use the same data structures described to compute so-
lution densities for dispersion constraints (Pesant 2015),
adapted here for cost regular. As before we store at each
vertex some information about partial paths from the first
and to the last layers: each is a list of pairs recording how
many paths of each length there are. The list related to paths
from the first layer to vertex (i, q), corresponding to state
q in layer i, is denoted p→iq = 〈. . . , (�,m), . . .〉, each en-
try (�,m) recording that m partial paths of length at most
� are achieved by some assignment of x1, . . . , xi−1 reach-
ing state q. This list is in strict decreasing order of length.
The list related to paths from vertex (i, q) to the last layer
is denoted p←iq = 〈. . . , (�′,m′), . . .〉 and each entry (�′,m′)
records that m′ partial paths of length exactly �′ are achieved
by some assignment of xi, . . . , xn from state q. That list is
in strict increasing order of length. Note that provided the
costs are nonnegative we do not need to record partial paths
of length greater than (1 + ε)�� where �� is the length of a
shortest path in the graph. These lists can be built through a
forward and backward breadth-first traversal of the graph.

3443

Algorithm 1 describes how we compute cost-based solu-
tion densities from them. Lines 1-13 compute the number of
solutions featuring xi = d and whose cost is within the mar-
gin: in particular at Line 2 we retrieve the length of a shortest
path ��; the loops at Lines 5-13 iterate through the lists at the
endpoints of a given arc, finding partial paths that combine
into full paths through that arc and that are short enough,
and adding them up (Line 13). Lines 14-18 compute the to-
tal number of solutions within the margin by adding to the
number of shortest paths others from that list that lie within
that margin. Finally Line 19 returns the desired ratio.

Algorithm 1: Cost-based solution density algorithm for
the cost regular constraint

input: variable index i, value d, relative margin ε
output: σ�(xi, d, cost regular(X,A, z,Γ), ε)

1 a ← 0;
2 (��,m�) ← first entry of list p←0q0 ;
3 forall the arcs between a vertex (i, q) for some q and

vertex (i+ 1, δ(q, d)) do
4 (�,m) ← first entry of list p→iq ;
5 forall the entries (�′,m′) in list p←i+1,δ(q,d) do

6 while (�+ γqxid + �′ > (1 + ε)��) do
7 if (p→iq is not exhausted then

8 (�,m) ← next entry of p→iq ;
9 else

10 break;
11 if p→iq is exhausted then

12 break;
13 a ← a+m×m′;
14 b ← m�;
15 (�′,m′) ← next entry of list p←0q0 ;
16 while (�′ ≤ (1 + ε)��) do
17 b ← b+m′;
18 (�′,m′) ← next entry of list p←0q0 ;
19 return a

b ;

dispersion constraints

One is sometimes asked to balance a given feature of solu-
tions to a combinatorial problem so that a certain level of
fairness is achieved. For example this could be the indi-
vidual workload of nurses in an intensive care unit (Schaus,
Van Hentenryck, and Régin 2009) or the number of cred-
its per semester in an academic curriculum. Often bal-
ance is even formulated as the objective to optimize. The
spread (Pesant and Régin 2005) and deviation (Schaus et
al. 2007) constraints were introduced to constrain the mean
of a set of integer variables and the deviation from that mean.
(Pesant 2015) recently introduced a unified approach that
achieves stronger domain filtering using the concept of Lp-
deviation of a set of integers {x1, x2, . . . , xn} from their
arithmetic mean μ, defined as

∑n
i=1|xi − μ|p. Constraint

dispersion(X,μ,Δ, p) states that the collection of values
taken by the variables of X exhibits an arithmetic mean μ
and an Lp-deviation Δ. Cases p = 1 and p = 2 respec-

tively generalize deviation and spread. Note that Δ can
be viewed as a cost variable and hence dispersion as an
optimization constraint whose cost function f is implicit.

As in the case of cost regular, solutions can be repre-
sented as paths in a directed acyclic graph. The cost-based
solution density algorithm for dispersion is essentially the
same as Algorithm 1. Note however that its running time is
pseudo-polynomial because the size of the graph is linearly
related to the span of the domains.

Experiments

This section presents an empirical evaluation of the search
guidance efficiency of a branching heuristic built from our
cost-based solution densities on three benchmark problems,
one for each of the optimization constraints considered in
the previous section. For constraint satisfaction problems,
branching heuristic maxSD makes an integrated choice of
the variable and value with the highest solution density over
all the constraints of a model (Zanarini and Pesant 2007); for
constraint optimization problems we introduce maxSD�,
branching on the variable and value with the highest cost-
based solution density over all the optimization constraints
of a model.

All experiments were run on Dual core AMD 2.1 GHz
processors with 8 GB of RAM, using IBM ILOG Solver 6.7
as the CP solver, and each instance was given a two-hour
time limit. Each experiment uses depth-first search and com-
pares maxSD� (with ε = 0.1) to standard generic branching
heuristics, namely smallest-domain first with lexicographic
value selection (dom) and the solver’s default impact-based
search (IBS), and to some tailored heuristic when applica-
ble. We report the percentage of instances solved to optimal-
ity (or to within a given gap) as a function of computation
time.

Balanced Academic Curriculum Problem

The Balanced Academic Curriculum Problem (BACP, prob-
lem 30 of the CSPlib) asks to assign courses to semesters
so as to respect prerequisites between courses, a minimum
and maximum number of courses per semester, and to bal-
ance the academic load (total number of credits) between
semesters. (Schaus 2009) generated 100 instances by ran-
domly assigning between 1 and 5 credits to courses and by
randomly choosing a subset of the prerequisites of a large
instance from the literature. They feature 66 courses, 12
semesters, and 50 prerequisite pairs. We require between 4
and 10 courses per semester as suggested for that large in-
stance. Table 1 presents a model for this problem using one
variable si per course i indicating which semester it is as-
signed to and one variable �j per semester j indicating its
academic load. P denotes the set of prerequisite pairs and
A = (ai) the array of credits per course. Cost variable z, to
minimize, represents the L2-deviation of the �j values from
the known average academic load. A global cardinality con-
straint (gcc) limits the number of courses per semester and
a bin packing constraint links the si and �j variables while
considering course credits.

(Schaus 2009) proposed a branching heuristic tailored to

3444

min z s.t.
dispersion({�j}, (

∑66
i=1 ai)/12, z, 2)

gcc({si}, 〈[4, 10], . . . , [4, 10]〉)
binpacking(〈s1, . . . , s66〉, A, 〈�1, . . . , �12〉)
si < si′ (i, i′) ∈ P
si ∈ {1, 2, . . . , 12} 1 ≤ i ≤ 66

�j ∈ {0, 1, . . . ,∑66
i=1 ai} 1 ≤ j ≤ 12

z ∈ R
+

Table 1: A CP model for the BACP

Figure 1: Percentage of BACP instances solved to optimality
with respect to time for a few heuristics.

this problem: choose the next si variable to branch on ac-
cording to the smallest-domain-first selection criterion and
the next value (semester) to assign to it by favouring the
semester currently with the smallest academic load (we de-
note it as ”dom; min load”). In this model we have a sin-
gle optimization constraint, dispersion, whose cost vari-
able corresponds to the objective function and which pro-
vides cost-based solution densities for the �j variables. Our
maxSD� heuristic first branches on these �j variables and
then on the si variables using the above tailored heuristic.

Figure 1 compares branching heuristics by plotting the
number of instances solved to optimality with respect to
the computation time spent on individual instances. Ev-
ery branching heuristic solves about three quarters of the
instances in under a second but maxSD� is the only one
that is able to solve every instance within the time limit and
it solves all but three of them in under 0.2 second. If we
consider pure search guidance ability (not shown in the fig-
ure), maxSD� requires about two orders of magnitude fewer
backtracks during search than the other heuristics to reach
the 75% mark: since it is still about one order of magni-
tude faster we may deduce that it spends about one order of
magnitude more time per search node. But its much better
guidance still pays off overall, including against a heuristic
tailored to this problem.

Traveling Salesman Problem

We evaluate the cost-based solution density algorithm pro-
posed for MinWeightAlldifferent using the well-known
Traveling Salesman Problem (TSP) and a basic CP model
featuring the latter constraint both for the assignment part

min z =
∑n

i=1 γisi s.t.
MinWeightAlldifferent({s1, . . . , sn}, z,Γ)
noCycle({s1, . . . , sn})
si ∈ {2, 3, . . . , n+ 1} 1 ≤ i ≤ n
z ∈ N

Table 2: A basic CP model for the TSP

Figure 2: Percentage of TSP instances solved to within p%
of the optimal value with respect to time for a few heuristics.

of the successor variables si and to link them to the objec-
tive variable z, as well as the noCycle subtour elimination
constraint (see Table 2). Cities are numbered 1 through n
and, as is customary in CP models for this problem, we start
a tour at city 1 and end it at city n + 1, which is a copy of
city 1 (thus strictly speaking we are building a Hamiltonian
path). Γ represents the distance matrix. Domain consistency
is maintained on the si variables for the ”all different” part
of MinWeightAlldifferent but no cost-based domain fil-
tering is applied aside from the back-propagation through
the sum of individual costs. This clearly is not the state of
the art to model and solve TSPs using CP but our goal here
is to compare branching heuristics on a model in which the
MinWeightAlldifferent constraint is prominent so this
basic model for a much-studied problem serves us well.

Our benchmark set consists of 21 small symmetric and
asymmetric instances from TSPlib ranging from 17 to 71
cities. Figure 2 plots for each heuristic the number of in-
stances solved to optimality (0%) with respect to time, but
also the number of instances solved to within 5% and 10% of
the optimal value to provide a more complete picture. Here
we also evaluate the regret heuristic (regret) previously de-
scribed in the Background Section since the cost function
is separable. Looking at the ”10%” curves together we no-
tice two distinct groups: those for the cost-aware heuristics
maxSD� and regret, and those for dom and IBS. The for-
mer perform much better as they find good solutions to about
90% of the instances as opposed to 55%. The same trend can
be observed for the ”5%” curves, yielding better solutions
but for fewer instances.

As for finding optimal solutions, our heuristic does not
perform as well as the others. Upon inspection of the num-
ber of backtracks, one possible explanation for this is that
we spend up to two orders of magnitude more time per

3445

min
∑

p∈P bp s.t.
cost regular(〈sp∗〉,A, bp,Γ) p ∈ P
gcc({sp∗}, 〈|T | − |Mp|, 1, . . . , 1〉) p ∈ P
gcc({s∗t}, 〈c0, c1, . . . , c|M |〉) t ∈ T
spt ∈ {0} ∪Mp p ∈ P, t ∈ T
bp ∈ N p ∈ P
c0 ∈ {|P | − 2|L|, . . . , |P |}
cm ∈ {0, 2} m ∈ M

Table 3: A simplified CP model for the Business-to-Business
Meeting Scheduling Problem

search node: maxSD� quickly obtains good solutions but
runs out of time to reach optimality whereas dom and IBS
start far away but manage to reach optimality on the smaller
instances. Indeed there is much less of a difference between
their ”0%”, ”5%”, and ”10%” curves since they remain far
from the optimal value on the larger instances.

Business-to-Business Meeting Scheduling

The Business-to-Business Meeting Scheduling Problem
(B2B) consists of scheduling meetings between given pairs
of participants to an event while taking into account partic-
ipant availability and accommodation capacity (Bofill et al.
2014). The challenging aspect of this problem is that breaks
in a participant’s schedule should be avoided (a break is de-
fined as consecutive free time slots between two meetings).
It is therefore cast as an optimization problem in which the
sum of the number of individual breaks is minimized. Ta-
ble 3 presents a simplified model that still retains the essen-
tial structure of the problem (see (Pesant, Rix, and Rousseau
2015) for more details). Let P be the set of participants, M
the set of meetings between pairs of participants, Mp ⊆ M
the set of meetings involving participant p, L the set of loca-
tions for meetings, and T the set of time slots. Variables spt,
p ∈ P, t ∈ T represent what participant p is scheduled to do
at time t, value 0 corresponding to no meeting. Variables bp
represent the number of breaks in the schedule for p. In or-
der to link the bp variables to the main spt variables we use a
cost regular constraint per participant with an automaton
A tracking breaks and assigning a unit cost to each of them
through cost matrix Γ. A gcc for each participant ensures
that all of his meetings are attended and a gcc for each time
slot ensures that both participants in a pair attend their meet-
ing at the same time and that not too many meetings occur at
the same time. This time the overall cost is not captured by
a single optimization constraint but by several of them, each
concerned with a distinct term of the sum. Note that the re-
gret heuristic cannot be applied since the objective function
is not separable over the spt branching variables.

We use the 20 instances from (Bofill et al. 2015): they
feature from 42 to 78 participants, a few hundred meetings,
and from 8 to 22 time slots to schedule them. Most of these
are quite challenging for our CP model.

Figure 3 plots for each heuristic the number of instances
solved to optimality (solid curves) with respect to time, but
also the number of instances solved to within 5 and 10 units
of the optimal number of breaks. Here we cannot use a per-

Figure 3: Percentage of B2B instances solved (close) to op-
timality with respect to time for a few heuristics.

centage gap as like in the previous problem because some of
the optimal solutions have 0 break. Heuristic dom performs
very poorly, being unable to solve any instance to optimal-
ity and only managing to solve two instances to within 10
breaks of the optimum. Heuristic IBS performs better but
each of its curves is clearly dominated by that of maxSD�

and again the larger spread of the curves for the latter indi-
cates that good solutions are found more quickly. The num-
ber of backtracks during search for each heuristic reveals
that the time per search node for maxSD� increases by less
than one order of magnitude with respect to the others.

Conclusion

We presented a way to take an idea that is very effective
to guide search for solving constraint satisfaction problems,
namely counting-based search, and to adapt it to solve con-
straint optimization problems. We also gave algorithms to
realize that adaptation for several useful constraints. Ex-
periments on constraint optimization problems indicate that
maxSD� as a generic cost-aware branching heuristic outper-
forms other generic heuristics and even some tailored heuris-
tics. More computation time is spent before each branching
decision but the increased search guidance results in lower
total computation times.

In all our experiments we have used a single value for
the ε parameter included in the concept of cost-based so-
lution density. It would be interesting to run a sensi-
tivity analysis on this parameter with respect to problem
type in order to understand better how to set it. Also,
computing cost-based solution densities is currently sig-
nificantly more expensive (by about one order of magni-
tude) for the MinWeightAlldifferent constraint than for
cost regular and dispersion. One way to improve this
that we will investigate is to make some of the computations
incremental such as the Hungarian algorithm.

Acknowledgments

Financial support for this research was provided by Discov-
ery Grant 218028/2012 from the Natural Sciences and Engi-
neering Research Council of Canada.

3446

References

Bofill, M.; Espasa, J.; Garcia, M.; Palahı́, M.; Suy, J.; and
Villaret, M. 2014. Scheduling B2B Meetings. In O’Sullivan,
B., ed., Proc. CP’14, volume 8656 of Lecture Notes in Com-
puter Science, 781–796. Springer.
Bofill, M.; Garcia, M.; Suy, J.; and Villaret, M. 2015.
Maxsat-based scheduling of B2B meetings. In Michel
(2015), 65–73.
Boussemart, F.; Hemery, F.; Lecoutre, C.; and Sais, L. 2004.
Boosting Systematic Search by Weighting Constraints. In
Proc. ECAI’04, 146–150. IOS Press.
Caseau, Y., and Laburthe, F. 1997. Solving various weighted
matching problems with constraints. In Smolka, G., ed.,
Proc. CP’97, volume 1330 of Lecture Notes in Computer
Science, 17–31. Springer.
Demassey, S.; Pesant, G.; and Rousseau, L.-M. 2006. A
Cost-Regular Based Hybrid Column Generation Approach.
Constraints 11(4):315–333.
Focacci, F.; Lodi, A.; and Milano, M. 1999. Cost-based
domain filtering. In Jaffar, J., ed., Proc. CP’99, volume 1713
of Lecture Notes in Computer Science, 189–203. Springer.
Michel, L., and Van Hentenryck, P. 2012. Activity-Based
Search for Black-Box Constraint Programming Solvers. In
Beldiceanu, N.; Jussien, N.; and Pinson, E., eds., Proc.
CPAIOR’12, volume 7298 of Lecture Notes in Computer
Science, 228–243. Springer.
Michel, L., ed. 2015. Integration of AI and OR Techniques
in Constraint Programming - 12th International Conference,
CPAIOR 2015, Barcelona, Spain, May 18-22, 2015, Pro-
ceedings, volume 9075 of Lecture Notes in Computer Sci-
ence. Springer.
Pesant, G., and Régin, J.-C. 2005. SPREAD: A Balancing
Constraint Based on Statistics. In van Beek, P., ed., Proc.
CP’05, volume 3709 of Lecture Notes in Computer Science,
460–474. Springer.
Pesant, G.; Quimper, C.-G.; and Zanarini, A. 2012.
Counting-Based Search: Branching Heuristics for Con-
straint Satisfaction Problems. J. Artif. Intell. Res. (JAIR)
43:173–210.
Pesant, G.; Rix, G.; and Rousseau, L. 2015. A comparative
study of MIP and CP formulations for the B2B scheduling
optimization problem. In Michel (2015), 306–321.
Pesant, G. 2004. A Regular Language Membership Con-
straint for Finite Sequences of Variables. In Wallace, M.,
ed., Proc. CP’04, volume 3258 of Lecture Notes in Com-
puter Science, 482–495. Springer.
Pesant, G. 2015. Achieving Domain Consistency and
Counting Solutions for Dispersion Constraints. INFORMS
Journal on Computing 27(4):690–703.
Refalo, P. 2004. Impact-Based Search Strategies for Con-
straint Programming. In Proc. CP’04, volume LNCS 3258,
557–571. Springer.
Régin, J. 1994. A Filtering Algorithm for Constraints of
Difference in CSPs. In Hayes-Roth, B., and Korf, R. E., eds.,
Proc. AAAI’94, 362–367. AAAI Press / The MIT Press.

Schaus, P.; Deville, Y.; Dupont, P.; and Régin, J.-C. 2007.
The Deviation Constraint. In Van Hentenryck, P., and
Wolsey, L. A., eds., Proc. CPAIOR’07, volume 4510 of Lec-
ture Notes in Computer Science, 260–274. Springer.
Schaus, P.; Van Hentenryck, P.; and Régin, J.-C. 2009. Scal-
able Load Balancing in Nurse to Patient Assignment Prob-
lems. In van Hoeve, W. J., and Hooker, J. N., eds., Proc.
CPAIOR’09, volume 5547 of Lecture Notes in Computer
Science, 248–262. Springer.
Schaus, P. 2009. Solving Balancing and Bin-Packing prob-
lems with Constraint Programming. Ph.D. Dissertation,
Université catholique de Louvain.
Sellmann, M. 2003. Cost-Based Filtering for Shorter Path
Constraints. In Rossi, F., ed., Proc. CP’03, volume 2833 of
Lecture Notes in Computer Science, 694–708. Springer.
Soules, G. 2003. New Permanental Upper Bounds for
Nonnegative Matrices. Linear and Multilinear Algebra
51(4):319–337.
Valiant, L. 1979. The Complexity of Computing the Perma-
nent. Theoretical Computer Science 8(2):189–201.
Zanarini, A., and Pesant, G. 2007. Solution Counting
Algorithms for Constraint-Centered Search Heuristics. In
Bessiere, C., ed., Proc. CP’07, volume 4741 of Lecture
Notes in Computer Science, 743–757. Springer.
Zanarini, A., and Pesant, G. 2010. More robust counting-
based search heuristics with alldifferent constraints. In Lodi,
A.; Milano, M.; and Toth, P., eds., Proc. CPAIOR’10, vol-
ume 6140 of Lecture Notes in Computer Science, 354–368.
Springer.
Zanarini, A. 2010. Exploiting Global Constraints for Search
and Propagation. Ph.D. Dissertation, École Polytechnique
de Montréal.

3447

