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Abstract

Many problems, and in particular routing problems, require
to find one or many circuits in a weighted graph. The weights
often express the distance or the travel time between ver-
tices. We propose in this paper various filtering algorithms
for the weighted circuit constraint which maintain a circuit
in a weighted graph. The filtering algorithms are typical cost
based filtering algorithms relying on relaxations of the Trav-
eling Salesman Problem. We investigate three bounds and
show that they are incomparable. In particular we design
a filtering algorithm based on a lower bound introduced in
1981 by Christophides et al.. This bound can provide stronger
filtering than the classical Held and Karp’s approach when
additional information, such as the possible positions of the
clients in the tour, is available. This is particularly suited for
problems with side constraints such as time windows.

Baseline CP for TSP/TSPTW

Many problems, and in particular routing problems, require
to find one or many circuits in a weighted graph. For
example, the Traveling Salesman Problem (TSP) consists
in finding a circuit of minimum total weight that visits all
vertices of the graph. Time Windows are often added to the
formulation to express the fact that a vertex or ‘a client’
can be visited only when available (TSPTW). To the best
of our knowledge, the state-of-the-art to solve this problem
is based on dynamic programming combined with column
generation (Baldacci, Mingozzi, and Roberti 2012).

Related work: In Constraint Programming (CP), two
approaches have been developed to tackle the TSPTW.
The first approach (Pesant et al. 1998) uses redundant
constraints in order to reduce the search space. In par-
ticular, a constraint to reduce the domains of the time
windows is added as well as an arc elimination constraint
for filtering possible direct successors of a vertex. But the
objective function is propagated independently of the circuit
constraint which leads to poor global lower bounds. The
second approach (Focacci, Lodi, and Milano 2002) adds
a lower bound computed with an assignment relaxation.
Additionally, an effective filtering for weighted circuit
was proposed in (Benchimol et al. 2012) based on the
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1-tree relaxation by Held and Karp (Held and Karp 1970;
1971) but has not been used for the TSPTW. Our paper is
based on the work of (Benchimol et al. 2012). We propose
different filtering algorithms, all based on a relaxation
of the TSP taking into account different aspects that are
relevant for asymmetric or time-constrained cases such as
the TSPTW. A second contribution is to show that the three
bounds are incomparable and in particular the two bounds
based on Lagrangian relaxation.

Problem definition: Let G = (N,E) be a complete di-
rected graph without loops with vertex set N = {0, . . . , n+
1}, the vertex 0 (resp. n + 1) corresponds to the start
(resp. the end) of the route (Ns = {0, . . . , n} and Ne =
{1, . . . , n + 1}). We denote by dij the distance (or cost) of
arc (i, j). A salesman tour is defined as a path in G from
vertex 0 to vertex n + 1, visiting each vertex 1, . . . , n ex-
actly once. The Traveling Salesman Problem (TSP) consists
in finding a salesman tour of minimum distance in G. In
presence of time constraints, each vertex i is associated to a
time windows [ai, bi], and each arc (i, j) to a traveling time
tij . The service time of customer i is included in tij . The
Traveling Salesman Problem with Time Windows (TSPTW)
consists in identifying a shortest salesman tour visiting each
vertex within its time window. Note that the problem has
n + 1 cities: n clients plus one depot where the tour starts
and ends. In the following, we denote by D(x), the domain
of variable x and by x (resp. x) the upper (resp. lower)
bound of x.

Model

This section presents a Constraint Programming (CP) model
for the TSPTW. The model is based on a set of variables
nexti ∈ N for each vertex i ∈ N representing the im-
mediate successor of the vertex i in the tour (for conve-
nience nextn+1 = 0). We also add the opposite variable
predi ∈ N for each vertex i ∈ N representing the imme-
diate predecessor of i (pred0 = n + 1). Let disti for each
vertex i ∈ N be the cumulated distance of the tour when
reaching vertex i. For time windows constraints, we add the
variable starti ∈ [ai, bi] representing the cumulated trav-
eling time along the route to reach vertex i. So starti can
be seen as the starting time of the service for client i and its
initial domain is defined by the corresponding time window.
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The model is given by equations (1)-(6):

Minimize z (1)

z =
n∑

i=0

(di,nexti) =

n+1∑

i=1

(dpredi,i) (2)

WEIGHTEDCIRCUIT(next0, ..., nextn+1, z) (3)
distnexti = disti + di,nexti ∀i ∈ Ns

dist0 = 0 (4)
startnexti ≥ starti + ti,nexti ∀i ∈ Ns

start0 = 0 (5)
INVERSE([next0, . . . , nextn+1], [pred0, . . . , predn+1]) (6)

Predecessors and successors are used to state the objective
function (2) because

∑n
i=0(di,nexti) and

∑n+1
i=1 (dpredi,i)

can be different when all variables are not instantiated and
thus provide incomparable lower bounds for z. Stating
one of the two equalities would be correct but the use of
both strengthen propagation. Constraints (4) and (5) rep-
resent quantities accumulated along the route and use the
ELEMENT constraint (Van Hentenryck and Carillon 1988).
Variables next and pred are linked so that: nexti = j ⇔
predj = i, ∀(i, j) ∈ E. This is expressed by the INVERSE
constraint (6). The WEIHTEDCIRCUIT constraint (3) pre-
sented in (Benchimol et al. 2012) maintains a circuit in a
weighted graph and provides a strong lower bound on z.
Redundant constraints (7)-(14) are then added and make use
of variables pos and b to express filtering related to positions
and precedences. For each arc (i, j), bij ∈ {0, 1} indicates if
i is visited before j (bij = 1) or after j (bij = 0). Variables
posi ∈ {0, . . . , n+1} for each i ∈ N represent the position
of vertex i in the tour (pos0 = 0 and posn+1 = n+ 1).

bij + bji = 1 ∀(i, j) ∈ E (7)
(bij = 1) ⇒ nextj �= i ∀(i, j) ∈ E (8)
posj > posi + 1 ⇒ nexti �= j ∀(i, j) ∈ E (9)
posj > posi ⇔ bij = 1 ∀(i, j) ∈ E (10)
ALLDIFFERENT(pos0, . . . , posn+1) (11)
(bij = 1) ⇒ startj ≥ starti + tij ∀(i, j) ∈ E (12)

posi =
∑

j∈N

bji ∀i ∈ N (13)

starti + tij > startj ⇒ nexti �= j ∀(i, j) ∈ E (14)

Note the redundant constraint (14) introduced in (Langevin
et al. 1993) which is the arc elimination constraint.

Filtering algorithms

This section presents three different filtering algorithms for
the weighted circuit constraint. The first one relies on the
Held and Karp’s relaxation for the TSP and is presented in
(Benchimol et al. 2012). The second one is based on the
assignment problem and was used by (Focacci, Lodi, and
Milano 2002). We extend this algorithm with exact reduced
cost computation. The last algorithm takes into account
the time constraints of the TSPTW by using a relaxation of
the TSP initially introduced in (Christofides, Mingozzi, and
Toth 1981). All algorithms use a relaxation of the TSP to
perform cost based filtering.

Filtering with Held and Karp’s relaxation

We use the “1-tree relaxation” introduced by Held and Karp
(Held and Karp 1970) which relaxes the constraint of the
TSP enforcing each vertex to have a degree of two. A mini-
mum 1-tree is a minimum spanning tree on vertices Ne plus
the edge (0, n+1) and the edge connected to 0 with the mini-
mum weight. The bound provided by the “1-tree relaxation”
is improved by adding Lagrangian multipliers (potentials) to
each vertex penalizing the violation of the degree (Held and
Karp 1970; 1971). The Lagrangian dual is solved with a
subgradient procedure.
Therefore each vertex has a potential πi and the cost of edge
(i, j) includes the potentials of the two adjacent vertices
(dij + πi + πj). At each step of the subgradient, a valid
relaxation of the TSP is available with the current poten-
tials and a filtering algorithm can be applied. The cost of
the minimum 1-tree that must (resp. do not) contain a given
edge can be evaluated in order to detect whether the corre-
sponding edge is forbidden (resp. mandatory) with respect
to the current best known upper-bound. The efficient com-
putation of the marginal and replacement costs of each edge
is presented in (Benchimol et al. 2012) with a time com-
plexity of O(n + m + nlog(n)) for the calculation of for-
bidden edges and O(mα(mn))1 for the mandatory edges.
This relaxation is defined for undirected graph. In order
to handle the directed case, two options have been inves-
tigated: using 1-arborescence instead of 1-tree or applying
the Jonker and Volgenant’s transformation (Jonker and Vol-
genant 1983). We implemented the latter following the ad-
vice of (Benchimol et al. 2012).

Filtering with Assignment Problem

The Assignment Problem (AP) is to find a perfect match-
ing of minimum cost in a bipartite weighted graph. It pro-
vides a relaxation of the TSP by allowing sub-circuits. Let
Ns and V = {n + i, ∀i ∈ Ne} be the two disjoint sets
of vertices of the bipartite graph for the assignment prob-
lem. Let B = {(i, n + j), ∀(i, j) ∈ E} be the set of
arcs, and the cost of the arc dBi,n+j = dij , ∀(i, j) ∈ E.
The assignment problem is defined over the bipartite graph
GB = (Ns, V, B, dB). A lower bound is obtained by com-
puting a maximum matching with minimum cost cB in the
graph GB using the hungarian algorithm (Kuhn 2010) with
a time complexity of O(n3). We denote by P the set of
arcs corresponding to a perfect matching of minimum cost
cB . The reduced cost for an arc (i, j) not in P , i.e. the
minimum increase of the overall cost for setting nexti to
j. It is computed in practice by (Focacci, Lodi, and Mi-
lano 2002) using the linear formulation and thus represent a
lower bound of the exact increase. However, exact reduced
costs for the arcs can be obtained from shortest paths in the
residual graph as in (Régin 2002). We apply to this purpose
Johnson’s algorithm for all pairs of shortest paths on the
residual graph GR = (Ns, V, R, dR) with R = (B\P )∪P ′
and P ′ = {(j, i), ∀(i, j) ∈ P}. Johnson’s algorithm has
a time complexity of O(n2log(n) + nm). Let’s denote by
spij , ∀(i, j) ∈ R the value of the alternating shortest path in

1α is a functional inverse of Ackermann’s function
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the residual graph between i and j. An arc (i, j) ∈ B\P is a
forbidden arc if its insertion cost, i.e. the cost of an optimal
solution of the assignment problem that includes arc (i, j),
exceeds the upper bound. Let Δij be the reduced cost of the
arc (i, j) ∈ B\P , so that value j is filtered from D(nexti)
if cB+Δij > z. Let j′ ∈ V and i′ ∈ Ns be respectively the
vertices currently matched to i and j in P . Δij is computed
as follow:

Δij = (dij + spi′j′)− (dij′ + di′j)

The first term represents the cost of the minimum maching
including (i, j) while the second term is due to the removal
of the two existing arcs in the current matching. In this case
an arc (i, j) can only be mandatory if all other (i, k) are
forbidden. Thus it is enough to compute forbidden arcs to
detect the mandatory ones.

Filtering with n-path and Lagrangian relaxation

Alternative relaxations have been proposed for the TSP and
we investigate filtering algorithms based on the path relax-
ations of (Christofides, Mingozzi, and Toth 1981).

n-path relaxation. Recall that the problem has n+1 cities
(the depot and n clients) and that the depot is represented
by vertex 0 (start of the tour) and vertex n + 1 (end of the
tour). A solution is an elementary path in G of exactly n+1
arcs. The idea is simply to relax the constraint that a vertex
has to be visited exactly once but requiring the path to use
exaclty n+1 arcs. A solution of this relaxation is thus a non-
elementary path of n+ 1 arcs. f∗(k, i) denotes the value of
the optimal path of exactly k arcs reaching vertex i from
vertex 0. We consider f∗(1, i) = d0i, ∀i ∈ {1, . . . , n} if
1 ∈ D(posi) and f∗(k, i) = +∞∀i ∈ {1, . . . , n+1}, ∀k /∈
D(posi). Values of f∗(k, i) can be obtained by applying the
recursive formula:

f∗(k, i) = min
j∈D(predi)

(f∗(k − 1, j) + dji)

∀k ∈ {2, . . . , n+ 1}, ∀i s.t. k ∈ D(posi) (15)

f∗(n+1, n+1) provides a lower bound of z∗. Similarly to
f∗(k, i) we can compute f∗

rev(k, i) which is the value of the
shortest path leaving vertex i and reaching vertex n + 1 in
exactly k arcs. The space complexity of this dynamic pro-
gram is O(n2) but time complexity is O(n2m) where m is
the maximum domain size of the pred variables. Note that
the domains of the predecessor (pred) and position variables
(pos) are used in (15) to restrict the state space. The aim of
this algorithm is to take into account the reasonings on po-
sitions to inform the relaxation. This is not directly possi-
ble in the spanning tree relaxation and make sense for time
constrained problems such as the TSPTW where reasonings
about precedences and positions are often stronger than rea-
sonings about direct predecessors/successors.

ln-path relaxation. In the n-path relaxation, the degree
constraint of each vertex is relaxed similarly to the Held and
Karp’s bound. We can thus apply a similar Lagrangian re-
laxation of the degree constraints to penalize their violation

and we refer to this relaxation as the ln-path. Let’s con-
sider a real multiplier (λi ∈ R) associated to each vertex
i and boolean variables xij ∈ {0, 1} to indicate whether
nexti = j. The Lagrangian subproblem can be stated as:

Minimize
∑

(i,j)∈E

(dij − λi − λj)xij + 2
∑

j∈N

λj (16)

N-PATH({xij |∀i ∈ N, j ∈ D(nexti)}) (17)

Note that this formulation is obtained by relaxing∑
i∈D(predj)

xij +
∑

i∈D(nextj)
xji = 2 for each ver-

tex j ∈ N . This degree constraint along with the n-path
requirement would indeed ensure a valid tour. Finally, as
mentioned by (Christofides, Mingozzi, and Toth 1981), the
relaxation can be strengthened without increasing the time
complexity by forbidding circuits of two arcs i.e. with three
consecutive vertices such as x, y, x. This requires to store
the value of the best path, φ∗(k, i), reaching vertex i in k
arcs with a different predecessor for vertex i than the path
supporting f∗(k, i). We thus consider in the following that
the n-path relaxation is a non-elementary shortest path of
n+1 arcs without such circuits.

ln-path filtering algorithm: Since the relaxation involves
the next and pos variables, we can filter them at any iter-
ation of the subgradient algorithm i.e for any given values
of the multipliers. It is a generic methodology once the dy-
namic program is properly defined. We denote by C the
constant term of the objective so that C = 2

∑
j∈N λj .

• Forbidden arcs: ∀i ∈ {0, . . . , n}, ∀j ∈ D(nexti)

(∀k ∈ D(posi),f
∗(k, i) + dij + f∗

rev(n− k, j)− C > z)

⇒ nexti �= j,

The expression f∗(k, i) + dij + f∗
rev(n − k, j) − C is

a lower of the cost of any solution using arc (i, j) as the
k-th arc. This relies on the fact that f∗(k, i) is a lower
bound to reach vertex i from vertex 0 with k arcs, and
f∗
rev(n−k, j) is a lower bound to reach vertex n+1 from
j using n−k arcs. Thus the expression relates to a path of
k+1+n− k i.e n+1 arcs. By taking the minimum cost
over all possible positions for arc (i, j) (∀k ∈ D(posi))
we obtain a lower bound of any solution using arc (i, j).

• Forbidden positions: ∀i ∈ {1, . . . , n}, ∀k ∈ D(posi)

f∗(k, i) + f∗
rev(n− k + 1, i)− C > z

⇒ posi �= k

Any values of the multipliers can be used for filtering. The
filtering requires the computation of f∗

rev which can be done
in the same time complexity than f∗ by a second call to the
dynamic program.

n-path for filtering the time: The n-path relaxation itself
can be applied to the time (tij) dimension to provide filtering
related to timing. The dynamic program (15) can be written
according to the time dimension and becomes:

f∗(k, i) = min
j∈D(predi)

(f∗(k − 1, j) + tji)

∀k ∈ {2, . . . , n+ 1}, ∀i s.t. k ∈ D(posi) (18)
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Figure 1: Graph G1 satisfying znp > zoa > zap; Graph G2

satisfying znp < zoa < zap

This relaxation alone can be used to filter the bound of vari-
ables pos and start:

• Minimum/maximum positions: ∀i ∈ {1, . . . , n}, ∀k ∈
D(posi), we can state that:

starti + f∗
rev(n− k + 1, i) > startn+1 ⇒ posi > k

f∗(k, i) > starti ⇒ posi < k

• Minimum/maximum starting time: the domains of the po-
sitions can also be used to strenghten the minimum and
maximum starting time of each vertex. So ∀i ∈ N , we
have:

starti ≤ startn+1 − f∗
rev(n− posi + 1, i)

starti ≥ f∗(posi, i)

A subgradient approach similar to the one used for the Held
and Karp’s relaxation is used to solve the Lagrangian dual.

Comparison of the bounds

We now show that the relaxations are incomparable even for
symmetric distances. It thus make sense to eventually use
them together in order to improve the filtering. We first fo-
cus on the 1-arborescence, the assignment and the n-path
relaxations without the use of Lagrangian multipliers. We
then show that the directed Held and Karp’s bound is also
incomparable with the ln-path relaxation, both methods us-
ing Lagrangian relaxation.

1-arboresence, n-path, assignment. The values of the 1-
arborescence, the n-path and the assignment relaxations are
respectively denoted zoa, znp and zap. A 1-arborescence
on G (as defined in the problem definition) is a graph with
vertices 0, 1, . . . , n+ 1 consisting in an arborescence on the
vertices 0, 1, . . . , n+1 rooted in 0 together with one in-going
arc incident to 0. So every vertex has an in-degree of exactly
one and can be reached from the root vertex 0.

Proposition 1 zoa, znp and zap are incomparable.

Proof: We proceed in two steps by highlighting two cases
(G1 and G2) where two opposite rankings of the bounds
hold. Let’s start with the graph G1 (Figure 1) and satisfy-
ing znp > zoa > zap. We check that:

• The n-path relaxation has two symmetric feasible solu-
tions with a cost of 12 and one is shown Figure 2.b. Sup-
pose the path starts with arc (ab). We are then facing two
choices: (bf) or (bc). If one takes (bf), it is impossible to
reach back vertex (a) in 6 arcs without performing a xyx
cycle. (bc) is thus the only option and a tour must be done
to reach (a) in 6 arcs. Due to the symmetry of G1, the
same reasoning holds if the path starts with (af).

• The cost of the minimum 1-arborescence is 10 (Figure
2.c). A minimum arborescence rooted in (a) is computed
as (ab), (bf), (fe), (ed), (dc). The arc of minimum cost
entering vertex (a) (which is the arc (ba)) must be added
to to obtain the minimum 1-arborescence.

• A solution of the assignment problem can use only the
arcs of minimum cost (i.e. of value 1) by cycling between
the vertices (a)-(b), (f)-(e) and (c)-(d). This solution with
a cost of 6 is thus a minimum cost assignment (Figure
2.a).

So we have znp = 12, zoa = 10 and zap = 6. Let’s now
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Figure 2: Solutions of the relaxations when applied to G1.

turn our attention to G2 satisfying znp < zoa < zap.
• The sequence (a)-(b)-(e)-(d)-(b)-(a) is a feasible solution

of the n-path using only the minimum costs (i.e. of value
1) so that znp = 5 (Figure 3.b).

• The minimum 1-arborescence has a cost of 6 (Figure 3.c).
Note that an arc of cost 2 is mandatory to reach (i.e to
span) vertex (c). So the feasible solution shown in the
figure is optimal (since it is using only arcs of minimum
cost 1 and one arc of cost 2) and zoa = 6.

• The minimum assignment has a cost of 8. Suppose (ab)
is in the assignment. This causes the suppression of arc
(cb), leaving vertex (c) with a single match so that (cd)
must be in the assignment too. Similarly (ea) is forced
into the assignment. At this stage two perfect matchings

3393



Instances Assignment+LP filtering Assignment+exact filtering Held and Karp ln-path
time search gap zap time search gap zhk time search gap zlnp time search

br17.atsp 199,3 5716951 100 17,6 21986 0 0,5 12 28,21 125,1 43113
ftv33.atsp 5,7 33936 7,85 0,1 15 0 0,2 4 4,82 2,3 27
ftv35.atsp 2,4 14613 6,25 0,2 99 1,09 0,4 14 4,28 3,3 114
ftv38.atsp 9,8 48260 6,01 0,3 121 1,05 0,5 19 3,27 6,8 162
ftv44.atsp 14,5 63362 5,7 0,4 178 1,86 2,2 108 2,79 13,2 224
ftv47.atsp >1800 9094310 6,98 4,3 1612 1,69 4,1 181 3,15 158,5 5700
ry48p.atsp >1800 3905158 13,21 73,2 15650 1,05 4,5 47 4,18 406 1859
ft53.atsp >1800 7225825 14,11 2,2 248 0,17 4,7 7 11,66 >7200 515
ftv55.atsp >1800 5502314 10,76 25,5 7307 1,55 14,6 507 6,59 >7200 125773
ftv64.atsp >1800 4590304 6,42 10,5 2012 1,96 9,2 172 3,92 3066,1 32699
ft70.atsp >1800 3761251 1,8 3,4 130 0,05 16,6 18 0,84 61,4 311
ftv70.atsp >1800 3798786 9,44 69,8 8870 2,26 48,3 599 4,77 >7200 40428

kro124p.atsp >1800 1418885 6,22 >7200 356027 0,67 227,5 1370 3,41 >7200 5644
mean 46,3 1175424,4 15,0 17,3 4852,3 1,0 25,7 235,2 6,3 426,9 9356,6

median 9,8 48260,0 7,0 3,8 930,0 1,1 4,5 47,0 4,2 61,4 311,0

Table 1: Results on some asymmetric TSP of TSPLIB
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Figure 3: Solution of the relaxations when applied to G2

are possible, one using (be) and (dc) whereas the other
would use the arcs (bc) and (de) (Figure 3.a). Both have
the same cost of 8, so that zap = 8. The same reasoning
holds when taking (ae) initially instead of (ab).

Summerizing, we have znp = 5, zoa = 6 and zap = 8. �
Held and Karp and ln-path. The values of the Held and
Karp’s and ln-path relaxations are denoted zhk and zlnp.
These two methods use Lagrangian relaxation.
Proposition 2 zhk and zlnp are incomparable.
Proof: Let’s first show that we can have zhk < zlnp by
considering the graph G3 of figure 4. In the graph G3 pre-
sented in (Benoit and Boyd 2008), we know that the Held
and Karp’s bound has an integrality gap of 10/9. In other
words zhk = 9 whereas the value of the optimal tour is 10
(z∗ = 10). Consider now that all paths of 6 arcs, without
xyx cycle, and starting and ending in a in this graph have a

ab
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Figure 4: Graph G3 satisfying zlnp > zhk; Graph G4 satis-
fying zlnp < zhk

cost of 10. Any feasible solution of the n-path relaxation has
value 10 so that zhk < znp and therefore zhk < zlnp.

To show that zhk > zlnp, we consider the graph G4 of
figure 4. Exact integrality gaps for Held and Karp’s bound
are studied in (Benoit and Boyd 2008) and it is known that
the bound is at least 8/9 of the optimal tour for graphs of
7 vertices. Thus zhk ≥ 8

9z
∗. An optimal tour in this graph

has a cost of 9 since (de) is mandatory in any hamiltonian
tour (for instance: (a)-(b)-(c)-(d)-(e)-(f)-(g)-(a)). Therefore
we know that zhk ≥ 8. Furthermore, the Lagrangian dual of
the ln-path contains the following two constraints related to
two feasible solutions of the n-path relaxation (see (16)):

zlnp = max w

w ≤ −2λb − 2λc − 2λd + 2λe + 2λf + 2λg (19)
w ≤ 2λb + 2λc + 2λd − 2λe − 2λf − 2λg (20)

The constraint (19) corresponds to the feasible path (a)-(b)-
(c)-(d)-(b)-(c)-(d)-(a) and constraint (20) for the path (a)-(e)-
(f)-(g)-(e)-(f)-(g)-(a). By summing (19) and (20), it is easy
to see that zlnp ≤ 0. We can conclude that zlnp < zhk. �

Note that G3 provides an example where ln-path is the
optimal tour. Moreover G4 shows a case for which the 1-
arborescence i.e. Held and Karp relaxation is optimal but
the ln-path remains uninformative (value 0) despite the use

3394



zhk zap zlnp

mean med mean med mean med

P

time 0,36 0,20 0,15 0,10 0,33 0,31
gap 4,71 3,89 12,43 13,02 5,06 4,11
|A| 488 316 624 557 527 445
|P | 577 525 611 531 574 519

A

time 3,13 0,33 1,07 0,18 3,18 0,33
gap 0,76 0,43 0,84 0,51 0,50 0,29
|A| 1151 437 1132 404 1116 364
|P | 914 388 900 383 892 364

D

time 1,13 0,81 0,66 0,47 1,07 0,58
gap 3,08 2,00 8,43 6,99 1,85 0,72
|A| 764 483 821 551 624 258
|P | 614 423 632 437 529 295

G

time 1,55 1,40 0,71 0,63 2,32 1,92
gap 9,43 9,10 21,19 21,53 7,40 7,27
|A| 1817 1651 1999 1917 1751 1440
|P | 1528 1467 1538 1467 1516 1452

O

time 10,02 8,93 4,63 4,61 45,54 34,35
gap 8,35 7,95 20,21 20,48 7,29 7,03
|A| 9668 9248 10171 9251 9945 9251
|P | 7369 6951 7370 6951 7369 6951

Table 2: Comparing the quality of the lower bounds and the
size of the domains after propagation at the root node.

of multipliers. Finally we outline that G1, G2, G3 and G4

have symmetric costs so that the results hold in the more
general symmetric case.

Experimental analysis

The experiments ran as a single thread on a Dual Quad Core
Xeon CPU, 2.66GHz with 12MB of L2 cache per processor
and 16GB of RAM overall, running Linux 2.6.25 x64. The
CP solver was Choco 2.1.5. Results are reported on aca-
demic benchmarks for TSP and TSPTW. The TSP dataset
is taken from TSPLIB. The TSPTW dataset2 is made of
50 asymmetric real instances (A) from (Ascheuer 1995), 27
symmetric instances (P) from (Pesant et al. 1998), 135 sym-
metric instances (D) from (Dumas et al. 1995), 130 symmet-
ric instances (G) from (Gendreau et al. 1998), 25 symmetric
instances (O) from (Ohlmann and Thomas 2007). The la-
bels time, search, gap and # denote the cpu times in sec-
onds, the number of nodes of the search tree, the gap to
the best known solution computed as 100 bestknown−bound

bestknown
at the root node of the search tree and the number of in-
stances solved (proof of optimality completed). Each run
has a 2h time limit. The best known upper bound is enforced
at the root node (z ≤ bestknown) similarly to (Benchimol
et al. 2012). Furthermore for Held and Karp and ln-path
relaxation approaches, the subgradient process used is sim-
ilar to (Benchimol et al. 2012). A limit on the number of
iterations is used and the multipliers are restored upon back-
tracking to give a starting point to the subgradient. For the
resolution we use the search strategy presented in (Pesant et
al. 1998).

TSP: Table 1 reports the results obtained on asymmteric
instances from TSPLIB. We compare four approaches using

2http://iridia.ulb.ac.be/ manuel/tsptw-instances

HK AP LNP
mean med mean med mean med

P
time 191,0 4,4 193,9 8,1 136,9 4,7

search 3k 97 28k 422 809,3 45
# 23/27 23/27 22/27

A
time 17,3 0,6 1,0 0,2 1,9 0,7

search 718,3 11 5,6 4 11,7 10
# 29/50 35/50 35/50

D time 1,0 0,4 0,6 0,4 0,5 0,4
search 11,3 2,5 3,2 2,5 2,8 2,5

w20 # 20/20 20/20 20/20

D time 35,6 1,2 20,8 0,9 1,0 0,2
search 1k 5 3k 4 4,7 3

w40 # 20/20 19/20 20/20

D time 17,2 2,6 59,7 1,2 4,7 0,6
search 506,2 66 8k 5 225,8 3

w60 # 18/20 17/20 18/20

D time 13,1 1,0 665,6 3,8 2,1 0,5
search 350,1 4 135k 355 15,7 3

w80 # 18/20 12/20 18/20

Table 3: Exact resolution for some TSPTW instances. In
each class, mean and median are computed on instances
solved by all approaches.

a CP model with the weighted circuit constraint propagated
by either the assignment, the Held and Karp and the ln-path
relaxation. We also report the results, quoted from (Benchi-
mol et al. 2012), obtained with the assignment bound using
linear programming reduced costs (first column). The best
approach regarding the number of instances solved and qual-
ity of the bound is the Held and Karp’s filtering. We have
zhk < zlnp < zap on this dataset in practice. We also note
that the use of exact reduced costs for the assignment de-
creases the search space by an order of magnitude compared
to the use of the linear programming ones. Finally, zlnp is
better than zap on this benchmark, but the ln-path is too slow
to be competitive at this stage.

TSPTW: Table 2 reports the quality of the three bounds
at the root node of the CP model i.e after the fix point of
the propagation has been reached. The resulting graphs
are typically sparser than the complete graphs considered
for TSP due to the filtering of the time windows. |A| de-
notes the number of arcs i.e |A| = ∑

i∈N |D(nexti)| and
|P | gives the number of possible remaining positions i.e
|P | = ∑

i∈N |D(posi)|. Interestingly zlnp is better than zhk
on 4 benchmarks out of 5 and sometimes significantly (see
for instance the 0,72% median gap versus 2% on the 130
Dumas’ instances). As a result, the filtering is stronger. On
the Pesant’s benchmark where zhk remains the best bound,
the filtering on the position variables remains better using ln-
path since positions are not filtered using the directed Held
and Karp’s relaxation. We also note that ln-path can be com-
petitive in cpu time when the graph is sparse enough even
for instances with up to a 100 vertices (D and G). This is
however not the case for Olhmann’s instances with 150/200
vertices.

Table 3 shows the results of the exact resolution for the
Pesant, Ascheuer as well as Dumas instances up to 80
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clients. The results for the Dumas instances are reported
according to the size of the time windows: 20, 40, 60 and 80
(20 instances per class). The filtering based on ln-path can
speed up significantly the resolution for these medium size
instances with tight time windows.

Conclusion

We proposed new filtering algorithms for the weighted cir-
cuit constraint to provide stronger filtering when the graph
is sparse and directed. We revisited an old lower bound for
the TSP based on a path relaxation initially introduced by
(Christofides, Mingozzi, and Toth 1981). To our knowledge,
this relaxation has never been really used for solving TSP
as it is believed to be dominated by the Held and Karp’s
approach based on spanning trees. We show however that
this bound can improve over the classical Held and Karp’s
approach when additional information, such as the possible
positions of the clients in the tour, is available. This is partic-
ularly suited for problems with side constraints such as time
windows. The Lagrangian subproblem of the ln-path is com-
putationnaly heavy as it can reach a O(n3) complexity when
the graph is complete. We expect significant improvements
with the use of bundle methods(Lemaréchal 2001) for solv-
ing the Lagrangian dual as it will reduce the number of iter-
ations of the sub-gradient procedure. This will also certainly
lead to an improvement of the bound itself as convergence
is difficult for the subgradient approach when facing prob-
lems with 100/200 vertices. Furthermore we proved that the
filtering algorithms are incomparable. Combination of these
algorithms is an interesting direction for future works.
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