
Steiner Tree Problems with Side
Constraints Using Constraint Programming

Diego de Uña1 and Graeme Gange1 and Peter Schachte1 and Peter J. Stuckey1,2

1 Department of Computing and Information Systems – The University of Melbourne
2 National ICT Australia, Victoria Laboratory

{d.deunagomez@student.,gkgange@,schachte@,pstuckey@}unimelb.edu.au

Abstract

The Steiner Tree Problem is a well know NP-complete prob-
lem that is well studied and for which fast algorithms are
already available. Nonetheless, in the real world the Steiner
Tree Problem is almost always accompanied by side con-
straints which means these approaches cannot be applied. For
many problems with side constraints, only approximation al-
gorithms are known. We introduce here a propagator for the
tree constraint with explanations, as well as lower bounding
techniques and a novel constraint programming approach for
the Steiner Tree Problem and two of its variants. We find our
propagators with explanations are highly advantageous when
it comes to solving variants of this problem.

1 Introduction
The Steiner Tree Problem (STP) is a combinatorial prob-
lem on graphs. Given a non-empty graph G = (V,E) and a
subset of its nodes T ⊆ V called terminals, a Steiner Tree
ST = (VST , EST ) is a tree such that T ⊆ VST ⊆ V and
EST ⊆ E. That is to say, ST spans all the nodes in T . We
call the non-terminal nodes Steiner nodes.

Following the definition of (Dreyfus and Wagner 1971),
the STP is an NP-complete problem (proved by (Karp
1972)) stated as follows: given a graph G and a weight func-
tion ws, find the Steiner Tree of minimal weight where the
total weight is the sum of the weights of the edges in EST

given by ws.
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Figure 1: Two Steiner trees (highlighted) of the same graph
where s is the only Steiner node and a, b and c are terminals.

The STP has been well studied because of its applica-
tions in computer networks, VLSI design, transportation and
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other network problems (Winter 1987), (Hwang, Richards,
and Winter 1992). Nevertheless, in many of these applica-
tions, the STP is not pure. In most real world applications
there are side constraints that affect the topology of the so-
lution. Sometimes we need terminal nodes to be leafs of the
tree (e.g.: in VLSI or phylogenetics). In other cases, we only
want to use nodes that can be connected in multiple ways to
increase the reliability of the network (Agrawal, Klein, and
Ravi 1995). In transportation we find the hierarchical STP
where terminals are divided in size (by city population).

In this paper we present a novel Constraint Programming
(CP) approach using explanations to solve the STP that al-
lows any kind of side constraint. We implemented this in the
CHUFFED CP solver (Chu 2011). Section 2 introduces some
notions from CP along with the model that we use. Section
3 presents some basic data structures. Section 4 presents the
implementation of a tree propagator with explanation. Sec-
tion 5 explores two lower bounds to prune the search space.
Section 6 shows the experimental results solving the pure
STP and two of its variants (comparing different versions of
our propagator against the CHOCO3 solver).

1.1 Previous Work

To our knowledge, the state-of-the-art in pure Steiner Tree
problems was reached by (Polzin and Daneshmand 2001),
and little room for improvement was left by their work.
Nonetheless, their ideas focused on the pure STP. Indeed,
several of the techniques they used to solve the problem
(called “reductions” in their paper) are only valid for the
pure version. Reductions remove edges or nodes based on
the fact that they cannot be part of the minimum Steiner tree.
We are searching for a Steiner tree that is minimum given a
set of side constraints, thus the reductions they used are not
valid in our setting.

It is worth noting that the Steiner Tree Problem resem-
bles the Minimum Spanning Tree problem (MST), but it
is substantially different in terms of computational com-
plexity. The NP-completeness of the STP comes from not
knowing which nodes we need to span. Existing MST or
Weighted-Spanning Tree constraints (Dooms and Katriel
2006), (Régin 2008) do not apply in our case as they either
look for a minimum spanning tree (not allowing side con-
straint) or try to include all nodes in the tree.

There has also been work in “tree” constraints that are ac-
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tually more focused on finding forests in (un)directed graphs
(Beldiceanu, Flener, and Lorca 2005), (Beldiceanu, Katriel,
and Lorca 2006), (Fages and Lorca 2011). Although their
constraints could be used for the STP, they are not tailored
for it as there is no easy way to encode that all terminals
must be in the same tree in the forest, and that we do not
care about the cost of the other trees in the forest (nor how
many there are).

All the other work we are aware of for solving STP with
variations relies on approximation algorithms for each vari-
ation (Mehlhorn 1988), (Beasley 1989), (Robins and Ze-
likovsky 2000), (Garg, Konjevod, and Ravi 2000), (Kim et
al. 2002), (Chalermsook and Fakcharoenphol 2005). Our in-
tention in this work is to use CP as a framework to model
any variation of the STP to find exact solutions.

2 A CP Approach to the STP

Most of the previous work done with exact algorithms for
the STP used Mixed Integer Programming (Aneja 1980),
(Current, ReVelle, and Cohon 1986). We approach this prob-
lem using CP. This allows us to have a more flexible and
reusable model. Using global constraints we specialize the
solver to tackle the problem in a much more efficient way
than using composition of elementary constraints.

2.1 CP, Propagation and Explanations

In this section we define what propagators and explanations
are for the clarity of the paper. A more thorough definition
can be found for instance in (Francis and Stuckey 2014).

Constraint Satisfaction Problems (CSP) consist of con-
straints over a set of variables each with a domain set of
possible values. A valid solution to a CSP is a valuation of
these variables such that all constraints are satisfied.

A complete search would assign all the possible values to
each variable in turn and cover the whole search space to
find the optimal solution, backtracking only when no more
branching is possible. Since this induces a prohibitive cost,
we use constraint propagation during the search.

A propagation solver interleaves propagation and search.
The former is a process by which propagators remove values
from the domains of the variables when they cannot be part
of a solution given the previously decided variables. This
reduces the search space and, if the domain of a variable be-
comes empty, detects failure. The latter splits the domain of
a variable to generate sub-problems (branches) and tries to
solve them. This process stops once all variables have been
assigned a value. If a conflict is detected, the solver fails and
backtracks to the decision causing it.

Learning is done with clauses created by propagators that
capture the reasons for the propagations they do (which
means they are universally true). When a propagator infers
changes in domains of variables, it gives a set of clauses
(or explanations) to the solver that “explain” the propaga-
tion. The solver will reuse them to make the same inferences
again without having to pay the cost of propagation. This
is called Lazy Clause Generation (Ohrimenko, Stuckey, and
Codish 2009) as the clauses are generated during the solving
step.

2.2 Model

To model the STP we use a variable ce for each edge e indi-
cating whether e is chosen to be in the solution tree and, sim-
ilarly, a variable cn for each node n. Other side constraints
can specify which nodes are terminals by simply setting the
value of the corresponding cn variable.

Let ends be a map from edges to their end-nodes and adj
a map from nodes to their incident edges. Additionally, ws
gives the weight of each edge. The variable w is the weight
of the tree. The model used to solve the problem is simply:

minimize(w) such that:
steiner tree({cn |n ∈ V }, {ce |e ∈ E}, adj , ends,w ,ws)

where steiner tree is the global constraint we will define
later that constrains the solution to be a Steiner tree of weight
w.

Moreover we can add the extra constraint stating that the
solution has one more node than edges (which is true for
any tree):

∑
e∈E ce =

∑
n∈V cn − 1. The solver can find a

conflict with this constraint before other propagation is able
to detect a failure. We found this empirically advantageous.

Assigning values to the variables implicitly builds a graph
Gs = (Vs, Es) = ({cn|cn = true}, {ce|ce = true}). We
say that an edge e is an in-edge if at the current stage of
the search ce is true (and we draw it as ‘ ’ in the follow-
ing figures), out-edge (‘ ’) if ce is false and unknown-
edge (‘ ’) for an unassigned edge. Similarly we define
the terms in-node (‘ ’), out-node (never drawn, for clarity)
and unknown-node (‘ ’). Clearly, all terminal nodes are in-
nodes. Eventually, Gs will become the solution.

3 Preliminaries

Here we present a few data structures and algorithms that we
will be using later.

3.1 Re-Rooting Union-Find Data Structure

In order to implement the tree propagator we will use a mod-
ified version of the classic union-find data structure that will
help us to retrieve paths between nodes efficiently.

The typical union-find data structure (UF) builds a di-
rected forest of nodes when the method unite(u, v) is ap-
plied. Then we can retrieve the root of each tree by using
the method find(u). In our implementation, we will have a
method path(u, v) that will return the nodes in the path from
u to v (or an empty path if they are not connected).

To do so, we modify the unite procedure: we first make
u and v become the root of their respective trees (by invert-
ing some of the parenthood relations in the trees), then we
make u the parent of v. To retrieve the path we modify the
find method to return the nodes it goes through (we can later
map pairs of nodes into edges). Calling this method on two
nodes a and b in the same connected component (CC) allows
us to find the path between those nodes. The worst case com-
plexity of this query is linear in the number of nodes in the
graph, although in practice it is much closer to the length of
the path between the two nodes queried.
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3.2 Graph Contraction

Given a graph G and the decisions made so far in the search,
we define a contraction function cont : (V,E) �−→ (V ′, E′)
that contracts all the in-nodes connected by in-edges into
one new “in-node” and removes all the out-edges. In other
words, the connected components of Gs are contracted and
the out-edges removed. Clearly E′ contains only unknown-
edges. By analogy, we call “in-nodes” the nodes of G′ built
from in-nodes of G. We will make use of this in Section 5.

Figure 2: Example of the application of function cont

4 Tree Propagator with Explanations

We first start by implementing a tree propagator. This propa-
gator will wake whenever a variable cn or ce is fixed, mean-
ing that a node (resp. edge) becomes an in-node or out-node
(resp. in/out-edge). The purpose of the propagator is to en-
sure that the final Gs can be a tree (i.e. a connected acyclic
sub-graph of G).

Table 1 presents a list of the rules applied (in order) in
each case. In the following subsections we detail them.

Event Rules

Node addition n

1. reachable(n)
2. articulations(n)
3. cycle prevent(n)
4. steiner node(n)

Node removal n 1. coherent(n)

Edge addition
e = (u, v)

1. coherent(e)
2. cycle detect(e)
3. ∀n ∈ CCGs

(u), cycle prevent(n)
4. UF .unite(u, v)

Edge removal
e = (u, v)

1. reachable(u)
2. articulations(u)
3. ∀n ∈ {u, v}, steiner node(n)

Table 1: List of algorithms in applied in our tree propagator.
CCGs

(u) is the connected component of Gs containing u.

4.1 The reachable Algorithm

Given an in-node n, the reachable(n) algorithm ensures that
n can be connected through in-edges or unknown-edges to
other in-nodes. If n is not reachable from some other in-
node, then n cannot be part of Gs as it would not be a tree.
In this situation the solver must fail and backtrack.

Figure 3 gives an example of two unreachable in-nodes.
First, to detect the failure, we run a depth first search

(DFS) starting at n. We will mark all the nodes visited as
blue. This DFS will traverse in-edges and unknown-edges
only. Then we look for any non-blue in-node o. If such a
node o exists, we fail.
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Figure 3: Example of unreachable nodes: n was added to
Gs. Edges e3 and e4 being out-edges, we cannot reach o.

Explaining this failure requires finding a minimal set of
out-edges such that if any of them was in or unknown, there
would still be a solution in the current search space.

To find those edges, we run another DFS from the found
target node o marking all the nodes reached as pink . Dur-
ing this DFS we allow traversal through all edges except the
ones having one blue end-node.
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Figure 4: Example of the blue (on the left, ‘ ’,‘ ’) and
pink (on the right, ‘ ’,‘ ’) DFS to detect failure. The
zigzag edges (‘ ’) explain failure. Note that e8 is not
needed in the explanation for it to hold.

Let OE be the set of out-edges encountered during the
pink DFS that have one blue extremity (we do not cross
them). If at least one of them was allowed to be used, the
pink DFS would have reached the blue nodes thus showing
that Gs could still be connected. Therefore, this set of edges
explains the un-reachability of o from n. The final explana-
tion is: (cn ∧ co ∧

∧
e∈OE ¬ce) ⇒ fail .

4.2 The articulations Algorithm

We assume that the reachable algorithm succeeded as there
would be no solution otherwise. In such a graph there is
at least one bi-connected component (bi-CC). A bi-CC is
a sub-graph that is bi-connected (i.e. every pair of nodes is
connected by at least two paths). The nodes between two bi-
CCs are known as articulations. Also, if a bi-CC contains
only one edge, then that edge is a bridge.

Since Gs needs to be a tree, it must be connected. We can
then propagate that any articulation (resp. bridge) that is in
the path between two in-nodes u and v is an in-node (resp.
in-edge), otherwise u and v would be disconnected.

To find the articulations, we modify Tarjan’s algorithm
for finding bi-CCs (Tarjan 1972) starting at an in-node. Re-
call Tarjan’s algorithm performs a DFS in the graph while
marking nodes with their depth and their “lowpoint”. The
lowpoint of a node u is the node v with lower depth that
has been reached from the recursive calls of the DFS start-
ing at u. By lemma 5 in Tarjan’s paper: u = parent(v) ∧
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Figure 5: Example of bridges (‘ ’) and articulations (‘ ’)

depth(lowpt(v)) ≥ depth(u) ⇒ u is an articulation .
In our version, the DFS will start at an in-node and will

not be allowed to cross out-edges. Also, we are only inter-
ested in articulations/bridges that are in the path between
two in-nodes. To identify only these ones we use a stack S
that records all the in-nodes reached whilst performing the
DFS. If after a recursive call in the DFS we detect an articu-
lation a and the top of S is different than when we reached
node a then a is a required articulation for the two top-most
nodes of S. Additionally, if the last discovered bi-CC had
only one edge, then that edge is a required bridge.

To explain these bridges and articulations we need the
two in-nodes c1 and c2 that required them: we extract those
nodes from S while performing the DFS (let c1 be the top
of S). We also need all the out-edges that could have con-
nected c1 and c2. Indeed, if those edges were available, then
we would not have found articulations or bridges. We do this
in two steps after Tarjan’s DFS. First, we run a DFS from c1
that does not go through out-edges (nor the articulation or
bridge). This gives a set R of reachable nodes. Then we run
a second DFS from c1 this time allowing to cross out-edges
(but not the articulation or bridge). We add any out-edge ad-
jacent to a node not in R but visited during Tarjan’s DFS to
a set OE .

The explanations is (cc1 ∧ cc2 ∧
∧

e∈OE ¬ce) ⇒ a, where
a is either the articulation or the bridge we found.

In our example in Figure 5 (starting at n) we would first
find that cc ∧ ch ⇒ cd, then cc ∧ ch ∧ ¬ce4 ⇒ ce5 and
ce ∧ cc ⇒ ce6 and finally cb ∧ cc ∧ ¬ce4 ⇒ ce3 . Note, e2 is
not a bridge since it is not in the path between two in-nodes.

4.3 The cycle detect and cycle prevent Algorithms

Given a new in-edge e = (u, v), the cycle detect(e) algo-
rithm ensures that e does not form a cycle in Gs. If it does,
there must be a pre-existing path p from u to v that we can
retrieve using the UF. If p exists, we stop the search and we
give the reason (ce ∧

∧
e′∈p ce′) ⇒ fail .

Furthermore, given a node n, the algorithm
cycle prevent(n) removes any edge adjacent to n that
would form a cycle if it was added to Gs. We can safely
propagate the decision that they must be out-edges as Gs

would contain a cycle otherwise.

a

c

b

n
e1

e2

e3

e4

e5

Figure 6: Example of potential cycles created by e1 and e2.

To perform this operation, we simply remove any edge
e = (n, o) ∈ adj [n] such that n and o are connected by in-
edges. The minimal reason required for this removal is the
set of in-edges forming a path p from n to o in Gs. That is:∧

ein∈p cein ⇒ ¬ce. Again, we use our UF to retrieve p.
Note how in the event of the addition of a new node we

only need to perform this operation at the new node (the
incrementality of the propagator ensures that new possible
cycles could only appear from the new node). For a new
edge, though, we have to look at all the in-nodes in the CC
of Gs containing the edge e (as the new potential cycle can
appear anywhere in the CC) so we perform this operation
while traversing the CC with a DFS.

4.4 The steiner node Checks

Let the degree of a Steiner node n (noted degs(n)) be the
number of edges incident to n that are not out-edges. Let
Rn = {e|e ∈ adj [n] ∧ ¬ce}.

A Steiner node is only useful if it is part of the path be-
tween two in-nodes, otherwise it increases the cost and does
not bring any advantage to the tree. We can use this premise
to do STP-specific propagations. Given a node n:
• if degs(n) = 1, we will fail with the following reason:

(cn ∧∧
Rn

¬ce) ⇒ fail .

• if degs(n) = 2 (edges e1 and e2) we can safely propa-
gate that the solution will only contain n if both edges are
also in Gs. We force them in Gs giving the explanation:
∀b ∈ {ce1 , ce2}, (cn ∧∧

Rn
¬ce) ⇒ b.

4.5 The coherent Checks

Whenever a node is removed or an edge is added, we must
make sure that Gs is still sound. The coherent checks en-
force that for a node n, ∀e ∈ adj [n],¬cn ⇒ ¬ce and for an
edge e = (u, v), (ce ⇒ cu) ∧ (ce ⇒ cv).

5 Lower Bounding for the STP
Given a solution of cost K, a lower bound allows us to prune
the search space by proving that no better solution exists in
a branch. This is known as branch-and-bound.

5.1 Shortest-Paths Based Lower Bound (SPLB)

Consider the graph G′ obtained by applying the cont func-
tion (Sec. 3.2) to G. Let S be the set of in-nodes in G′. We
claim that, in G′, the following is a lower bound for the STP.

LB(G′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2

∑
u∈S

spcG′(u), if |S| is even

1

2

∑
u∈S

spcG′(u)−min
u∈S

spcG′(u), otherwise

where spcG′(u) is the weight of the shortest path between u
and its closest in-node in G′ (see proof in extended version
of this paper, available on author’s websites).

We extend this lower bound to a lower bound of the STP
in the current graph by adding the weight of the in-edges that
were contracted. We call this lower bound SPLB.

SPLB(Gs) = LB(cont(G)) +
∑
e∈Es

ws[e]
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5.2 Computing SPLB

Because computing this lower bound can be expensive if we
do it every time, we implemented it in an incremental way.

In order to avoid having a contracted version of the graph,
we will consider that all in-edges have weight zero and we
will only compute the shortest paths between a representa-
tive in-node from each CC of Gs (we use the roots of the UF
as representatives).

Let spC be a map from representatives to the cost of its
shortest path to another representative and spE a map from
representatives to the edges used in that shortest path.

We compute SPLB by adding the following steps after the
previously described propagations.

Node Addition A new node may change all the shortest
paths between CCs of Gs, so we need to recompute them
all. We use Dijkstra’s algorithm starting at a representative
while recording the paths and update spC and spE .

Edge Removal All paths using the removed edge (recor-
ded in spE ) must be recomputed with Dijkstra’s algorithm.

Edge Addition A new edge merges two CCs of Gs, so we
use the shortest path of the two of them as the new shortest
path of the resulting CC (other than the path between them).
We also add the weight to a variable mw . Eventually, the
lower bound will be the sum of mw and the sum of all the
costs recorded in spC .

5.3 Explaining SPLB

The lower bound will prune the search space by making the
solver fail and backtrack. As with other propagations, we
need to explain the failure.

All edges that are in Gs must be part of the explanation
since they bring weight to the lower bound. We must also in-
clude the out-edges that have been in a shortest path at some
stage. Indeed, if we remove an edge from a shortest path,
we find a second shortest path of higher weight. Therefore,
deleting those edges causes the lower bound to increase. We
record them in a set spR whenever we remove them. The
resulting explanation is:(

�w < K� ∧
∧

e∈Es

ce ∧
∧

e∈spR

¬ce
)
⇒ fail

where �w < K� is the clause stating that we want a tree of
cost less than K (which is the cost of the best solution found
so far). This explanation states that no better solution can be
found given the edges in Gs and the out-edges that could
have lowered the weight of the solution.

5.4 Linear Program Lower Bound (LPLB)

Previous work in the pure STP used a linear program (LP)
lower bounding technique to compute the solution to the
problem (Polzin and Daneshmand 2001). This lower bound
remains valid for any variant of the STP.

Cut Formulation of the STP Any cut of G that separates
the nodes in two partitions V = {W, W̄} such that both
contain at least one terminal must have at least one edge
crossing from W to W̄ that is part of the solution.

From this observation derives the cut formulation of the
STP introduced by (Aneja 1980):

minimize
∑
e∈E

ws[e] ∗ ce such that:

∀W,
∑

e∈δ(W )

ce ≥ 1

where δ(W ) is the set of edges with exactly one end-node in
W .

The linear relaxation of this problem, which we call
LPLB, makes use of real variables xe ∈ 0..1 for each edge e
instead of the Boolean variables ce, and is solvable in linear
time. Solving this yields a lower bound.

5.5 Computing LPLB

Following the work of (Polzin and Daneshmand 2001), we
implemented this lower bound using row generation and we
solve it using CPLEX 12.4. In order to generate the rows,
we use the Edmonds-Karp’s maximum flow algorithm (Ed-
monds and Karp 1972). Each run of this algorithm gives us
a minimum cut that we add to the LP. We also implemented
the DUAL-ASCEND algorithm described by (Wong 1984)
for the initial set of rows in the LP. In order to make this
incremental, we run the flow computation and re-optimise
LPLB after all the rules in Section 4 are applied.

5.6 Explaining LPLB

Part of the explanation are the in-edges, as before. Also any
in/out-edge in R = {e|rc(ce) �= 0} that has non-zero re-
duced cost1 (rc) is part of the explanation. This is because
edges with zero reduced cost would not change the value of
the lower bound if they changed theirs, so they do not con-
tribute to the lower bound.

�w < K� ∧
∧

e∈Es

ce ∧
∧

e∈R,¬ce

¬ce ∧
∧

e∈R,ce

ce∧ ⇒ fail

6 Experimental Results

We modelled the pure STP and two variations in MINIZINC
and solved them with the CHUFFED solver. We used the lat-
est CHOCO3 (Prud’homme, Fages, and Lorca 2014) solver
as a comparison since it includes the most up to date im-
plementation of the CP(Graph) framework (Dooms, Deville,
and Dupont 2005).

We ran all our tests with the SPLB and LPLB lower bounds
as well as without lower bound (NOLB), no tree propagator
at all (NOPROP) and the LPLB with no learning (n.l.) to com-
pare the benefits of the lower bounds and learning. We also
tested a version called SP+LPLB where SPLB runs first and
if it does not prune, we run LPLB.

The benchmarks used in this study are from the SteinLib
(Koch, Martin, and Voß 2000). Note that a number of bench-
marks have been solved to optimality in the pure STP but not

1In LP, the reduced cost indicates how much the objective func-
tion coefficient of a variable must be reduced before the variable
will be positive in the optimal solution.
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with side constraints. We used the test-sets ES10FST (15 in-
stances of 12 to 24 nodes), ES20FST (15 instances of 27 to
57 nodes) and B (11 instances of 50 to 75 nodes).

We used the same search strategy in all the implementa-
tions. The order of the variables is: edges sorted by decreas-
ing weight, then nodes in arbitrary order. The value strategy
is: try assigning the values {false, true} in that order to each
variable. This is the strategy that gave the best results.

All tests were run on a Linux 3.16 Intel R© Core
TM

i7-4770
CPU @ 3.40GHz, 15.6GB of RAM machine. We used 5
hours as the time-out for all the tests and the geometric av-
erage (including timed-out instances) to summarize the re-
sults. Time is indicated in seconds and the number of un-
solved instances (if any) appears in parentheses in the tables.

Table 2 shows the results for the pure STP. Subsections
6.1 and 6.2 present the models for the two variants followed
by the results tables.

Conflicts Nodes Propagations Time

E
S1

0F
ST

SPLB 12 15 123 0.01
LPLB 11 14 101 0.01
LPLB (n.l.) 12 22 112 0.01
SP+LPLB 10 13 99 0.01
NOLB 13 138 134 0.01
NOPROP 10686 1079 797998 1.75 (4)
CHOCO3 130 138 198 0.01

E
S2

0F
ST

SPLB 729 816 6383 1.35 (2)
LPLB 492 534 3723 0.49
LPLB (n.l) 632 1080 4636 0.47
SP+LPLB 477 520 3626 0.74
NOLB 746 831 7016 0.67 (2)
NOPROP 604055 604200 43168067 1065 (11)
CHOCO3 45434 46175 67780 1.10 (3)

B

SPLB 55979 83120 531033 22.25 (2)
LPLB 8097 9157 53731 5.17
LPLB (n.l) 18000 37096 110711 6.99 (1)
SP+LPLB 8102 10372 68814 7.11
NOLB 114538 192343 1460071 17.80 (2)
NOPROP 177364998 179890423 18203144792 18000 (11)
CHOCO3 80406257 80406288 152270771 3339.66 (5)

Table 2: Results for the pure Steiner Tree problem.

6.1 The Grade of Service STP (GoSST)

In computer networks, computers have bit-rate requests that
need to be matched by the network. This has important
real world applications (e.g. video distribution described by
(Maxemchuk 1997)). Moreover, networks are not unlimited:
each edge has a maximum capacity cap. We call the capac-
ity of a path p the minimum of the capacities of the edges in
p. Let d be the demand of a terminal node n.

The goal of the GoSST (Du and Hu 2008) is to find a
minimum Steiner tree network such that for each pair of ter-
minals, there is at least one path of capacity higher than the
minimum of the demand of the two terminals.

To model this problem, we use Boolean variables Pi,j [k]
indicating whether an edge k is in the path from i to j. Then
we add the following constraints to the model in section 2:

∀{u, v} ∈ T 2, ∀n ∈ V,
∑

e∈adj [n]

Pu,v[e] ∈ {0, 2} (1)

∀{u, v} ∈ T 2,
∑

e∈adj [u]

Pu,v[e] = 1 (2)

∀e ∈ E, ∀{u, v} ∈ T 2,

¬ce ∨
(
cap[e] < min(d[u], d[v])

) ⇒ ¬Pu,v[e] (3)

These constraints are: (1) a node n must provide either
no edge or two edges to each path, (2) all terminals must
contribute with one edge to each path of which they are an
extremity, (3) for any pair of terminals, out-edges or edges
with lower capacity than their demand cannot be in the path
connecting them.

Conflicts Nodes Propagations Time

E
S1

0F
ST

SPLB 5 1124 7423 0.01
LPLB 4 1173 6635 0.02
LPLB (n.l.) 4 1178 6599 0.01
SP+LPLB 4 1121 6428 0.01
NOLB 5 1178 7839 0.05
NOPROP 5 1178 7839 0.05
CHOCO3 65 69 67358 0.13

E
S2

0F
ST

SPLB 82 18587 465484 2.32
LPLB 49 17659 247446 1.72
LPLB (n.l) 55 18122 263924 1.75
SP+LPLB 44 17644 241253 1.83
NOLB 105 18972 573647 2.56
NOPROP 159 20637 1455869 9.36
CHOCO3 3373 3433 22745514 55.07 (4)

B

SPLB 16713 144110 33533492 47.63 (2)
LPLB 11330 135492 18648420 37.61 (2)
LPLB (n.l) 20376 207503 27413586 43.19 (2)
SP+LPLB 9550 122314 16627051 42.67 (2)
NOLB 15343 191803 27413586 50.96 (2)
NOPROP 96642 466502 331019078 330.34(3)
CHOCO3 184248 184307 4937258941 14790.80 (10)

Table 3: Results for the GoSST.

The state of the art in this problem is an approximation
algorithm (Karpinski et al. 2003).

6.2 The Terminal Steiner Tree Problem (TSTP)

The terminal STP (Lin and Xue 2002) is a small variation
of the original problem used in VLSI and phylogenetic stud-
ies. In such environments, we might need a terminal to be a
leaf. This only affects the degree of the terminals and can be
achieved by adding the following constraint to the original
model in section 2: ∀t ∈ T,

∑
e∈adj [t] ce = 1.

Conflicts Nodes Propagations Time

B

SPLB 33 60 730 1.37
LPLB 29 46 565 0.30
LPLB (n.l) 405 573 5570 2.29 (1)
SP+LPLB 26 44 524 0.40
NOLB 55 101 1354 1.62
NOPROP 20644413 21174280 2637608115 5040.19 (8)
CHOCO3 398026 384652 628843 26.27 (3)

Table 4: Results for the TSTP. We only use the set B because
most benchmarks in the other sets were proven unsatisfiable
too fast to show any significant result.

Again, all the work in this problem is in approximation
algorithms (Drake and Hougardy 2004), (Chen 2011).

6.3 Concluding Remarks

We can clearly see that both our propagator and the explana-
tions are greatly beneficial to solve the problems faster and
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with fewer nodes (i.e. a smaller search space). Also, LPLB is
overall the best in time, although SP+LPLB is usually better
in all the other measures. This is because having both lower
bounding techniques in the same propagator has a higher
runtime cost when the weaker lower bound (SPLB) is not
good enough to stop the search and we need to run LPLB.

The contributions of this work are a new tree propagator
with explanations, a new lower bound with explanations for
the STP and explanations for the already existing LP lower
bound. All this, put together, forms the Steiner Tree Propa-
gator in graphs that we present here.
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