
Bidirectional Search That Is Guaranteed to Meet in the Middle

Robert C. Holte
Computing Science Dept.

University of Alberta
Edmonton, Canada T6G 2E8

(rholte@ualberta.ca)

Ariel Felner
ISE Department

Ben-Gurion University
Be’er-Sheva, Israel
(felner@bgu.ac.il)

Guni Sharon
ISE Department

Ben-Gurion University
Be’er-Sheva, Israel

(gunisharon@gmail.com)

Nathan R. Sturtevant
Computer Science Dept.

University of Denver
(sturtevant@cs.du.edu)

Abstract

We present MM, the first bidirectional heuristic search algo-
rithm whose forward and backward searches are guaranteed
to “meet in the middle”, i.e. never expand a node beyond
the solution midpoint. We also present a novel framework
for comparing MM, A*, and brute-force search, and identify
conditions favoring each algorithm. Finally, we present ex-
perimental results that support our theoretical analysis.

1 Introduction and overview

Bidirectional search algorithms interleave two separate
searches, a normal search forward from the start state, and a
search backward (i.e. using reverse operators) from the goal.

Barker and Korf (2015)’s comparison of unidirectional
heuristic search (Uni-HS, e.g. A*), bidirectional heuristic
search (Bi-HS), and bidirectional brute-force search (Bi-BS)
has two main conclusions (for caveats, see their Section 3):

BK1: Uni-HS will expand fewer nodes than Bi-HS if
more than half of the nodes expanded by Uni-HS have
g ≤ C∗/2, where C∗ is the optimal solution cost.

BK2: If fewer than half of the nodes expanded by Uni-HS
using heuristic h have g ≤ C∗/2, then adding h to Bi-BS
will not decrease the number of nodes it expands.

A central assumption made by Barker and Korf is that the
forward and backward searches comprising the bidirectional
search never expand a node whose g-value (in the given di-
rection) exceeds C∗/2. We say that a bidirectional search
“meets in the middle” if it has this property.

This assumption raises a difficulty in applying their the-
ory, because no known Bi-HS algorithm is guaranteed to
meet in the middle under all circumstances. Papers on
“front-to-front”1 Bi-HS typically claim their searches meet

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In bidirectional heuristic search, there are two different ways
to define the heuristic function (Kaindl and Kainz 1997). A “front-
to-end” heuristic—hF (n) for the forward search and hB(n) for
the backward search—directly estimates the distance from node
n to the target of the search (the target for the forward search is
the goal, the target for the backward search is the start state). By
contrast a “front-to-front” heuristic estimates the distance from n
to the search target indirectly. For forward search it is defined as
hF (n) = min

m∈OpenB
{h(n,m) + gB(m)} where OpenB is

in the middle, but none of them has a theorem to this ef-
fect (Arefin and Saha 2010; de Champeaux 1983; de Cham-
peaux and Sint 1977; Davis, Pollack, and Sudkamp 1984;
Eckerle 1994; Politowski and Pohl 1984). “Front-to-end”
Bi-HS algorithms (Auer and Kaindl 2004; Ikeda et al. 1994;
Kaindl and Khorsand 1994; Kwa 1989; Pohl 1969; Sad-
hukhan 2012) are not specifically designed to meet in the
middle, and often they do not. For example, in Barker and
Korf’s Towers of Hanoi experiment BS* (Kwa 1989) often
expanded nodes at depth 13 in each direction even though
the solution lengths C∗ were at most 16.

To remedy this we present a new front-to-end Bi-HS al-
gorithm, MM, that is guaranteed to meet in the middle. MM0

is the brute-force (h(s) = 0 ∀s) version of MM. We also
present a new framework for comparing MM0, unidirectional
brute-force search (Uni-BS), MM, and A* that allows a pre-
cise characterization of the regions of the state space that
will be expanded by one method but not another. We use
this to identify conditions under which one method will ex-
pand fewer nodes than another, and conditions guaranteeing
BK1’s correctness. We also show that, unlike unidirectional
search, adding a non-zero heuristic (�= 0 for every non-goal
node) to Bi-BS can cause it to expand more nodes. For ex-
ample, MM expands 4 times more nodes than MM0 in one of
our Pancake Puzzle experiments. Overall, our experiments
on the Pancake Puzzle and Rubik’s Cube show that the al-
gorithm expanding the fewest nodes could be any one of
Uni-HS, MM0 or MM, depending on the heuristic used.

Although we introduce a new algorithm (MM), we do not
present an experimental comparison of MM to existing Bi-HS
algorithms, and we do not claim that MM0 and MM are the best
bidirectional search algorithms in terms of minimizing run
time or the number of nodes expanded. These issues are out-
side the scope of this paper. Like the Barker and Korf paper,
this paper is theoretical. MM’s significance is that it is the
only Bi-HS algorithm to which our analysis, and Barker and
Korf’s, applies. These theories give strong justification for
bidirectional search algorithms that meet in the middle. As
the first of its breed, MM represents a new direction for de-
veloping highly competitive Bi-HS algorithms. A thorough

the backward search’s open list, h(n,m) is a function estimating
the distance between any two nodes, and gB(m) is the g-value of
node m in the backward search. A front-to-front heuristic for the
backward search is defined analogously.

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

3411

Figure 1: Diagrammatic depiction of the different regions.

empirical evaluation of MM is an important study that we will
undertake in the future.

2 Definitions and terminology

A problem instance is a pair (start, goal) of states in a state-
space in which all edge weights are non-negative. The aim of
search is to find a least-cost path from start to goal. d(u, v)
is the distance (cost of a least-cost path) from state u to state
v. C∗ = d(start, goal) is the cost of an optimal solution.

We use the usual notation—f, g,Open, etc.—and use
gmin and fmin for the minimum g- and f -value on Open.
We have separate copies of these variables for the two search
directions, with a subscript (F or B) indicating the direction:
Forward search: fF , gF , hF , OpenF , ClosedF , etc.
Backward search: fB , gB , hB , OpenB , ClosedB , etc.

We assume that each search direction uses an admissible
front-to-end (Kaindl and Kainz 1997) heuristic.

We say state s is “near to goal” if d(s, goal) ≤ C∗/2,
and “far from goal” otherwise. For start, we make a 3-way
distinction: s is “near to start” if d(start, s) ≤ C∗/2, “far
from start” if C∗/2 < d(start, s) ≤ C∗, and “remote” if
d(start, s) > C∗. These categories divide the state-space
into 6 disjoint regions shown in Figure 1. We denote these
regions by two letter acronyms. The first letter indicates the
distance from start (N=near, F=far, R=remote) and the sec-
ond letter indicates the distance from goal (N=near, F=far).
For example, FN is the set of states that are far from start
and near to goal. NN includes only those states at the exact
midpoint of optimal solutions. None of the search algorithms
in this paper expands a state in RF.

In Sections 4–7 we compare MM0, MM, Uni-BS, and A*
based mainly on the nodes they expand in each region. A re-
gion’s name denotes both the set of states and the number of
states in the region. We will use the names in equations and
inequalities. An inequality involving two algorithms, e.g. A*
< MM, indicates that one algorithm (A* in this example) ex-
pands fewer nodes than the other.

3 MM: A Novel Bi-HS Algorithm

MM runs an A*-like search in both directions, except that MM
orders nodes on the Open list in a novel way. The priority of
node n on OpenF , prF (n), is defined to be:

prF (n) = max(fF (n), 2gF (n)).
prB(n) is defined analogously. We use prminF and
prminB for the minimum priority on OpenF and OpenB ,

Algorithm 1: Pseudocode for MM
1 gF (start) := gB(goal) := 0;OpenF := {start};
OpenB := {goal}; U := ∞

2 while (OpenF �= ∅) and (OpenB �= ∅) do
3 C := min(prminF , prminB)
4 if U ≤ max(C, fminF , fminB , gminF + gminB + ε)

then
5 return U

6 if C = prminF then
7 // Expand in the forward direction
8 choose n ∈ OpenF for which prF (n) = prminF

and gF (n) is minimum
9 move n from OpenF to ClosedF

10 for each child c of n do
11 if c ∈ OpenF ∪ ClosedF and

gF (c) ≤ gF (n) + cost(n, c) then
12 continue

13 if c ∈ OpenF ∪ ClosedF then
14 remove c from OpenF ∪ ClosedF

15 gF (c) := gF (n) + cost(n, c)
16 add c to OpenF

17 if c ∈ OpenB then
18 U := min(U, gF (c) + gB(c))

19 else
20 // Expand in the backward direction, analogously

21 return ∞

respectively, and C = min(prminF , prminB). On each it-
eration MM expands a node with priority C. U is the cost
of the cheapest solution found so far. Initially infinite, U is
updated whenever a better solution is found. MM stops when

U ≤ max(C, fminF , fminB , gminF + gminB + ε)
where ε is the cost of the cheapest edge in the state-space.

Each of the last three terms inside the max is a lower
bound on the cost of any solution that might be found by
continuing to search. Therefore, if U is smaller than or equal
to any of them, its optimality is guaranteed and MM can safely
stop. It is safe to stop when U ≤ C because C ≤ C∗ until
all optimal solutions have been found (Theorem 10 in (Holte
et al. 2015)). Therefore, U ≤ C implies U = C∗.
MM has the following properties:

(P1) MM’s forward (backward) search never expands a state
remote or far from start (goal), i.e. its forward and back-
ward searches meet in the middle.
(P2) MM never expands a node whose f -value exceeds C∗.
(P3) MM returns C∗.
(P4) If there exists a path from start to goal and MM’s
heuristics are consistent, MM never expands a state twice.

Holte et al. (2015) gives complete proofs that MM has these
properties. Here we provide a sketch of the proof of P1,
MM’s distinctive property. 2g(n) is larger than f(n) when
g(n) > h(n). If n is remote or far from start (goal) this
makes prF (n) > C∗ (prB(n) > C∗). If m is near to start
(goal) on any optimal path, prF (m) ≤ C∗ (prB(m) ≤ C∗).
Thus, an optimal solution will be found before MM expands
any node that is remote or far from start and far from goal.

3412

Figure 2: MM0 need not expand all nodes with gF (n) <
C∗/2 or gB(n) < C∗/2.

The 2g(n) term also guarantees that a node that is remote
or far from start (goal) but near to goal (start) will be ex-
panded by MM’s backward (forward) search (if it is expanded
at all). The 2g(n) term in pr(n) therefore guarantees prop-
erty P1.

Algorithm 1 gives pseudocode for MM. Lines 2–20 are the
usual best-first search expansion cycle. Duplicate detection
is in line 11. U is updated in line 18 and checked in line 4.
Here, only the cost of the optimal path is returned (line 5). It
is straightforward to add code to get an actual solution path.

When prminF = prminB any rule could be used to
break the tie (e.g. Pohl (1969)’s cardinality criterion). How-
ever, to exploit the gminF + gminB + ε stopping condi-
tion, it is advantageous to continue to expand nodes in the
same direction (in line 6 ties are broken in favor of forward
search) until there is no longer a tie or gmin in that direction
has increased, and to break ties among nodes with the same
priority in the chosen search direction in favor of small g.

3.1 MM0
MM0 is the brute-force version of MM, i.e. MM when h(n) =
0 ∀n. Thus for MM0: prF (n) = 2gF (n) and prB(n) =
2gB(n). MM0 is identical to Nicholson’s (1966) algorithm
except that Nicholson’s stops when U ≤ gminF + gminB ,
whereas MM0 stops when U ≤ gminF + gminB + ε.

4 MM0 compared to Uni-BS

We now use the region-based framework introduced in Sec-
tion 2 to analyze under what conditions one type of algo-
rithm will expand more nodes than another. The analysis
will be made on a region-by-region basis, since, as we will
see, in all cases except Uni-HS vs. Uni-BS no algorithm-
type is superior to any other in all regions. We will summa-
rize these analyses with three general rules (GR1, GR2, and
GR3). These are general expectations, not iron-clad guaran-
tees. There are many factors in play in a given situation, each
factor may favor a different algorithm-type. It is the net sum
of these factors that ultimately determines which algorithm-
type outperforms another. Our general rules state what we
expect will usually be the dominant forces.

We begin by analyzing the brute-force algorithms since
this lays the foundation for the subsequent comparisons.

Uni-BS only expands nodes that are near to or far from
start. We write this as the equation:

(Eq. 1) Uni-BS = NF + NN + F′N + F′F

Figure 3: State space in which NN is large.

F′ indicates that Uni-BS might not expand all the nodes that
are far from start. For example, Uni-BS will usually not
expand all nodes that are exactly distance C∗ from start.
By contrast, Uni-BS must expand all nodes near to start.
MM0 only expands nodes that are near to start or to goal:
(Eq. 2) MM0 = N′F + N′N′ + FN′ + RN′.

N′ indicates that MM0 might not expand all the nodes that
are near to start or goal. For example, in unit-cost spaces
when C∗ is even, MM0 will not expand any node in NN be-
cause an optimal path will be known by the time all the
nodes distance C∗/2 − 1 from start and goal have been
expanded. The ε in the gminF + gminB + ε termination
condition means that MM0 can terminate before some nodes
with gF (n) < C∗/2 or gB(n) < C∗/2 have been ex-
panded. This is illustrated in Figure 2; the numbers in the
nodes are discussed in Sections 5 and 7, they may be ig-
nored for now. Si (Gi) is the layer of nodes at depth i in
the tree rooted at start (goal). After MM0 expands start and
goal, A and S1 will be in OpenF , and C and G1 will be
in OpenB , all with g = 1. Since ties are broken in favor
of the forward direction, MM0 will next expand A and S1,
generating B and S2 with gF = 2. It will then switch di-
rections and expand C and G1 in some order. As soon as
C is expanded a solution costing U = 4 is found. Since
gminF + gminB +1 = 2+1+1 ≥ U , MM0 can stop. This
may happen before some nodes in G1 are expanded even
though they are distance 1 from goal and C∗/2 = 2.

Uni-BS expands more nodes than MM0 iff (Eq. 1 > Eq. 2)
(Eq. 3) NF + NN + F′N + F′F > N′F + N′N′ + FN′ + RN′
To identify the core differences between the algorithms, i.e.
regions explored by one algorithm but not the other, we ig-
nore the difference between N and N′ and between F and F′,
which simplifies Eq. 3 to:

(Eq. 4) FF > RN
We have identified two conditions that guarantee FF > RN:
(1) When C∗ = D, the diameter of the space, there are no
remote states, by definition, so RN is empty.
(2) When the number of states far from start is larger than
the number of states near to goal, i.e. if FF + FN > FN + NN
+ RN, or equivalently, FF > RN + NN. We say a problem
(start, goal) is bi-friendly if it has this property.

A special case of bi-friendly problems occurs when the

3413

number of states distance d from start is the same as the
number of states distance d from goal, for all d ≤ C∗. This
occurs often in standard heuristic search testbeds, e.g. the
Pancake Puzzle, Rubik’s Cube, and the Sliding Tile Puzzle
when the blank is in the same location type (e.g. a corner) in
both start and goal. In such cases, a problem is bi-friendly
if the number of states near to start is less than the num-
ber of states far from start, i.e. more than half the states at
depths d ≤ C∗ occur after the solution midpoint. This is
similar to the condition in BK1 with h(s) = 0∀s. In many
testbeds this occurs because the number of states distance
d from any state continues to grow as d increases until d is
well past D/2. For example, Rubik’s Cube has D = 20 and
the number of states at distance d only begins to decrease
when d = 19 (Table 5.1, (Rokicki et al. 2013)).

Non-core differences (NF, NN, FN) can sometimes cause
large performance differences. The example in Figure 3 ex-
ploits the fact that Uni-BS always expands all nodes in NN
but MM0 sometimes does not. All edges cost 1. start and
goal each have one neighbor (s and g respectively) that are
roots of depth d binary trees that share leaves (the middle
layer, which is NN). C∗ = 2d + 2 and all paths from start
to goal are optimal. FF and RN are empty. The values on the
figure’s left may be ignored for now, they are used in Sec-
tion 5. MM0 expands all the nodes except those in the middle
layer, for a total of 2 · 2d nodes expanded. Uni-BS will ex-
pand all the nodes except goal, for a total of 3 ·2d – 1 nodes,
1.5 times as many as MM0. This ratio can be made arbitrarily
large by increasing the branching factor of the trees.

The general rule based on the core differences is:
GR1: FF and RN usually determine whether MM0 will
expand fewer nodes than Uni-BS (FF > RN) or more.

5 MM0 compared to A*

A heuristic, h, splits each region into two parts, the states in
the region that are pruned by h, and the states that are not
pruned. For example, FNU is the unpruned part of FN. The
set of states expanded by A* is therefore (modified Eq. 1):

(Eq. 5) A* = NFU + NNU + FNU + FFU
We first compare the first three terms to the corresponding
terms in Eq. 2 for MM0 and then compare FFU and RN′.
Region NF: We expect A* to expand many nodes in NF.
These nodes have gF (n) ≤ C∗/2 so A* would prune them
only if hF (n) > C∗/2. One might expect MM0’s N′F to
be larger than A*’s NFU because A* prunes NF with a
heuristic. This underestimates the power of the gminF +
gminB + ε termination condition, which can cause N′F to
be much smaller than NFU. In Figure 2, a number with a
right-pointing arrow over it inside node n is hF (n). Not
shown are hF (C) = 1 and hF (s) = 1 ∀s ∈ S3. Region
NF contains start, A, S1 and S2. The heuristic does no
pruning in this region so these are all expanded by A*. MM0

will not expand any node n with gF (n) = C∗/2 (e.g. S2)
so N′F is half the size of NFU. As a second example, on
Rubik’s Cube instances with C∗ = 20, MM0 only expands
nodes with gF (n) ≤ 9 because of this termination condi-
tion. Korf (1997)’s heuristic has a maximum value of 11, so
A* with this heuristic will not prune any nodes in N′F. In

general, we do not expect A* to have a large advantage over
MM0 in NF unless its heuristic is very accurate.2

Region NN: As discussed above, MM0 might expand no
nodes in NN (i.e. N′N′ is empty). Nodes in NN have
gF (n) = gB(n) = C∗/2, so A*’s f(s) cannot exceed
C∗. Therefore, even with an extremely accurate heuristic,
A* may do little pruning in NN. For example, the heuristic
values shown on the left side of Figure 3 are consistent and
“almost perfect” (Helmert and Röger 2008) yet they produce
no pruning at all. A* behaves exactly the same as Uni-BS
and expands 1.5 times as many nodes as MM0.
Region FN: We expect A* to expand far fewer nodes than
MM0 in FN. These nodes have gF (n) > C∗/2 and, being
relatively close to goal, we expect the heuristic values for
these nodes to be very accurate.
FFU vs RN′: RN′ certainly can be much smaller than FFU.
In Figure 2, RN (G1 + G2) is about the same size as FF
(S3), which is the same as FFU in this example. However,
because MM0 will not expand any nodes with gB(n) = C∗/2
in this example, RN′ is half the size of RN (RN′ contains
G1 but not G2), so MM0 expands many fewer nodes in RN
than A* does in FF. On the other hand, FFU will certainly
be the same size as or smaller than RN′ with a sufficiently
accurate heuristic. In the extreme case, when RN′ is empty,
this requires a heuristic that prunes every node in FF. This is
not impossible, since no optimal path passes through FF, but
it does require an extremely accurate heuristic. Moreover, FF
without any pruning can be much smaller than RN′. Deleting
S3 from Figure 2 makes FF empty, while RN′ can be made
arbitrarily large.

The general rule based on the core differences is:

GR2: When FF > RN, A* will expand more nodes in
FF than MM0 expands in RN unless A*’s heuristic is very
accurate.

6 MM compared to A*

Modifying Eq. 2, the equation for MM is:
(Eq. 6) MM = N′FU + N′N′U + FN′B + RN′B.

B has the same meaning as U, but is based on hB , the
heuristic of MM’s backwards search. For example, FNB is
the part of FN that is not pruned by hB . In general, FNB
will be different than FNU, the part that is not pruned by
hF , the heuristic used by A*. By definition, N′FU ≤ NFU
and N′N′U ≤ NN, so MM has an advantage over A* in NF
and NN.
Region FN: FNU is almost certainly smaller than FN′B be-
cause in forward search, nodes in FN have gF (n) > C∗/2
and hF is estimating a small distance (at most C∗/2).
By contrast, for the backwards search, nodes in FN have
gB(n) ≤ C∗/2 and hB would need to accurately estimate
a distance larger than C∗/2 to prune them. So, A* has an
advantage over MM’s backward search in FN.

2We recognize the imprecision in terms like “very accurate”,
“inaccurate” etc. We use these qualitative gradations to highlight
that as the heuristic’s accuracy increases or decreases, the advan-
tage shifts from one algorithm to another.

3414

FFU vs RNB: Not much pruning will usually occur dur-
ing MM’s backward search in RN because RN’s gB-values
are small and the distances being estimated by hB are large.
However, if RN is much smaller than FF but hF is accurate
enough to make FFU smaller than MM0’s RN′ (see the dis-
cussion of FFU vs RN′ in Section 5), then we expect that hB

will be accurate enough to do some pruning in RN. Thus, we
expect FFU > RNB whenever RN is much smaller than FF.

The general rule based on this section’s analysis is the
same as GR2 with MM0 replaced by MM.

6.1 The Correctness of BK1

In our notation BK1 (page 1) is written as:
FNU + FFU < NNU + NFU =⇒ Uni-HS < MM.

Here FNU + FFU is the number of nodes expanded by Uni-
HS beyond the solution midpoint, NNU + NFU is the num-
ber expanded at or before the solution midpoint.

Combining Eqs. 5 and 6 gives the exact expression:
(Eq. 7) Uni-HS < MM ⇐⇒ NFU + NNU + FNU + FFU

< N′FU + N′N′U + FN′B + RN′B.
Differences between Eq. 7 and BK1 represent situations in
which BK1 will be incorrect. For example, BK1 ignores
region RN, but it can be the decisive factor determining
whether MM expands more nodes than Uni-HS.

On the other hand, it is easy to prove (Holte et al. 2015)
that BK1 will make correct predictions if the following con-
ditions all hold: (C1) NN, FNU, and FFU are all negligible
in size compared to NFU; (C2) FN′B + RN′B ≈ N′FU; (C3)
NFU/2 < N′FU.
C1–C3 hold in our experiment on the Pancake Puzzle with
the GAP heuristic (see the GAP rows for A* and MM near the
bottom of Table 1) and we conjecture they held in Barker and
Korf’s experiments.

7 MM0 compared to MM: an anomaly

If h1 and h2 are admissible heuristics and h1(s) > h2(s)
for all non-goal nodes, then A* cannot expand more distinct
nodes with h1 than with h2 (Nilsson 1982). In particular, A*
with a non-zero heuristic cannot expand more nodes than
Uni-BS.

This is not necessarily true for MM or most Bi-HS algo-
rithms. In Figure 2 the value in a node is its h-value in
the direction indicated by the arrow. All nodes in layer S3

(G3) have hF (s) = 1 (hB(s) = 1). MM expands all the
nodes in S1 and G1 because they have pr(s) = 3 while
prF (A) = prB(C) = 4. MM might then expand any number
of nodes in S2 or G2 since they too have pr(s) = 4.3 By
contrast, we saw (Section 4) that MM0 could stop before ex-
panding all the nodes in S1 and G1 and would never expand
a node in S2 or G2. Thus we see that MM0 can expand strictly
fewer nodes than MM with a consistent, non-zero heuristic.

This example mimics behavior we saw with the GAP-2
and GAP-3 heuristics in the Pancake puzzle experiments be-
low. We believe it occurs commonly with heuristics that are
very accurate near the goal but inaccurate elsewhere. This

3Bi-HS algorithms that strictly alternate search direction or use
the cardinality criterion to choose the direction will expand all the
nodes in S2 and G2.

example reveals a fundamental dilemma for Bi-HS caused
by a tension between its two main stopping conditions:

S1: U ≤ max(fminF , fminB)
S2: U ≤ gminF + gminB + ε.

To satisfy S1 as quickly as possible, a node with minimum
f -value should be expanded, but to satisfy S2 as quickly
as possible a node with minimum g-value should be ex-
panded. These two node-selection rules will disagree if none
of the nodes with the smallest f -value also have the small-
est g-value. Breaking ties among nodes with the same f -
value in favor of large g-values also causes the two selec-
tion rules to make different choices. When the two selection
rules disagree, a choice has to be made as to which stopping
condition to favor. MM and all previous Bi-HS methods are
hard-coded to favor S1. Bi-BS methods must favor S2, since
they have no heuristic. In situations like Figure 2, where S2
can be satisfied more quickly than S1, Bi-BS will outper-
form Bi-HS. Identifying conditions under which S2 is more
quickly satisfied than S1 is an important direction for future
research. For now, we offer the following conjecture:
GR3: With an inaccurate heuristic, Bi-HS will expand
more nodes than Bi-BS.

8 Experiments

The purpose of the experiments in this section is to verify the
correctness our general rules (GR1–GR3). Since some rules
refer to the sizes of certain regions, they could only be tested
in domains small enough to be fully enumerated. Likewise,
since some rules refer to a heuristic’s relative accuracy, we
used at least two heuristics of different accuracy in each do-
main. All heuristic used in these experiments were consis-
tent, not just admissible. The two domains used in our study
are the 10-Pancake Puzzle and Rubik’s Cube. In both do-
mains all problems are bi-friendly. Because GR1–GR3 make
predictions about the number of nodes expanded, that is the
only quantity we measure in our experiments.

8.1 10-Pancake Puzzle

We ran MM0, MM, Uni-BS, and A* on 30 random instances
for each possible value of C∗ (1 ≤ C∗ ≤ 11). We used
the GAP heuristic (Helmert 2010) and derived less accurate
heuristics from it, referred to as GAP-X, by not counting the
gaps involving any of the X smallest pancakes. For example,
GAP-2 does not count the gaps involving pancakes 0 or 1.

The trends reported below were similar for all values of
C∗. In addition, similar trends were obtained using a pattern
database (PDB) based on 6-X pancakes. Table 1 shows the
number of nodes expanded in each region for each algorithm
using each heuristic for C∗ = 10.4 Row “Reg. Size” shows
the number of states in each region. Column “Total” is the
total of all the columns to its right. The total for Region Size
does not include region RF (it is not in the table because
none of the algorithms expand nodes in RF).

4We present results for C∗ = 10 because the trends reported
below were valid for all 30 instances with C∗ = 10. There were a
few instances for C∗ ∈ {6, 7, 9} that were exceptions. But, most
trends were clearly seen for these values of C∗ too.

3415

Total NF NN FF FN RN
Reg. Size 3,555,955 27,390 55 3,501,120 27,003 387

Brute-force searches
Uni-BS 1,743,548 27,390 55 1,704,027 12,077 0
MM0 5,551 4,620 0 0 917 14

GAP-3
A* 97,644 17,346 55 75,431 4,812 0
MM 7,507 4,095 0 0 3,402 11

MM-2g 106,539 17,446 55 78,738 10,289 11
GAP-2

A* 27,162 9,964 55 14,191 2,952 0
MM 6,723 3,311 0 0 3,402 11

MM-2g 39,453 10,255 55 19,542 9,590 11
GAP-1

A* 4,280 2,611 55 852 761 0
MM 2,448 1,350 0 0 1,097 1

MM-2g 5,967 2,668 55 1,131 2,113 1
GAP

A* 117 91 12 1 13 0
MM 165 88 0 0 77 0

MM-2g 165 88 0 0 77 0

Table 1: 10 pancake results: average nodes expansions by
region for instances with C∗ = 10.

We see that RN is small and FF is very large. Although we
regard GAP-3 as a inaccurate heuristic it does prune almost
all the nodes in FF. NF is identical in size to FN+RN because
of the symmetry in this space. The asymmetry of MM0’s ex-
pansions in NF and FN+RN is because, for C∗ = 10, MM0

must expand all the nodes with g(s) = 4 in one direction
but not the other. MM’s expansions in these regions are much
more balanced. A*’s total is largely determined by NF with
the more accurate heuristics, but is determined by FF with
the less accurate heuristics. The bold results show that de-
pending on h the algorithm expanding the fewest nodes is
A* (GAP), MM (GAP-1), or MM0 (GAP-2, GAP-3).

To examine the effect of the 2g term in MM’s definition
of a node’s priority, we ran an altered version of MM, called
MM-2g, omitting the 2g term in the definition of pr(n), so
node n’s priority is the usual f(n). We also added code to
prevent MM-2g from expanding the same node in both di-
rections. Although not identical to any existing Bi-HS al-
gorithm, we believe MM-2g’s results are representative of
bidirectional search algorithms that do not meet in the mid-
dle. For all of the heuristics, MM-2g expands many nodes in
FF and many more nodes than MM in NF, NN, and FN.

GR1, GR2, and GR3 are all confirmed by this experiment.
GR1: For every instance for every value of C∗, FF > RN

and MM0 expanded fewer nodes than Uni-BS.
GR2: A* expands more and more nodes in FF as the

heuristic becomes less accurate, while MM and MM0 always
expand less than half the nodes in RN. This trend holds
for individual instances, not just for averages. On all 30 in-
stances A* with the GAP heuristic does not expand more
nodes in FF than MM0 expands in RN, and the opposite is
true for all instances when A* uses the other heuristics. MM
is similar – with all heuristics MM expands fewer nodes in
RN than A* does in FF on all instances.

h1997 h888

d MM0 MM IDA* MM IDA*
1 16 218M 166M 260M 96.0M 18.7M

2 17 1.55B 1.00B 1.51B 1.01B 114M
3 17 1.55B 1.14B 8.13B 1.02B 676M
4 17 1.55B 0.96B 6.56B 387M 467M
5 18 2.88B 4.71B 29.7B 3.58B 2.49B
6 18 2.88B 4.84B 15.4B 3.51B 1.10B
7 18 2.88B 5.89B 41.6B 4.01B 3.16B
8 18 2.88B 4.84B 45.9B 3.67B 3.77B
9 18 2.88B 3.01B 58.4B 2.87B 5.13B
10 18 2.88B 4.25B 70.3B 3.29B 4.82B

Table 2: Rubik’s Cube results. M=million, B=billion.

GR3: With the best heuristic, GAP, MM expands many
fewer nodes than MM0. As the heuristic becomes less accu-
rate, the difference between MM and MM0 steadily diminishes
and eventually (GAP-2) turns into a steadily growing advan-
tage for MM0. This trend holds for individual instances too.

8.2 Rubik’s Cube

We use two heuristics in this study: h888 is the more accu-
rate, using two 8-edge PDBs and the 8-corner PDB. h1997 is
the heuristic used to first optimally solve random instances
of Rubik’s Cube (Korf 1997). It is based on two 6-edge
PDBs and the 8-corner PDB.

The Uni-HS algorithm is IDA* with the standard opera-
tor pruning rules for Rubik’s Cube (Korf 1997). Our imple-
mentations of MM and MM0 both use external memory. A full
description of these implementations is outside of the scope
of this paper, but both algorithms are based on delayed du-
plicate detection (Korf 2004). Our MM0 implementation ex-
pands a full g-layer in one direction, and then removes dupli-
cates and checks for a solution. As a result, it always expands
the maximum number of states in a layer before complet-
ing. Our MM implementation has priority-based open- and
closed-lists stored across two 500GB SSD disks. States with
the same priority are found in the same file; before a set of
states is expanded, duplicate detection against the closed list
is performed. Then, solution detection is performed in par-
allel to expanding states in the file. Because we only check
for solutions when expanding a file, there can be a signifi-
cant delay between when the full solution is generated and
detected. Improving this is an issue for future work. Because
operator pruning is, in general, unsafe to use in conjunction
with duplicate detection (Holte and Burch 2014), MM and
MM0 did no operator pruning.

Table 2 shows the results on each of the ten standard test
instances (Korf 1997). MM0 expands fewer nodes than IDA*
with h1997 on all instances except for instance #2 where
there was a very small gap. Due to tie-breaking within the
last iteration of IDA*, the differences on instances #1 and
#2 are not meaningful for either algorithm. This is consis-
tent with GR2 because h1997 is not especially accurate.

With h1997 MM always expands fewer nodes than IDA*.
In fact, MM with h1997 expands fewer nodes than IDA* with
the superior h888 on instances #9 and #10. MM expands fewer
nodes than MM0 on the easier instances (d = 17) but more

3416

on the harder ones (d = 18). There are two possible expla-
nations for this. The first is the anomaly phenomenon de-
scribed in Section 7. A heuristic that is sufficiently accurate
for MM to expand fewer nodes than MM0 on easier instances
might not be sufficiently accurate on harder instances. The
second is related to the delayed duplicate (and solution) de-
tection. If we performed solution detection earlier MM would
have certainly improved. But earlier solution detection in
MM0 could also improve its performance. Future work will
study termination conditions in external memory search. For
instance, an in-memory version of MM expanded only 75M
nodes on problem #1, while tie-breaking in the order of file
expansion for external-memory MM can significantly worsen
its performance. The IDA* code expands more nodes per
second than MM, but for instances #3-#10 MM found solutions
in less time than IDA*.
h888 is accurate enough (as is GAP on the Pancake puz-

zle) for IDA* to outperform the MM variants for the easier in-
stances #1 (d = 16) but the MM variants expand fewer nodes
on the harder instances because h888 is not sufficiently ac-
curate on them.

9 Conclusions and future work
In this paper we introduced MM, the first Bi-HS algorithm
guaranteed to meet in the middle. We also introduced a
framework that divides the state-space into disjoint regions
and allows a careful analysis of the behavior of the differ-
ent algorithms in each of the regions. We studied the var-
ious types of algorithms and provided some general rules
that were confirmed by our experiments.

This paper initiated this direction. Future work will con-
tinue as follows: (1) A deeper analysis on current and new
MM variants may further deepen our knowledge in this issue.
(2) A thorough experimental comparison should be done
on more domains and with more bidirectional search algo-
rithms. (3) Heuristics that are specifically designed for MM,
i.e., that only return values larger than C∗/2 are needed.

10 Acknowledgements
Thanks to Joseph Barker for answering questions and pro-
viding extra data related to (Barker and Korf 2015) and to
Sandra Zilles and André Grahl Pereira for suggesting im-
provements in the theoretical analysis of MM. Financial sup-
port for this research was in part provided by Canada’s Nat-
ural Science and Engineering Research Council (NSERC)
and by Israel Science Foundation (ISF) grant #417/13. Com-
putational facilities for some of our experiments were pro-
vided by Compute Canada. This material is based upon work
supported by the National Science Foundation under Grant
No. 1551406.

References
Arefin, K. S., and Saha, A. K. 2010. A new approach of iterative
deepening bi-directional heuristic front-to-front algorithm (IDB-
HFFA). International Journal of Electrical and Computer Sciences
(IJECS-IJENS) 10(2).
Auer, A., and Kaindl, H. 2004. A case study of revisiting best-
first vs. depth-first search. In Proc. 16th European Conference on
Artificial Intelligence (ECAI), 141–145.

Barker, J. K., and Korf, R. E. 2015. Limitations of front-to-end
bidirectional heuristic search. In Proc. 29th AAAI Conference on
Artificial Intelligence, 1086–1092.
Davis, H. W.; Pollack, R. B.; and Sudkamp, T. 1984. Towards
a better understanding of bidirectional search. In Proc. National
Conference on Artificial Intelligence (AAAI), 68–72.
de Champeaux, D., and Sint, L. 1977. An improved bidirectional
heuristic search algorithm. J. ACM 24(2):177–191.
de Champeaux, D. 1983. Bidirectional heuristic search again. J.
ACM 30(1):22–32.
Eckerle, J. 1994. An optimal bidirectional search algorithm. In
Proc. KI-94: Advances in Artificial Intelligence, 18th Annual Ger-
man Conference on Artificial Intelligence, 394.
Helmert, M., and Röger, G. 2008. How good is almost perfect? In
Proc. 23rd AAAI Conference on Artificial Intelligence, 944–949.
Helmert, M. 2010. Landmark heuristics for the pancake problem.
In Proc. 3rd Annual Symposium on Combinatorial Search, (SoCS).
Holte, R. C., and Burch, N. 2014. Automatic move pruning for
single-agent search. AI Communications 27(4):363–383.
Holte, R. C.; Felner, A.; Sharon, G.; and Sturtevant, N. R. 2015.
Bidirectional search that is guaranteed to meet in the middle: Ex-
tended Version. Technical Report TR15-01, Computing Science
Department, University of Alberta.
Ikeda, T.; Hsu, M.-Y.; Imai, H.; Nishimura, S.; Shimoura, H.;
Hashimoto, T.; Tenmoku, K.; and Mitoh, K. 1994. A fast algorithm
for finding better routes by AI search techniques. In Proc. Vehicle
Navigation and Information Systems Conference, 291–296.
Kaindl, H., and Kainz, G. 1997. Bidirectional heuristic search
reconsidered. J. Artificial Intelligence Resesearch (JAIR) 7:283–
317.
Kaindl, H., and Khorsand, A. 1994. Memory-bounded bidirec-
tional search. In Proc. 12th National Conference on Artificial In-
telligence (AAAI), 1359–1364.
Korf, R. E. 1997. Finding optimal solutions to Rubik’s Cube using
pattern databases. In Proc. 14th National Conference on Artificial
Intelligence (AAAI), 700–705.
Korf, R. E. 2004. Best-first frontier search with delayed duplicate
detection. In Proc. 19th National Conference on Artificial Intelli-
gence (AAAI), 650–657.
Kwa, J. B. H. 1989. BS*: An admissible bidirectional staged
heuristic search algorithm. Artificial Intelligence 38(1):95–109.
Nicholson, T. A. J. 1966. Finding the shortest route between two
points in a network. The Computer Journal 9(3):275–280.
Nilsson, N. J. 1982. Principles of Artificial Intelligence. Springer.
Pohl, I. 1969. Bi-directional and heuristic search in path problems.
Technical Report 104, Stanford Linear Accelerator Center.
Politowski, G., and Pohl, I. 1984. D-node retargeting in bidirec-
tional heuristic search. In Proc. National Conference on Artificial
Intelligence (AAAI), 274–277.
Rokicki, T.; Kociemba, H.; Davidson, M.; and Dethridge, J. 2013.
The diameter of the Rubik’s Cube group is twenty. SIAM J. Dis-
crete Math. 27(2):1082–1105.
Sadhukhan, S. K. 2012. A new approach to bidirectional heuristic
search using error functions. In Proc. 1st International Conference
on Intelligent Infrastructure at the 47th Annual National Conven-
tion COMPUTER SOCIETY of INDIA (CSI-2012).

3417

