
Increasing Nogoods in Restart-Based Search∗

Jimmy H. M. Lee,† Christian Schulte,‡ and Zichen Zhu†
†Department of Computer Science and Engineering

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
{jlee,zzhu}@cse.cuhk.edu.hk

‡School of ICT, KTH Royal Institute of Technology, Sweden
cschulte@kth.se

Abstract

Restarts are an important technique to make search more ro-
bust. This paper is concerned with how to maintain and prop-
agate nogoods recorded from restarts efficiently. It builds on
reduced nld-nogoods introduced for restarts and increasing
nogoods introduced for symmetry breaking. The paper shows
that reduced nld-nogoods extracted from a single restart are
in fact increasing, which can thus benefit from the efficient
propagation algorithm of the incNGs global constraint. We
present a lighter weight filtering algorithm for incNGs in the
context of restart-based search using dynamic event sets (dy-
namic subscriptions). We show formally that the lightweight
version enforces GAC on each nogood while reducing the
number of subscribed decisions. The paper also introduces
an efficient approximation to nogood minimization such that
all shortened reduced nld-nogoods from the same restart are
also increasing and can be propagated with the new filtering
algorithm. Experimental results confirm that our lightweight
filtering algorithm and approximated nogood minimization
successfully trade a slight loss in pruning for considerably
better efficiency, and hence compare favorably against exist-
ing state-of-the-art techniques.

Introduction

Restarts are an important technique to make search more ro-
bust (Dechter 1990; Frost and Dechter 1994; Schiex and
Verfaillie 1994). The benefit of restarts can be consider-
ably enhanced by recording nogoods generated at the end
of each search run (restart point) and propagating them in
future search runs to avoid repeating erroneous search de-
cisions. Lecoutre et al. (2007) extract a set of reduced nld-
nogoods at each restart point and show how such a set of
reduced nld-nogoods can be propagated using watched lit-
erals (Moskewicz et al. 2001). However, such reduced nld-
nogoods are abundant and weak in constraint propagation.

In this paper we exploit the observation that reduced nld-
nogoods collected from a restart are in fact increasing, al-
lowing all such nogoods to be processed by one incNGs
global constraint (Lee and Zhu 2014). We also prove that
the structure of a set of increasing nogoods can be obtained
from a restart-based search engine for free.

∗This research has been supported by the grant CUHK413713
from the Research Grants Council of Hong Kong SAR.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The incNGs global constraint filtering algorithm (Lee and
Zhu 2014) supports dynamic addition of nogoods to the in-
creasing nogoods set which is required for dynamic sym-
metry breaking. There is no such need for nogoods com-
puted from restarts. To trade pruning power for efficiency,
a lightweight version of the incNGs global constraint fil-
tering algorithm is proposed. Without the requirement to
be dynamic for restarts, this filtering algorithm further uti-
lizes dynamic subscriptions (dynamic event sets (Schulte
and Stuckey 2008), also known as dynamic triggers (Gent,
Jefferson, and Miguel 2006)), an adaptation of watched lit-
erals (Moskewicz et al. 2001), to improve efficiency. Dy-
namic subscriptions decrease unnecessary activations of the
filtering algorithm during constraint propagation. While the
lightweight version requires fewer subscriptions, it has the
same consistency level as GAC on each nogood.

Lecoutre et al. (2007) also propose minimal reduced nld-
nogoods with respect to an inference operator. Minimal re-
duced nld-nogoods are shorter and hence offer more prop-
agation. Unfortunately, minimal reduced nld-nogoods gen-
erated from a restart are not increasing. We therefore intro-
duce an efficient approximation to reduced-nld nogood min-
imization such that all shortened reduced nld-nogoods from
the same restart are a set of increasing nogoods. Experimen-
tal evaluation demonstrates the advantage of our global con-
straint filtering algorithm and shortening method.

Background

A constraint satisfaction problem (CSP) P is a tuple
(X,D,C) where X is a finite set of variables, D is a fi-
nite set of domains such that each x ∈ X has a domain
D(x) and C is a set of constraints, each is a subset of the
Cartesian product D(xi1) × · · · × D(xik) of the domains
of the involved variables (scope). A constraint is general-
ized arc consistent (GAC) iff when a variable in the scope of
a constraint is assigned any value in its domain, there exist
compatible values (called supports) in the domains of all the
other variables in the scope of the constraint. A CSP is GAC
iff every constraint is GAC. An assignment assigns a value v
to a variable x. A full assignment is a set of assignments, one
for each variable in X . A solution to P is a full assignment
that satisfies every constraint in C.

A decision can be either +ve or -ve. A +ve decision is an
equality constraint x = v and a -ve decision has the form

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

3426

x �= v. The variable x interferes with decisions x = v and
x �= v. A +ve decision x = v is satisfied (resp. falsified) iff
D(x) = {v} (resp. v �∈ D(x)). A decision is satisfied (resp.
falsified) if its negation is falsified (resp. satisfied); otherwise
the decision is unsatisfied (resp. unfalsified).

A nogood is the negation of a conjunction (or set) of +ve
decisions which is not compatible with any solution. A no-
good is satisfied iff one of its +ve decisions is falsified. No-
goods can also be expressed in an equivalent implication
form. A directed nogood ng is an implication of the form
(xs1 = vs1)∧ · · · ∧ (xsm = vsm) ⇒ (xk �= vk) with the left
hand side (LHS) lhs(ng) ≡ (xs1 = vs1)∧· · ·∧(xsm = vsm)
and the right hand side (RHS) rhs(ng) ≡ (xk �= vk). The
meaning of ng is that the negation of the RHS is incom-
patible with the LHS, and vk should be pruned from D(xk)
when the LHS is satisfied.

We use dynamic subscriptions (dynamic event sets
(Schulte and Stuckey 2008), also known as dynamic triggers
(Gent, Jefferson, and Miguel 2006)) for implementing filter-
ing algorithms for a nogood or a conjunction of nogoods. In
the context of directed nogoods, when a +ve (resp. -ve) deci-
sion is subscribed by a filtering algorithm, the filtering algo-
rithm would be triggered if the decision is satisfied (resp. fal-
sified). Decisions in directed nogoods are dynamically sub-
scribed and unsubscribed during filtering. This is an adap-
tion of the watched literal technique (Moskewicz et al. 2001)
which is key for efficient implementation of SAT solvers.
The difference is decisions subscribed by dynamic subscrip-
tions are backtrackable while decisions are backtrack-stable
for watched literals (Gent, Jefferson, and Miguel 2006).

We consider binary search trees, in which every non-leaf
node has exactly two children. Suppose a non-leaf node P1

has x and v ∈ D(x) as the branching variable and value.
The left and right children of P1 are P1 ∪ {x = v} and
P1 ∪ {x �= v} respectively. We call x = v the decision from
P1 to P1 ∪ {x = v} and x �= v is the decision from P1 to
P1 ∪ {x �= v}. A branch from root P to a node P1 is the
sequence of all decisions from P to P1.

A set of (directed) nogoods Λ is increasing (Lee and Zhu
2014) if the nogoods can form a sequence 〈ng0, . . . , ngt〉
where ngi ≡ (Ai ⇒ xki �= vki) such that (i) for any i ∈
[1, t], Ai−1 ⊆ Ai and (ii) no nogoods are implied by another.
A nogood ngi in Λ is lower than nogood ngj iff i < j,
and ngj is higher than ngi. The increasing nogoods global
constraint, incNGs, and its filtering algorithm are proposed
for a set of increasing nogoods (Lee and Zhu 2014).

Nogoods in Restart-Based Search
Lecoutre et al. (2007) give a nogood recording framework
in restart-based search to avoid searching the same regions
from one restart to another. They extract nogoods from the
current branch of the search tree at the end of each restart
and exploit these nogoods in subsequent search runs. In the
following, we show that the extracted nogoods are increas-
ing and thus the incNGs global constraint can be adopted.

Given a branch, which is a sequence of decisions Σ =
〈δ0, . . . , δm−1〉. The subsequence 〈δ0, . . . , δi〉, where δi is a
-ve decision, is called an nld-subsequence (-ve last decision
subsequence) of Σ. The set of +ve and -ve decisions of Σ

are denoted by pos(Σ) and neg(Σ) respectively. Lecoutre et
al. (2007) prove that, given a branch Σ of the search tree, for
any nld-subsequence Σ′ = 〈δ0, . . . , δi〉, the negation of the
set pos(Σ′) ∪ {¬δi} is a nogood (reduced nld-nogood).

Figure 1: Partial search tree

Figure 1 depicts a partial search tree. Each left or right
branch is labeled by its decision (δi or ¬δi). The high-
lighted branch from root P to node P1 is the sequence
Σ = 〈δ0,¬δ1,¬δ2, δ3,¬δ4, δ5,¬δ6〉. All nld-subsequences
of Σ are 〈δ0,¬δ1〉, 〈δ0,¬δ1,¬δ2〉, 〈δ0,¬δ1,¬δ2, δ3,¬δ4〉
and 〈δ0,¬δ1,¬δ2, δ3,¬δ4, δ5,¬δ6〉. Their corresponding re-
duced nld-nogoods are ¬{δ0, δ1}, ¬{δ0, δ2}, ¬{δ0, δ3, δ4}
and ¬{δ0, δ3, δ5, δ6}.

For a reduced nld-nogood Δ = ¬{δ0, . . . , δi}, the di-
rected reduced nld-nogood of Δ is δ0 ∧ · · · ∧ δi−1 ⇒ ¬δi.
The set of directed reduced nld-nogoods extracted from the
highlighted branch of Figure 1 are:

δ0 ⇒ ¬δ1
δ0 ⇒ ¬δ2
δ0 ∧ δ3 ⇒ ¬δ4
δ0 ∧ δ3 ∧ δ5 ⇒ ¬δ6

(1)

Obviously, they are increasing, and hence we have:
Lemma 1. The set of all directed reduced nld-nogoods ng
extracted from a branch Σ = 〈δ0, . . . , δm−1〉 are increasing.

We propose a more natural compact encoding than that by
Lee and Zhu (2014) for restart-based search. A sequence of
increasing nogoods

ng0 = δs00 ∧ · · · ∧ δs0r ⇒ ¬δk0

ng1 = lhs(ng0) ∧ δs10 ∧ · · · ∧ δs1r ⇒ ¬δk1

...
...

ngt = lhs(ngt−1) ∧ δst0 ∧ · · · ∧ δstr ⇒ ¬δkt

(2)

can be encoded compactly as a sequence of decisions

Σ = 〈 δs00 , . . . , δs0r ,¬δk0
,

δs10 , . . . , δs1r ,¬δk1
,

...
δst0 , . . . , δstr ,¬δkt 〉

(3)

We call Σ the encoding sequence for 〈ng0, . . . , ngt〉. The
advantage of this encoding is three-fold. First, it is compact,
avoiding storing same decisions repeatedly. Second, it also

3427

avoids redundant checks of the same decisions, especially in
verifying pruning conditions as explained in the following
section. Third, the encoding can be readily extracted from
the search branch up to the current node, which follows di-
rectly from the definition and is shown in the next theorem.

Theorem 1. Given a branch Σ = 〈δ0, . . . , δm−1〉 and the
extracted increasing nogoods Λ = 〈ng0, . . . , ngt〉. Σ is the
encoding sequence for Λ.

The increasing nogoods in (1) are encoded as
〈δ0,¬δ1,¬δ2, δ3,¬δ4, δ5,¬δ6〉, which is exactly the
branch from root P to node P1 in Figure 1. Thus, the
encoding can be obtained directly from the restart-based
search engine, without any dedicated construction.

A Lightweight Filtering Algorithm

Lee and Zhu (2014) give a filtering algorithm for the incNGs
global constraint. This algorithm is dynamic in the sense that
the increasing nogoods set is empty at the root node and
symmetry breaking nogoods are added dynamically during
search at every backtrack point. Once a new nogood is gen-
erated and added to its corresponding increasing nogoods
set, the filtering algorithm needs to be triggered.

In restarts, a set of increasing nogoods is extracted at each
restart. An incNGs global constraint is therefore posted to
filter this set of increasing nogoods in subsequent search
runs. No new nogoods are added to this set of increasing no-
goods. Without the requirement to be dynamic for restarts,
dynamic subscriptions can thus be used to improve the effi-
ciency. Moreover, even though the filtering algorithm by Lee
and Zhu (2014) provides stronger propagation than GAC on
each nogood, the overhead is considerable while additional
prunings are rare. Therefore, we propose a lightweight fil-
tering algorithm, LightFilter, with dynamic subscriptions.

To enforce GAC on a nogood which is the negation of a
conjunction of +ve decisions, two unsatisfied decisions need
to be subscribed. As long as both subscribed decisions are
not satisfied, this nogood is GAC. Once one of the decisions
is satisfied and there are no other unsatisfied decisions, the
other subscribed decision must be enforced to be false and
the nogood is satisfied. For each nogood in the increasing
nogoods set, LightFilter also only subscribes to two unsatis-
fied decisions and only prunes values according to the above
rule. Utilizing the structure of the encoding sequence, we
now optimize the subscribed decisions set for increasing no-
goods.

Since the LHSs of higher nogoods subsume those of lower
nogoods for increasing nogoods and a nogood must be GAC
if it has two unsatisfied +ve decisions, we can formulate the
following lemma.

Lemma 2. Given a set of increasing nogoods Λ =
〈ng0, . . . , ngt〉. Suppose ngi has two unsatisfied decisions
in its LHS. Then the nogoods ngj where j ≥ i are GAC.

Thus we only need to subscribe to the first two unsatisfied
+ve decisions δα and δβ in the encoding sequence to enforce
GAC on all nogoods containing them.

Consider the following set of increasing nogoods

ng0 ≡ x2 = 1 ⇒x3 �= 1,

ng1 ≡ x2 = 1 ∧ x4 = 1 ⇒x1 �= 1,

ng2 ≡ x2 = 1 ∧ x4 = 1 ∧ x5 = 1 ⇒x6 �= 2

(4)

with D(x1) = · · · = D(x6) = {1, 2}. The encoding se-
quence is Σ = 〈x2 = 1, x3 �= 1, x4 = 1, x1 �= 1, x5 =
1, x6 �= 2〉. Subscribing to δα ≡ (x2 = 1) and δβ ≡ (x4 =
1) is enough to enforce GAC on ng1 and ng2.

Suppose nogood ng only contains δα but not δβ (e.g.
ng0). If its RHS is falsified, δα must be enforced to be false
and now all nogoods containing δα are satisfied. Suppose
D(x3) = {1}, lhs(ng0) is enforced to be false and all three
nogoods in (4) are satisfied. Otherwise, we also subscribe
to this unfalsified RHS. Subscribing to δα ≡ (x2 = 1) and
rhs(ng0) ≡ (x1 �= 1) is enough to ensure ng0 is GAC with
D(x1) = · · · = D(x6) = {1, 2} in (4). Suppose a nogood
does not contain δα. Its LHS must be true and its RHS can
be directly enforced to be true. In conclusion, when an inc-
NGs is posted, its filtering algorithm LightFilter subscribes
initially to the first two unsatisfied +ve decisions and all un-
falsified -ve decisions between them.

Updating the subscribed decisions during filtering is sim-
ilar to that of enforcing GAC on a nogood (Moskewicz et
al. 2001). Here we scan the encoding sequence from left to
right to find subscribed decisions. The LightFilter filtering
algorithm is triggered in three cases:
(a) The first subscribed +ve decision δα is satisfied. The

RHSs of all nogoods ng, whose LHSs only contain δα
but not δβ , are enforced to be true. Now only δβ is sub-
scribed for the remaining nogoods. Thus we need to find
the next unsatisfied +ve decision to subscribe by scan-
ning the encoding sequence from δβ to the right. If we
encounter a -ve decision δi during scanning, the nogood
with δi as RHS only has one unsatisfied decision δβ in
its LHS. If δi is falsified, the current δβ is enforced to
be false and all nogoods are satisfied. Otherwise, this
unfalsified δi is subscribed.

(b) A subscribed -ve decision δγ is falsified. Now δα is en-
forced to be false and all nogoods are satisfied.

(c) The second subscribed +ve decision δβ is satisfied. Now
all nogoods containing δβ only have one decision δα be-
ing subscribed. Thus we need to find the next unsatisfied
+ve decision to subscribe as in case (a).

We propose LightFilter on an encoding sequence Σ for
a set of increasing nogoods and a CSP P = (X,D,C).
Neg(δ) returns true if δ is a -ve decision.

When an incNGs constraint is posted, all nogoods with
LHSs empty or true are directly enforced. After that, the first
two +ve decisions δα and δβ and all -ve decisions between
them are subscribed and Algorithm 1 is immediately trig-
gered once. Algorithm 1 updates α and β using UpdateAl-
pha (line 1) and UpdateBeta (line 2) respectively. If all no-
goods are satisfied (m = 0), the incNGs constraint is deleted
(line 3).

To update α in Algorithm 2, we check the current sub-
scribed decision at α repeatedly until it is not satisfied (line

3428

Algorithm 1 LightFilter()
Require:
Σ: the encoding sequence
m = |Σ|
α, β: the position of the two leftmost unsatisfied +ve de-
cisions

1: UpdateAlpha();
2: if m �= 0 ∧ β �= m then UpdateBeta();
3: if m = 0 then delete constraint;

10). If it is satisfied (case (a)), we need to satisfy the RHSs
of nogoods whose LHSs have δα but not δβ (lines 3-5). If
there are no decisions left (line 6), all nogoods are satisfied.
Otherwise, we set α to β (line 7) and call WatchFollowDec
(line 8) which finds the next +ve decision δi and subscribes
to all unfalsified -ve decisions between δα and δi. If a fal-
sified -ve decision is encountered along the subscription in
WatchFollowDec, δα is enforced to be false and all nogoods
are satisfied. Otherwise, we check the updated subscribed
decision at α again (line 9). After ensuring δα is not satis-
fied (line 10), we need to check all subscribed -ve decisions
for case (b). If one of them is falsified (line 12), δα is en-
forced to be false (line 13) and all nogoods are satisfied (line
14).

Algorithm 2 UpdateAlpha()
1: if δα is satisfied then
2: unsubscribe δα;
3: for i ∈ [α+ 1, β) do
4: if Neg(δi) then
5: satisfy δi, unsubscribe δi;
6: if β = m then m = 0; return;
7: α = β;
8: WatchFollowDec(α);
9: if m �= 0 then UpdateAlpha();

10: else
11: for i ∈ [α+ 1, β) do
12: if Neg(δi) ∧ δi is falsified then
13: falsify δα;
14: m = 0; return;

After ensuring δα is not satisfied, we update β in Algo-
rithm 3. Similar to updating α, we check the current sub-
scribed decision at β repeatedly until it is not satisfied. If it
is satisfied (case (c)) (line 1), we update it using WatchFol-
lowDec (line 3).

Algorithm 3 UpdateBeta()
1: if δβ is satisfied then
2: unsubscribe δβ ;
3: WatchFollowDec(β);
4: if m �= 0 then UpdateBeta();

We have the following lemma for the subscribed decisions
in a set of increasing nogoods after updating of LightFilter.

Lemma 3. Given an encoding sequence Σ for a set of in-
creasing nogoods. LightFilter always subscribes to the first
two unsatisfied +ve decisions and all unfalsified -ve deci-
sions between them.

LightFilter makes all nogoods ng which are not true yet
have either (i) two unsatisfied +ve decisions δα and δβ or
(ii) one unsatisfied +ve decision δα and one unfalsified -ve
decision rhs(ng) being subscribed. The following theorem
holds.
Theorem 2. The consistency level of LightFilter on a set of
increasing nogoods is equivalent to GAC on each nogood.

Since each decision in the encoding sequence Σ is
scanned at most once when LightFilter is triggered, the time
complexity of LightFilter is as follows.
Theorem 3. Given a CSP P = (X,D,C). The time com-
plexity of LightFilter is O(

∑
x∈X |D(x)|).

Proof. The worst case is that all decisions in Σ are checked
and the maximum size of Σ is

∑
x∈X |D(x)|.

Towards Minimal Nogoods

Shorter nogoods provide stronger pruning. Lecoutre et
al. (2007) propose minimal reduced nld-nogoods with re-
spect to an inference operator φ which is used for enforc-
ing a consistency level at each node. The negation of a set
of decisions Δ is a φ-nogood of a CSP P = (X,D,C)
iff after applying φ to P ∪ Δ, there exists a variable x in
X where |D(x)| = 0. The negation of Δ is a minimal φ-
nogood of a CSP P iff there does not exist Δ′ ⊂ Δ such
that ¬Δ′ is a φ-nogood. Given a reduced nld-nogood ng
generated from an nld-nogood which is also a φ-nogood.
Lecoutre et al. generate a minimal nogood using a construc-
tive approach (Moskewicz et al. 2001) by finding all deci-
sions which clearly belong to a minimal φ-nogood (transi-
tion decisions).

Minimizing a set of increasing nogoods might not result
in increasing nogoods. For example, given a set of increasing
nogoods {ng0, . . . , ngt}, the LHS of a minimal nogood of
ng0 includes the first two +ve decisions while the LHS of a
minimal nogood of ng1 includes the last two +ve decisions
which do not necessarily subsume the first two.

We now give an approximation of the minimization for a
set of increasing φ-nogoods where each computed nogood
is a φ-nogood but not necessarily minimal. We shorten the
nogoods from lowest to highest in the increasing nogoods
sequence. After the first k nogoods are shortened, to shorten
the (k + 1)-st one, we make sure the structure of the previ-
ous k shortened nogoods is kept. Thus we find transition de-
cisions only from (lhs(ngk+1)− lhs(ng′k))∪¬ rhs(ngk+1)
where ng′k is the shortened nogood of ngk.

Given a CSP P = (X,D,C), an encoding sequence Σ
for a set of increasing φ-nogoods and an inference operator
φ, we use the following approach to do the shortening.

For each nogood ng from lowest to highest (line 2), Al-
gorithm 4 does not minimize the entire nogood ng. Instead,
it only chooses transition decisions from the decisions in
lhs(ng) that are not contained in the LHS of the last short-
ened nogood, as well as the negation of rhs(ng) (line 4).

3429

Algorithm 4 ApproxConstructive(P ,Σ,φ)
Require:
Δ = ∅: the set of transition decisions
α = −1: the position of the current last -ve decision

1: P ′ = P ;
2: for i ∈ [0, |Σ| − 1] do
3: if δi is a -ve decision then
4: Δ = Constructive(P ′,φ,{δα+1,. . . ,¬δi});
5: reorder Σ from α+ 1 to i to:
6: put Δ− {¬δi} into the first place,
7: δi into the second place, and
8: the remaining into the third place;
9: α = α+ |Δ|;

10: P ′ = P ′ ∪ (Δ− {¬δi});

Constructive(P ′,φ,ng′) (line 4) returns a set of transition de-
cisions Δ that comprises a minimal nogood of ng′. After
finding Δ, we reorder Σ from the position of the last -ve de-
cision accordingly (lines 5-8). Now α is set to the position
of the current -ve decision after reordering (line 9).

Since nogoods in the encoding sequence resulting from
Algorithm 4 are shortened nogoods of the original set of in-
creasing nogoods, we have the following theorem.
Theorem 4. Given a CSP P = (X,D,C), an inference
operator φ and an encoding sequence Σ. The shortened no-
goods generated by Algorithm 4 are increasing.

We now give the soundness and the time complexity of
our algorithm without proof due to space limitation.
Theorem 5. Given a CSP P , an inference operator φ and
an encoding sequence Σ. The nogoods in the encoding se-
quence computed by Algorithm 4 are φ-nogoods.

An inference operator φ is incremental (Lecoutre et al.
2007) if the worst case time complexity of applying φ to a
CSP from two respective sets of decisions Δ′ and Δ such
that Δ′ ⊂ Δ are equivalent. For example, all (known) GAC
inference algorithms are incremental.
Theorem 6. Given a CSP P = (X,D,C), an incremental
inference operator φ and an encoding sequence Σ. The time
complexity of Algorithm 4 is O(

∑
x∈X |D(x)|ξ) where ξ is

the cost of enforcing φ on P once.
However, this approach is only an approximation in order

to keep the increasing structure.
Observation 1. Given a CSP P , the inference operator φ
and an encoding sequence Σ. Nogoods in the encoding se-
quence computed by Algorithm 4 are not necessarily mini-
mal.

Experimental Evaluation

This section gives three sets of experiments to demonstrate
the advantage of using incNGs in restarts and the dynamic
subscription based lightweight filtering algorithm. Two of
these experiments have been used to show the advantage of
nogoods recording (Lecoutre et al. 2007) as well. All ex-
periments are conducted using Gecode 4.3.2 on Intel ma-
chines with 30-45GB of memory and 64-bit Debian 6.0.6

operating system. Due to the number of experiments per-
formed, different machines were used for different sets of
problems. When a decision is subscribed by a filtering algo-
rithm in Gecode, the filtering algorithm is triggered for exe-
cution when the domain of the interfering variable changes.
In this way, satisified nogoods are immediately deleted. As
a baseline we use search without restarts (NORST) and with
restarts but without nogoods (RST) respectively. When ex-
ploiting nogoods recorded upon restarts, we propagate no-
goods individually with dynamic subscriptions similar to
that given by Lecoutre et al. (2007) (RST+NG) and the two
filtering algorithms for the incNGs global constraint: Full-
Filter as given by Lee and Zhu (2014) (RST+NGG) and our
LightFilter (RST+NGLG). We also present results exploit-
ing minimal nogoods and the filtering algorithm given by
Lecoutre et al. (2007) (RST+NGM). We use RST+NGm

G and
RST+NGm

LG to denote results of exploiting shortened no-
goods generated by Algorithm 4 using FullFilter (Lee and
Zhu 2014) and LightFilter respectively.

We use the universal restarting strategy by Luby et
al. (1993). The failure limit at each restart according to the
Luby strategy is (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, . . .)
and we scale each element by a factor of 100. We have cho-
sen Luby rather than a more aggressive restarting strategy
such as geometric (aka Walsh) (Walsh 1999) to exercise the
recording and propagation of nogoods.

We exploit the adaptive dom/wdeg (Boussemart et al.
2004) variable ordering heuristic as a simple and yet ef-
fective generic heuristic. In dom/wdeg, the weight of con-
straints are preserved after each restart. To make the com-
parison of different filtering algorithms as meaningful as
possible, we ignore the weighted degree incurred by the
respective nogoods filtering algorithm. Note that this still
cannot ensure that the behavior of dom/wdeg is exactly the
same under different filtering algorithms due to the essen-
tially non-deterministic execution of filtering algorithms in
Gecode (Schulte and Stuckey 2008). This issue never oc-
curs for Queens Knights instances, but does so for several
instances of the other two problems. We therefore also use
the classical but less efficient dom/ddeg (Bessiere and Régin
1996) heuristic to solve Open Shop Scheduling. Similarly,
to make the comparison among each filtering algorithm fair,
we do not count the degree incurred by all nogoods filtering
algorithms for the degree of variables. In this case, dom/ddeg
is not affected by the nogoods filtering algorithms since the
filtering algorithm ordering does not affect the degree of
variables. In contrast, dom/wdeg attaches to each constraint
a weight to compute the weighted degree of a variable. Such
weights depend on how often the constraint is failed during
search. In case more than one constraint can trigger failure
during filtering, the execution order of filtering algorithms
becomes important and can affect the weighted degrees of
variables.

In our tables, #f denotes number of failures and t denotes
runtime in seconds. The best results are highlighted in bold.

Queens Knights. The task is to put n queens and k knights
on a chessboard of size n × n so that no two queens can

3430

attack each other and all knights form a cyclic knights
tour (Boussemart et al. 2004) where a square is not allowed
to be shared by both a queen and a knight.

Table 1: Queens Knights without minimization/shortening
NORST RST RST+NG RST+NGG RST+NGLG

n #f t #f t #f t #f t #f t

25 71,569 20.47 6,355 2.26 5,221 1.93 5,221 1.86 5,221 1.68

50 − − 37,926 53.66 23,723 41.70 23,723 34.33 23,723 26.66

70 − − 88,454 251.27 55,270 256.93 55,270 203.05 55,270 124.72

90 − − 98,055 443.28 79,588 571.38 79,588 485.95 79,588 329.53

Table 2: Queens Knights with minimization/shortening
RST+NGM RST+NGm

G RST+NGm
LG

n #f t #f t #f t

25 1,540 0.83 1,538 0.84 1,538 0.83

50 9,833 12.39 9,721 12.63 9,721 12.52
70 18,970 49.25 24,757 57.42 24,757 57.25
90 43,067 184.68 43,246 184.33 43,246 184.08

We set k = 5 and n ranges from 25 to 90 which renders
all problems unsatisfiable. The search time-out limit is 20
minutes. Results of timeout cases are indicated with “−”.
Table 1 shows the results. Exploiting nogoods in restarts re-
duces the search tree size to 72% on average. However, time
is not saved for RST+NG due to the overhead of nogood
propagation. After introducing the global constraint and the
FullFilter algorithm, RST+NGG runs 1.17 times faster than
RST+NG on average. Utilizing LightFilter with dynamic
subscriptions, RST+NGLG runs 1.37 and 1.63 times faster
than RST+NGG and RST+NG on average. The number of
collected nogoods ranges from 507 of easier problems to
8442 of harder problems. The results are in line with the pre-
diction that the benefit of our methods are more prominent
with more nogoods to process.

Comparing Table 1 and Table 2, it is easy to conclude that
the search efficiency is considerably improved by exploit-
ing shorter nogoods. Table 2 also shows that our shortened
nogoods do not lose too much pruning as compared to the
minimal ones. It is important to note the runtimes are simi-
lar since each instance has only 4 to 30 nogoods after min-
imization/shortening since all knight variables are singleton
arc inconsistent (Lecoutre et al. 2007). Moreover, it takes
2% of runtime to do minimization/shortening for the hardest
instance.

Open Shop Scheduling. We take Open Shop Scheduling
from the 2006 CSP Solver Competition1. There are six sets
of 30 instances. We again set a timeout limit of 20 minutes
to find a solution. We give the number of solved instances
out of the total 30 for each set, and also show the aver-
age time and average number of recorded nogoods for the
solved instances for the three filtering methods respectively.
The method with the largest number of solved instances is
considered to be the best and ties are broken by runtime.

1http://www.cril.univ-artois.fr/ lecoutre/benchmarks.html

Table 3: Open Shop Scheduling using dom/wdeg without
minimization and with time limit

n NORST RST RST+NG RST+NGG RST+NGLG

os-taillard-4 Average t 0.10 0.40 0.10 0.06 0.06

Solved 30/30 30/30 30/30 30/30 30/30

Nogoods 307 307 307
os-taillard-5 Average t 61.24 91.43 18.53 21.71 14.27

Solved 25/30 30/30 25/30 26/30 26/30
Nogoods 8275 12285 12285

os-taillard-7 Average t 97.61 18.31 1.69 59.09 160.95

Solved 7/30 8/30 8/30 9/30 11/30

Nogoods 912 14212 81264
os-taillard-10 Average t 147.00 86.60 1.21 1.14 1.09

Solved 4/30 9/30 9/30 9/30 9/30

Nogoods 581 581 581
os-taillard-15 Average t 60.71 14.59 29.28 20.74 20.25

Solved 6/30 12/30 14/30 14/30 14/30

Nogoods 700 700 700
os-taillard-20 Average t 0.79 115.74 121.78 183.34 180.35

Solved 1/30 15/30 16/30 17/30 17/30

Nogoods 34 150 150

Table 3 shows the results. Exploiting nogoods in restarts
reduces the runtime and increases the number of solved in-
stances in general. Using LightFilter, RST+NGLG solves
the most number of instances with the best timing, ex-
cept for problem set os-taillard-5. When the average num-
ber of nogoods of solved instances is small, the runtimes of
RST+NGG and RST+NGLG are similar.

From Tables 3 and 4, we see that exploiting mini-
mal/shortened nogoods allows more instances to be solved
except with the last set os-taillard-20. The stronger prun-
ing power of minimal nogoods than our shortened nogoods
are demonstrated by the problem sets os-taillard-5 and os-
taillard-7. However, the other harder problems benefit from
shortened nogoods and our efficient global constraint filter-
ing algorithms.

As explained earlier in the section, even though the prun-
ing power of RST+NG and RST+NGLG are the same,
their behaviors under dom/wdeg differ due to the essen-
tially non-deterministic execution of filtering algorithms
in Gecode (Schulte and Stuckey 2008). We thus eval-
uate our algorithms also with the classical determinis-
tic dom/ddeg (Bessiere and Régin 1996) heuristic. Now
RST+NG and RST+NGLG generate exactly the same search
tree when solving the same problem. Their runtimes are now
only affected by the relative runtime efficiency of the respec-
tively filtering algorithms, which is the goal of this experi-
ment. Since there are some pretty hard instances in the com-
petition, we set a failure limit of 1, 000, 000 to find a solu-
tion. Since RST+NG and RST+NGLG would have searched
exactly the same space when a solution is found or the fail-
ure limit is reached when solving the same problem, we thus
compare their average runtime by accounting both solved
and unsolved instances for each set of problems. We also
show the average number of nogoods to find a solution or
reach the failure limit for each set.

Table 5 shows the results using dom/ddeg. Both the
number of nogoods and the search tree size are the same

3431

Table 4: Open Shop Scheduling using dom/wdeg with mini-
mization and time limit

n RST+NGM RST+NGm
G RST+NGm

LG

os-taillard-4 Average t 0.04 0.03 0.03

Solved 30/30 30/30 30/30

Nogoods 101 98 98
os-taillard-5 Average t 6.13 21.45 6.51

Solved 28/30 28/30 28/30

Nogoods 2649 4095 2483
os-taillard-7 Average t 48.20 109.51 62.36

Solved 14/30 12/30 12/30
Nogoods 4375 4152 5148

os-taillard-10 Average t 76.50 75.78 114.27

Solved 15/30 17/30 18/30

Nogoods 2855 3530 4919
os-taillard-15 Average t 6.38 74.45 74.05

Solved 11/30 16/30 16/30

Nogoods 111 456 456
os-taillard-20 Average t 91.56 144.05 145.31

Solved 14/30 16/30 16/30

Nogoods 23 20 20

for these three methods. RST+NGG runs 3.29 times faster
than RST+NG on average. Using our light filtering algo-
rithm, RST+NGLG runs 4.24 and 10.05 times faster than
RST+NGG and RST+NG on average. RST+NGG performs
the best in problem sets os-taillard-15 and os-taillard-20.
The reason is, when a propagator is triggered, we not only
prune values when necessary but also delete all satisfied pos-
itive and negative decisions to reduce the size of encoding
sequences. While RST+NGG is triggered most often, it has
the smallest overhead to record the encoding sequence dur-
ing search. Now the overhead to record encoding sequence
dominates the overhead of unnecessary triggers. Again, the
advantage by exploiting minimal/shorter nogoods can be
demonstrated in Table 6. More problems are solved and the
overhead to find a solution is reduced. The number of no-
goods is also substantially reduced. Again, RST+NGm

G and
RST+NGm

LG dominate in terms of timing.

Radio Link Frequency Assignment. Now we focus on
the 12 hardest instances built from the real-world Radio Link
Frequency Assignment Problem (RLFAP) which are also
taken from the 2006 CSP Solver Competition1. Here, we set
a time limit of 2 hours to find a solution.

Table 7 shows the results in a way similar to those for
Open Shop Scheduling. More problems are solved after ex-
ploiting nogoods in restarts. RST+NGLG performs the best
and is 1.37 times faster than RST+NG. After exploiting min-
imal or shortened nogoods in Table 8, the number of no-
goods is reduced substantially. It takes up to 4% of run-
time on average to do minimization for all solved prob-
lems. Shortening nogoods is even cheaper. Using FullFilter
and shorter nogoods performs the best. However, comparing
with Table 7, the performance is not improved utilizing min-
imal or shorter nogoods since these shorter nogoods do not
seem to cooperate well with the dom/wdeg heuristic.

Table 5: Open Shop Scheduling using dom/ddeg without
minimization/shortening

n RST+NG RST+NGG RST+NGLG

os-taillard-4 Average t 56.56 32.99 3.23

Solved 24/30 24/30 24/30

Nogoods 13057 13057 13057
os-taillard-5 Average t 559.47 316.94 35.27

Solved 3/30 3/30 3/30

Nogoods 60110 60110 60110
os-taillard-7 Average t 1312.16 323.99 110.96

Solved 2/30 2/30 2/30

Nogoods 59333 59333 59333
os-taillard-10 Average t 3047.53 434.09 298.08

Solved 2/30 2/30 2/30

Nogoods 55057 55057 55057
os-taillard-15 Average t 2280.32 612.99 649.10

Solved 9/30 9/30 9/30

Nogoods 19471 19471 19471
os-taillard-20 Average t 2982.89 2053.33 2192.12

Solved 13/30 13/30 13/30

Nogoods 8778 8778 8778

Conclusion

Our contributions are four fold. First, we demonstrate that
reduced nld-nogoods extracted at a restart point are increas-
ing. Second, since nogoods are not generated dynamically,
we give a lightweight filtering algorithm which has the same
consistency level with GAC on each nogood and is triggered
less often. Third, minimizing nogoods destroy their increas-
ing property, and we present an approximation to nogood
minimization so that all shortened reduced nld-nogoods col-
lected from the same restart are still increasing and thus our
filtering algorithms can still be used. Fourth, we demonstrate
the efficiency of our filtering algorithm and the approximate
minimization procedure against existing state-of-the-art no-
good recording techniques in restart-based search.

Experimental results of Open Shop Scheduling show that
our shortened nogoods can sometimes cooperate well with
the adaptive heuristic dom/wdeg. We also conduct extra ex-
periments to take into account the weighted degree incurred
by the nogoods filtering algorithm. Results show that ignor-
ing the weighted degree performs better than not ignoring
them in most of the cases. It is worthwhile to investigate the
interaction of recorded nogoods with heuristics in restarts.

References

Bessiere, C., and Régin, J.-C. 1996. Mac and combined
heuristics: Two reasons to forsake FC (and CBJ?) on hard
problems. In CP’96, 61–75.
Boussemart, F.; Hemery, F.; Lecoutre, C.; and Sais, L. 2004.
Boosting systematic search by weighting constraints. In
ECAI’04, 146–150.
Dechter, R. 1990. Enhancement schemes for constraint pro-
cessing: Backjumping, learning, and cutset decomposition.
Artificial Intelligence 41(3):273–312.
Frost, D., and Dechter, R. 1994. Dead-end driven learning.
In AAAI’94, 294–300.

3432

Table 6: Open Shop Scheduling using dom/ddeg with mini-
mization/shortening

n RST+NGM RST+NGm
G RST+NGm

LG

os-taillard-4 Average t 1.60 1.00 1.00

Solved 28/30 29/30 29/30

Nogoods 130 168 168
os-taillard-5 Average t 37.49 30.54 30.15

Solved 7/30 6/30 6/30
Nogoods 1106 1106 1106

os-taillard-7 Average t 93.07 77.59 76.81

Solved 2/30 2/30 2/30

Nogoods 1496 1304 1304
os-taillard-10 Average t 293.79 227.10 225.06

Solved 2/30 2/30 2/30

Nogoods 2004 2013 2013
os-taillard-15 Average t 739.49 558.93 625.76

Solved 9/30 9/30 9/30

Nogoods 1916 1945 1945
os-taillard-20 Average t 2317.54 2117.61 2154.00

Solved 13/30 13/30 13/30

Nogoods 1138 1136 1136

Table 7: RLFAP without minimization/shortening
RLFAP NORST RST RST+NG RST+NGG RST+NGLG

Average t 35.15 780.35 1397.01 1041.88 1017.33

Solved 5 6 8 8 8

Nogoods 22606 25469 26114

Table 8: RLFAP with minimization/shortening
RLFAP RST+NGM RST+NGm

G RST+NGm
LG

Average t 464.82 1382.09 1588.86
Solved 7 8 8

Nogoods 1221 1840 2011

Gent, I. P.; Jefferson, C.; and Miguel, I. 2006. Watched liter-
als for constraint propagation in Minion. In CP’06. Springer.
182–197.
Lecoutre, C.; Sais, L.; Tabary, S.; Vidal, V.; et al. 2007.
Recording and minimizing nogoods from restarts. JSAT 1(3-
4):147–167.
Lee, J., and Zhu, Z. 2014. An increasing-nogoods global
constraint for symmetry breaking during search. In CP’14,
465–480.
Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Optimal
speedup of Las Vegas algorithms. Information Processing
Letters 47:173–180.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient SAT solver.
In Proceedings of the 38th Annual Design Automation Con-
ference, 530–535. ACM.
Schiex, T., and Verfaillie, G. 1994. Nogood recording for
static and dynamic constraint satisfaction problems. Interna-
tional Journal on Artificial Intelligence Tools 3(2):187–207.
Schulte, C., and Stuckey, P. J. 2008. Efficient constraint
propagation engines. TOPLAS 31(1):2:1–2:43.
Walsh, T. 1999. Search in a small world. In IJCAI’99,
1172–1177.

3433

