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Abstract

Retrieving faces from large mess of videos is an attractive
research topic with wide range of applications. Its challeng-
ing problems are large intra-class variations, and tremen-
dous time and space complexity. In this paper, we deve-
lop a new deep convolutional neural network (deep CNN)
to learn discriminative and compact binary representations
of faces for face video retrieval. The network integrates fea-
ture extraction and hash learning into a unified optimization
framework for the optimal compatibility of feature extrac-
tor and hash functions. In order to better initialize the net-
work, the low-rank discriminative binary hashing is proposed
to pre-learn hash functions during the training procedure. Our
method achieves excellent performances on two challenging
TV-Series datasets.

Introduction

Given a face video of a person, face video retrieval aims to
search videos containing the person from the video database.
Face video retrieval is an attractive research area with wide
range of applications, such as locating and tracking a crim-
inal suspect from surveillance videos, retrieving masses of
long videos to annotate face data for vision researchers,
collecting all videos of a person from videos captured by
his/her family digit camera, and the intelligent fast-forward
of movies.

The challenging problems of face video retrieval are large
intra-class variations of faces, and the strong demands of
time and space saving. The faces in Figure 1 show the dra-
matic intra-class variations caused by poses, lighting con-
ditions, expressions, clothes, background interferences, and
the orientation of the actor in TV-Series, which indicates
that good representations of faces should be robust to these
variations and discriminative between classes. Moreover, the
representations have to be compact for fast retrieval and
space saving. Existing video based face recognition meth-
ods (Huang et al. 2015; Chen et al. 2013) represent face
videos by features with thousands of floating point numbers
or more, resulting in tremendous time and space complex-
ity and being unapplicable to the face video retrieval task.
To solve these problems, we propose to learn discriminative
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Figure 1: The hash learning is integrated into the deep CNN
to obtain discriminative and compact representations for
face video retrieval. An actor (Leonard Hofstadter) in TV-
Series (the BigBang Theory) has dramatic intra-class varia-
tions mainly caused by pose, lighting, expression, clothes,
background interferences, and the orientation of the actor.
The deep CNN is able to generate similar representations
for faces with large intra-variations.

and compact representations of faces by deep convolutional
neural network (deep CNN) for face retrieval in videos.

Recently, deep CNN has been successfully applied on
many vision tasks, such as image classification (Krizhevsky,
Sutskever, and Hinton 2012) and image segmentation
(Sharma, Tuzel, and Jacobs 2015), which shows the pow-
erful ability of deep CNN for describing complex non-linear
mappings and learning rich mid-level representations. The
CNN features learned from data are discriminative, but still
high dimensional for the retrieval task. In retrieval tasks,
the hashing-based methods which project high dimensional
features to a low dimensional space are often used (Liu et
al. 2012; Li et al. 2015b), but feature extraction and hash
function learning in these methods are independent, in other
words, the extracted features may not be compatible with
the hash coding process. Therefore, we fuse the hash learn-
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Figure 2: The training procedure of the deep CNN contains three steps. First, we use the front seven layers of the well-known
AlexNet which is trained on the large-scale ImageNet dataset as the feature extractor of the network for good initializations.
Second, the low-rank discriminative binary hashing is proposed to learn hash functions which serve as the last layer of the
network. The proposed hash learning method takes the discrimination, low-rank property, and stability into account to better
initialize the last layer. At last, the fine-tuning procedure is conducted with large amounts of face images. The red dotted lines
represent parameters which can be learned in the corresponding step, the green arrow means parameter transfering, and the blue
arrow shows the training data used in each step.

ing into the deep CNN and build an end-to-end system to
learn discriminative and compact representations of faces as
shown in Figure 1.

Figure 2 shows that our deep convolutional neural net-
work is trained in three steps. In the first step, the network
is trained on the large-scale ImageNet dataset (Krizhevsky,
Sutskever, and Hinton 2012) to obtain good initializations.
For convenience, the front seven layers of the well-known
AlexNet are used as the feature extractor of our network.
In the second step, we propose the low-rank discriminative
binary hashing method to learn hash functions with large
amounts of face images. To alleviate the problem of large
intra-class variations of faces, the hash functions are learned
under the guide of supervision information to ensure that
samples belonging to the same class have similar hash codes.
In the third step, the network is specifically fine-tuned for
face video retrieval. The objective of this step is to sepa-
rate the positive sample pair (a pair of samples coming from
the same class) from the negative pair by a distance margin,
which is quite effective in retrieval system (Lai et al. 2015;
Zhao et al. 2015; Norouzi, Blei, and Salakhutdinov 2012).
The network takes a face image as input and outputs the cor-
responding compact binary hash representation where each
bit can be regarded as a visual attribute of the face. We con-

duct experiments on two challenging TV-Series datasets (the
Big Bang Theory and the Prison Break) (Li et al. 2015c) and
achieve good performances.

To the best of our knowledge, this is the first paper that
uses deep neural network on face video retrieval. The con-
tributions of the paper are three-folds: (1) The proposed deep
CNN is able to generate discriminative and compact binary
representations of faces for face video retrieval. The network
integrates the feature extraction and hash learning into a uni-
fied optimization framework to ensure that the extracted fea-
tures are compatible with the hashing procedure. (2) The
proposed low-rank discriminative binary hashing takes the
discrimination, low-rank property, and the stability into ac-
count, and shows its effectiveness compared with the state-
of-the-art hash learning methods. (3) The proposed method
achieves excellent results of face video retrieval on two chal-
lenging TV-Series datasets.

The remainder of the paper is organized as follow. We first
review the related work including face video retrieval meth-
ods, deep learning on face-related tasks, and hashing meth-
ods. Next, we elaborate the training procedures of the deep
CNN. We then present the preliminary experiments of the
proposed method on two TV-Series datasets, and end with
conclusions.

3472



Related Work
In this section, we give a brief review of previous litera-
tures related to our work including face video retrieval, deep
learning on face-related tasks, and hashing methods.

Face Video Retrieval

There are few works on face video retrieval. Arandjelović
and Zisserman (2005; 2006) introduced a film shot retrieval
system based on face recognition algorithms. They repre-
sented the face shot as an identity preserving and variation
insensitive signature image. Sivic, Everingham, and Zisser-
man (2005) developed a face video retrieval system which
models the face shots as distributions of frames. The key
point of these works is to build a complete retrieval system
including the procedures of shot boundary detection, face
tracking, etc., and the representations of face shots are high
dimensional, which still face the problem of large intra-class
variations and time and space cost. Different from these
works, this paper aims to learn discriminative and compact
binary hash representations of faces to improve the retrieval
performance.

Li et al. () proposed a video coding method called com-
pact video code (CVC) for face video retrieval in TV-Series.
In their method, a face video is represented by its covari-
ance matrix of frames’ DCT features, and the CVC is used
to obtain the binary codes of the face video. They (Li et al.
2015c) further represented a face video as the covariance
matrix of Fisher Vector features, and executed the CVC in
the Reproducing Kernel Hilbert Space. In the literature, two
large scale TV-Series face video datasets are released where
the image of each frame is provided rather than only provid-
ing low-level features. In (Li et al. 2015b), the face videos
are retrieved with an image query. To measure the similar-
ity of image and video, a new hashing method across Eu-
clidean Space and Riemannian Manifold is proposed. Al-
though these works achieve good performances, the feature
extraction (DCT, Fisher Vector, and Covariance Matrix) and
the hash function learning are independent, which causes the
problem that extracted features might be incompatible with
the hash coding process. In contrast, our deep CNN inte-
grates the feature extraction and hash learning into a uni-
fied optimization framework where two procedures interact
to generate optimal hash codes. Besides, since the network
takes a face image as input, either an image or a video is
available to be used as the query.

Deep Learning on Face-related Tasks

Recently, deep learning has shown its promising perfor-
mances on face-related tasks. Zhang et al. (2014) used a
sequence of stacked auto-encoder networks in a coarse-to-
fine architecture to infer face shapes from face images. Taig-
man et al. (2014; 2015) addressed the face verification prob-
lem by a nine-layer deep neural network with 120 million
parameters, and reduced the error of the state-of-the-art by
more than 25% on the LFW dataset. Hu, Lu, and Tan (2014)
presented a discriminative deep metric learning method for
face verification by training a deep neural network which
project face pairs into the same feature space where the dis-
tances between positive face pairs are less than a threshold.

Liu et al. (2015) cascaded two CNNs to localize faces and
learn attributes jointly, and improve existing methods 8 and
13 percents on the CelebFaces and LFW datasets, respec-
tively. Sun, Wang, and Tang (2015) proposed a deep network
named “DeepID2+” which achieves exciting results on both
LFW and YouTube Faces datasets for both face identifica-
tion and verification. Li et al. (2015a) presented a cascade
CNN for fast face detection and obtained good performance
on the “annotated faces in the wild” and the “face detec-
tion data set and benchmark”. Schroff, Kalenichenko, and
Philbin (2015) trained a deep CNN called FaceNet for face
recognition and clustering. The FaceNet maps face image to
a compact representation in Euclidean space and achieves
a new record accuracy on both LFW and YouTube Faces
datasets. These encouraging achievements of deep learning
on face-related tasks move us towards higher performance in
the application of face video retrieval. Different from above
networks, our network outputs compact binary representa-
tions for the retrieval task.

Hashing Methods

Hashing methods are widely used in retrieval systems own-
ing to its encouraging efficiency in both speed and storage.
As an representative of data-independent hashing methods,
the locality sensitive hashing (LSH) (Gionis et al. 1999) uses
random projections as hash functions. Despite theoretical
asymptotic guarantees, LSH still needs long hash codes to
get satisfactory retrieval results. In contrast, data-dependent
methods, namely learning-based methods, aim to generate
compact similarity-preserving hash codes by exploiting the
structure or supervision information of the training data. The
data-dependent methods can be roughly categorized as un-
supervised, semi-supervised, and supervise methods. Unsu-
pervised methods learn hash functions only by unlabeled
training data, and the representatives are kernelized locality-
sensitive hashing (KLSH) (Kulis and Grauman 2009), spec-
tral hashing (SH) (Weiss, Torralba, and Fergus 2009), itera-
tive quantization hashing (ITQ) (Gong and Lazebnik 2011),
and Anchor graph hashing (AGH) (Liu et al. 2011). Semi-
supervised and supervised methods improve the hash code
quality by using supervision information, and the notable
examples are discriminative binary coding (DBC) (Raste-
gari, Farhadi, and Forsyth 2012), semi-supervised hashing
(SSH) (Wang, Kumar, and Chang 2010), kernel-based super-
vised hashing (KSH) (Liu et al. 2012), minimal loss hashing
(MLH) (Norouzi and Blei 2011), and supervised iterative
quantization hashing (SITQ) (Gong and Lazebnik 2011),
etc.

Recently, several deep neural networks have been pro-
posed to learn hash functions for specific vision tasks. Zhao
et al. (2015) learned hash functions by a deep CNN in mul-
tilevel semantic ranking supervision manner for multi-label
image retrieval. Lai et al. (2015) developed a supervised
hash learning method based on the well known network,
“network in network” (Min, Qiang, and Shuicheng 2014),
for image retrieval. Lin et al. (2015) presented a rapid cloth-
ing retrieval system based on the AlexNet where a latent
layer is added to generate hash codes. Since the deep net-
work learns features and hash functions in a unified end-
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to-end optimization form, these works achieve encouraging
retrieval performances. Similar to these works, we present a
deep CNN to learn binary hash representations of faces for
face video retrieval.

Approach

In this section, we elaborate the training procedures of the
deep CNN. Figure 2 shows the three steps of the training
procedures: pre-train the deep CNN, pre-learn hash func-
tions, and fine-tuning.

Pre-train on ImageNet Dataset

The deep CNN is pre-trained on the ImageNet dataset
which has more than 1.2 million images of 1000 cate-
gories to obtain good initializations. We use the released
AlexNet (Krizhevsky, Sutskever, and Hinton 2012) model
which is trained on ImageNet dataset for convenience. The
AlexNet contains convolutional layers, normalization layers,
linear layers, ReLU activation layers, and max-pooling lay-
ers. For simplicity, we use L1−5 to represent the 5 convo-
lutional layers, and L6−8 describe the 3 linear layers. The
L7 outputs features with the dimension of 4096, and the di-
mensionality of features in L8 is 1000. The L8 is followed
by a softmatx classifier to generate probability distribution
for classification. Previous studies (Krizhevsky, Sutskever,
and Hinton 2012; Oquab et al. 2014) show that the 4096-
dimensional features of L7 perform better than many hand-
crafted features. In our network, the L1−7 layers are used as
the feature extractor.

Pre-Learn Hash Functions

With the pre-trained deep CNN, rich mid-level features of
faces are obtained. The features are high dimensional which
results in tremendous time and space complexity. In order to
generate effective and compact representations for retrieval,
we propose the Low-rank Discriminative Binary Hashing
(LDBH) to project the high dimensional CNN features to
a much lower dimensional binary space. In the binary space,
each bit of the representation is either 1 or −1, so the dis-
tance between two representations can be easily computed
by the XOR operation on bits, which reduces the time cost
during the retrieval procedure. In addition, the low dimen-
sionality of the binary space ensures the low space complex-
ity.

Let X = [X1,X2, ...,XC ] ∈ R
t×n be the obtained feature

set of C classes where t and n represent the dimension and
number of training samples, respectively. Our goal is to learn
hash functions W which project X from feature space into
the binary space, i.e.

bi = sgn(W�xi), ∀xi ∈ X, (1)

where sgn(·) is the sign function which returns +1 for pos-
itive number and returns −1 for negative number, and bi

is the binary code of xi. All the generated codes form a
binary matrix B = [b1, b2, ...,bn] ∈ {+1,−1}s×n where
s � t is the dimension of the binary space, and W =
[w1,w2, ...,ws] ∈ R

t×s contains s hash functions.

To learn hash functions, three constraints are taken into
account: discrimination, low-rank property, and stability.
First, to alleviate the problem of large intra-class variations,
hash codes in the binary space should be discriminative, in
other words, samples of the same class should have similar
codes, and samples of different classes can be better sepa-
rated. The discriminative constraint is ensured by minimiz-
ing

f(B) =

C∑
p=1,

bi,bj∈Bp

d(bi, bj)− λ

C∑
p=1,

bi∈Bp

C∑
q=1,
q �=p,

bj∈Bq

d(bi, bj),
(2)

where d(·, ·) represents the Hamming distance of binary
space, and λ is the normalization parameter to balance the
number of positive sample pairs and negative sample pairs.
Second, the low-rank constraint of the binary code matrix
is enforced. The low-rank constraint encourages the hash
codes of the same class to be correlated, which reduces the
redundancy of face video data. Since minimizing the rank
of B is an NP-hard problem and difficult to solve, we use
the the nuclear norm ‖B‖∗ , the convex envelope of the rank
function, instead of the rank function during optimization.
Third, the stability of the hash codes also needs to be con-
sidered. Each hash function can be viewed as a hyperplane
in the feature space, and the stability means that the hyper-
planes are largely marginalized like SVM. Therefore, we
formulate the hash function learning as

min
W,ξ,B

f(B) + η‖B‖∗ + 1

2
‖W‖2F + μ

d∑
i=1

n∑
j=1

ξij

s.t. Bij(w
�
i xj) ≥ 1− ξij ,

ξij ≥ 0,

B = sgn(W�X),

(3)

where ‖ · ‖F denotes the Frobenius norm of a matrix, η de-
scribes the importance of low-rank constraint, and μ is the
parameter representing the trade-off between hashing error
and capacity.

The objective function Eq.(3) is non-convex, so it’s im-
practical to find the global minimum. Fortunately, the local
minimum is able to generate effective hash codes in prac-
tice. The optimization procedures are formulated as follows:
First, with the fixed B, Eq.(3) w.r.t. W and ξ is optimized by
training d linear SVMs where the i-th column of B and all
columns of X are used as labels and training samples for the
i-th SVM. Second, we compute the binary code matrix with
the learned W as B = sgn(W�X). Third, fixing W and ξ,
Eq.(3) is optimized by introducing an auxiliary variable A,
and the objective function is formulated as

min
A,B

f(B) + η‖A‖∗
s.t. A = B,B ∈ {+1,−1}s×n.

(4)

We use the alternating direction method to optimize Eq.(4),
and the augmented Lagrangian function is given by

f(B) + η‖A‖∗ + tr(H(A− B)�) +
α

2
‖A− B‖2F . (5)
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For fixed B, the optimized A has closed solution (Cai,
Candès, and Shen 2010), and B can be optimized by an ef-
ficient subgradient descend method proposed in (Rastegari,
Farhadi, and Forsyth 2012). The algorithm of low-rank dis-
criminative hashing is summarized in Algorithm 1.

Algorithm 1: Algorithm of low-rank discriminative bi-
nary hashing

Input: Feature set X ∈ R
t×n.

Output: Hash functions W ∈ R
t×d.

1 repeat
2 Update W by training d linear SVMs with B as labels;
3 A = W�X,B = sgn(A);
4 repeat

5 SVD decomposition: B − H/α = USV�;
6 A = U

(
sgn(S)⊗max(|S − η/α|, 0))V�;

7 (⊗ denotes the element-wise multiplication)
8 Update B by subgradient descend method proposed

in (Rastegari, Farhadi, and Forsyth 2012);
9 H = H + α(A − B), α = γα;

10 until Converged;
11 until Converged;

Fine-tuning

The fine-tuning procedure integrates the feature extraction
and hash function learning into a unified optimization frame-
work and forms an end-to-end learning system. In the learn-
ing system, the feature extraction is optimally compatible
with the hashing process, i.e., the features are learned for
hashing, and the performance of hash codes is able to guide
the learning of face features. In this way, a pair of semanti-
cally similar faces will have similar compact hash represen-
tations, and the representations of faces from different class
will have large distance. To this end, we use the triplet rank-
ing loss which reflects the target we want in “face retrieval”.

Suppose that the deep CNN describes the complex non-
linear mapping g : I → {+1,−1}s where I denotes the
face image space, so a face image q is able to be represented
as a s-bit binary representation g(q). The triple ranking loss
reflects the relative similarities in the form as “face q is more
similar to q̃ than q̂”. Similar to (Norouzi, Blei, and Salakhut-
dinov 2012), the triple ranking loss for ((g(q), g(q̃), g(q̂)) is
defined as
l
(
g(q), g(q̃), g(q̂)

)
= max

(
d
(
g(q), g(q̃)

)− d
(
g(q), g(q̂)

)
+ δ, 0

)
,

(6)

where d(·, ·) is the Hamming distance, and δ ≥ 0 is a param-
eter controlling the margin of the distance difference. Define
the training face image set as Q = [Q1,Q2, ...,QC ] of C
classes, the objective of fine-tuning the deep CNN is

min
W�,W

C∑
i=1

∑
q,q̃∈Qi

q�=q̃

∑
j �=i,q̂∈Qj

l
(
g(q), g(q̃), g(q̂)

)
, (7)

where W is the parameters of the last layer (hash functions),
and W� represents the parameters of the front layers.

To solve Eq.(7), the gradient of Eq.(6) is needed. Since
the hash function contains the sign function sgn(·) which is
non-smooth and non-differentiable, we use tanh(·) instead
of the sign function during the fine-tuning procedure. The
hamming distance can be rewritten as d

(
g(q), g(q̃)

)
= (s−

g(q)�g(q̃))/2. Therefore, the gradients of Eq.(6) w.r.t. hash
codes are given by

∂l

∂g(q)
=

1

2
(g(q̂)− g(q̃))× I,

∂l

∂g(q̃)
= −1

2
g(q)× I,

∂l

∂g(q̂)
=

1

2
g(q)× I,

(8)

where I is a binary function which returns 1 when
d
(
g(q), g(q̃)

)−d
(
g(q), g(q̂)

)
+δ > 0 and 0 for other occa-

sions. Obtaining these gradients, the fine-tuning procedure
can be conducted via the back-propagation algorithm.

Experiments

Dataset

We use the ICT-TV dataset (Li et al. 2015c) to evaluate the
proposed method. The ICT-TV dataset contains two large
scale video collections from two hit American shows, i.e.,
the Big Bang Theory (BBT) and Prison Break (PB). These
two TV series are quite different in their filming styles. The
BBT is a sitcom with 5 main characters, and most scenes are
taken indoors during each episode of about 20 minutes long.
Differently, many shots of the PB are taken outside during
the episodes with the length of about 42 minutes, which re-
sults in a large range of different illumination. All the face
video shots are collected from the whole first season of both
TV series, i.e., 17 episodes of BBT, and 22 episodes of PB,
and the number of shots of the two sets are 4, 667 and 9, 435,
respectively. The collected video shots are stored in the form
of images with size of 150× 150 frame by frame.

Experimental Settings

We compare our method with eight state-of-the-art hashing
methods: LSH (Gionis et al. 1999), SH (Weiss, Torralba, and
Fergus 2009), ITQ, SITQ, RR (Gong and Lazebnik 2011),
SSH (Wang, Kumar, and Chang 2010), DBC (Rastegari,
Farhadi, and Forsyth 2012), KSH (Liu et al. 2012), and two
face video retrieval methods: HSVBC and HHSVBC (Li et
al. 2015c). For each TV-Series dataset, we randomly select
10 face shots per actor or actress for training hash functions,
and use the rest face shots for testing. Same to (Li et al.
2015c), the query set consists of 10 face shots. To evaluate
the quality of hashing, we use three evaluation criterions: the
Mean Average Precision (MAP), the Precision Recall (PR)
curve, and Precision curve w.r.t. different number of top re-
turned samples. For fair comparisons, all the methods use
the same training and test sets.

The deep CNN is trained by the stochastic gradient de-
scent with momentum of 0.9 and weight decay of 0.0005.
The mini-batch size of the training samples is 128, and the
triplets are randomly generated based on the labels. Our net-
work takes the face image as input and outputs the binary
hash representation of the face, and each bit of the binary
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Figure 3: The comparison of PR curves and Precision curves w.r.t. the number of top returned samples (PN curve) between the
LDBH and other hashing methods on two TV-Series datasets. (a) is the PR curve on BBT dataset with 256-dim hash code, (b)
is the PR curve on BBT dataset with 128-dim hash code, (c) is the PN curve on BBT dataset with 256-dim hash code, (d) is
the PN curve on BBT dataset with 128-dim hash code, (e) is the PR curve on PB dataset with 256-dim hash code, (f) is the
PR curve on PB dataset with 128-dim hash code, (g) is the PN curve on PB dataset with 256-dim hash code, and (h) is the PN
curve on PB dataset with 128-dim hash code.

Table 1: Comparison results with other retrieval methods on two datasets.
Methods the Big Bang Theory Prison Break

8 bits 16 bits 32 bits 64 bits 128 bits 256 bits 8 bits 16 bits 32 bits 64 bits 128 bits 256 bits
LSH 0.3533 0.3783 0.4093 0.4148 0.4414 0.4383 0.0959 0.0998 0.1048 0.1081 0.1078 0.1101
RR 0.3885 0.4207 0.4042 0.4507 0.4622 0.4407 0.0985 0.0981 0.1018 0.1042 0.1065 0.1105
ITQ 0.3434 0.3445 0.4033 0.4257 0.4428 0.4324 0.0999 0.1129 0.1083 0.1114 0.1095 0.1098
SH 0.4086 0.4225 0.3802 0.3809 0.3765 0.3972 0.0914 0.0901 0.0978 0.0964 0.1048 0.1059

SSH 0.3401 0.3134 0.2830 0.2757 0.2878 0.3656 0.1138 0.1527 0.1488 0.1417 0.1409 0.1436
KSH 0.4981 0.5799 0.6506 0.6965 0.7094 0.7300 0.1218 0.1571 0.1546 0.1619 0.1630 0.1599
SITQ 0.5384 0.6185 0.6702 0.6891 0.7006 0.7165 0.1070 0.1211 0.1326 0.1462 0.1578 0.1640

HSVBC 0.6208 0.7918 0.8494 0.8573 0.8663 0.8730 0.1393 0.1552 0.1824 0.1996 0.2158 0.2365
HHSVBC 0.7177 0.8763 0.9113 0.9078 0.9116 0.9172 0.1703 0.1950 0.2279 0.2585 0.2743 0.3035

Our method 0.7637 0.9171 0.9246 0.9317 0.9381 0.9412 0.1913 0.2107 0.2452 0.2778 0.2926 0.3261

representation can be viewed as a visual attribute of the face.
We model the face video as a set of face images. Given a
face video, each frame is inputted into the deep CNN to ob-
tain a binary representation. All the binary representations
are fused by hard-voting method, and a unified binary repre-
sentation of the video is obtained for retrieval.

Results and Discussions

We first evaluate the effectiveness of the proposed Low-rank
Discriminative Binary Hashing (LDBH) method. The 4096-
dim AlexNet features of face images are used to learn hash
representations, and Figure 3 shows the comparison of PR
curves and Precision curve w.r.t. different number of top re-
turned samples between the LDBH and several state-of-the-
art methods on two datasets. The two curves are computed
by averaging the randomly selected 10×C queries where C
is the number of the character. Among these hashing meth-
ods, ITQ, RR, LSH, and SH are unsupervised methods, and
the DBC and LDBH are supervised methods. As shown in
the figure, the performances of supervised methods are much
better than unsupervised methods due to the full usage of
the supervision information. The primal reason of the fact

that the LDBH achieves better results than DBC is that the
LDBH considers low-rank property besides discrimination
and stability.

After fine-tuning, the network is adjusted to generate dis-
criminative and compact binary representation for retrieving
faces from videos. Table 1 shows the comparisons of mAPs
between the proposed method and other methods. The re-
sults of other methods are from (Li et al. 2015c). All these
methods use the covariance matrix of Fisher Vectors as fea-
tures which are not optimal compatible with the hashing pro-
cedure. In contrast, our method integrates feature extraction
and hash learning into a unified network and achieves good
performance.

Conclusions

This paper presented a deep CNN for face video retrieval.
The network integrates feature extraction and hash learning
into a unified optimization framework to guarantee that the
feature extractor is optimally compatible with the followed
hashing. The low-rank discriminative binary hashing is pro-
posed to pre-learn hash functions for better initializing the
network, and the feature extractor is initialized by the front
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seven layers of the AlexNet which is pre-trained on the Im-
ageNet dataset. After obtaining the initializations, the net-
work is fine-tuned to improve the performance of face video
retrieval. The proposed method achieved excellent perfor-
mances on two challenging TV-Series datasets.
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