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Abstract

As an important yet challenging problem in computer
vision, pedestrian detection has achieved impressive
progress in recent years. However, the significant per-
formance decline with decreasing resolution is a major
bottleneck of current state-of-the-art methods. For the
popular boosting-based detectors, one of the main rea-
sons is that low resolution samples, which are usually
more difficult to detect than high resolution ones, are
treated by equal costs in the boosting process, leading
to the consequence that they are more easily being re-
jected in early stages and can hardly be recovered in late
stages as false negatives. To address this problem, we
propose in this paper a new multi-resolution detection
approach based on a novel group cost-sensitive boost-
ing algorithm, which extends the popular AdaBoost by
exploring different costs for different resolution groups
in the boosting process, and places more emphases on
low resolution group in order to better handle detection
of hard samples. The proposed approach is evaluated on
the challenging Caltech pedestrian benchmark, and out-
performs other state-of-the-art on different resolution-
specific test sets.

Introduction

Pedestrian detection is a challenging problem in computer
vision, and has attracted plenty of attention for decades
for its importance in practical applications such as video
surveillance, driving assistance, etc. Thanks to various effec-
tive detection techniques, pedestrian detection has achieved
great progress in recent years. However, detecting multi-
resolution pedestrians (as in Fig. 1) is still hard, and a major
bottleneck of current state-of-the-art methods is their signif-
icant performance decline with decreasing resolution. For
example, the mean miss rate of the best detector (Paisitkri-
angkrai, Shen, and van den Hengel 2014a) achieves 8% for
pedestrians taller than 80 pixels in Caltech pedestrian bench-
mark (Dollár et al. 2012), while significantly increases to
63% for pedestrians of 30-80 pixels high. Nevertheless, ro-
bust detection of low resolution pedestrians is also very im-
portant in certain occasions like driving assistant systems to
provide enough time for reaction.
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Figure 1: Example test images in Caltech pedestrian bench-
mark and ground truth annotations. Note that people are in a
wide range of resolutions.

The boosting-based approaches are popular for training
pedestrian detectors due to their both high effectiveness and
efficiency. The basic idea is to linearly combine a series of
weak classifiers to produce a strong classifier. Each training
sample is assigned by a weight which is updated iteratively
in order to emphasize on those wrongly classified samples.
In pedestrian detection, the fact is that rare positive targets
need to be detected from enormous negative windows. Thus
more weights should be placed on positive samples during
training to achieve a higher detection rate. To do so, several
cost-sensitive boosting algorithms have been proposed (Vi-
ola and Jones 2001) (Sun et al. 2007) (Masnadi-Shirazi and
Vasconcelos 2011) to penalize more on false negatives than
on false positives. However, these methods are not optimal
for multi-resolution detection, since they still treat the whole
positive samples equally and ignore the intra-class varia-
tions. Features extracted from low resolution pedestrians are
usually less discriminative than that from high resolution
ones, so that they are more easily being rejected in early
stages and can hardly be recovered in late stages as false neg-
atives. Thus the trained detector can be biased towards high
resolution pedestrians, leading to poorer performance on low
resolution pedestrians. To address this problem, we propose
a new multi-resolution detection approach based on a novel
group cost-sensitive boosting algorithm, which can explore
different costs for different resolution groups in the boost-
ing process, and emphasize more on low resolution pedestri-
ans in order to better handle detection of hard samples. The
experimental results show its superior performance to other
state-of-the-art on different resolution-specific test sets.
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Figure 2: Comparison of different cost-sensitive boosting strategies.

Related Work

The research on pedestrian detection has lasted for decades,
and remarkable progress has been made thanks to various
detection approaches (Dollár et al. 2012). However, limited
works focus on multi-resolution detection problem. (Park,
Ramanan, and Fowlkes 2010) propose a multi-resolution
pedestrian model where a rigid HOG template is used for
low resolution samples, and a part-based model is used for
high resolution samples. (Benenson et al. 2012) propose
to reduce the number of scales for feature computation by
a factor K without image resizing, and mainly focus on
speedup more than quality. (Costea and Nedevschi 2014)
propose scale independent features and use one single clas-
sifier for all scales. Recently, (Yan et al. 2013) take pedes-
trian detection in different resolutions as different but related
problems, and propose a multi-task model to jointly con-
sider their commonness and differences. Nevertheless, this
method relies on deformable part-based model (DPM) and
thus has a relatively high computational complexity.

To achieve efficient detection, boosting is popular in de-
tector training. Several cost-sensitive boosting algorithms
have been proposed in the literature to address data im-
balance problem, and can be divided into two kinds: (1)
class cost-sensitive (CCS) boosting such as Asymmetric-
AdaBoost (Viola and Jones 2001), AdaCost (Fan et al.
1999), CSB0-CSB2 (Ting 2000), AdaC1-AdaC3 (Sun et
al. 2007) and Cost-sensitive Boosting (Masnadi-Shirazi and
Vasconcelos 2011); (2) sample cost-sensitive (SCS) boost-
ing (Abe, Zadrozny, and Langford 2004). They share the
same main idea of putting more costs on the positive samples
by modifying the weight update rules, so that false negatives
are penalized more than false positives. Although they dis-
tinguish positive samples from negative ones in the boosting
process, they still ignore the variations in positive set. Differ-
ent from these methods, our proposed approach is based on
a new group cost-sensitive (GCS) boosting which explores
different costs for different resolution groups in positive set
during boosting in order to better handle multi-resolution de-
tection. Note that our approach is related to both CCS boost-
ing and SCS boosting, and can be considered as a general-
ized form of them. As shown in Fig. 2, in the special case
of decreasing group number to treat positive samples as a

whole, GCS boosting is simplified to CCS boosting; in the
special case of increasing group number to treat each sam-
ple as an individual group, GCS boosting scales up to SCS
boosting.

Multi-Resolution Detection via Locally

Decorrelated Channel Features and Group

Cost-Sensitive AdaBoost

In this section, we present a new multi-resolution detection
approach based on a novel group cost-sensitive boosting al-
gorithm, which extends the popular AdaBoost by exploring
different costs for different resolution groups in the boost-
ing process, so that more emphases can be placed on low
resolution group in order to better handle detection of hard
samples. Particularly, we apply the idea to the popular LDCF
detector (Nam, Dollár, and Han 2014) and propose a multi-
resolution LDCF detector.

Locally Decorrelated Channel Features (LDCF)
Detector

We apply the Locally Decorrelated Channel Features
(LDCF) detector as a baseline, because of its good detec-
tion quality. Given an input image, LDCF detector first com-
putes several feature channels, where each channel is a per-
pixel feature map such that output pixels are computed from
corresponding patches of input pixels. An efficient feature
transform is then applied to remove correlations in local
image neighborhoods, since effective but expensive oblique
splits in decision trees can be replaced by orthogonal splits
over locally decorrelated data. Totally 10 image channels
(1 normalized gradient magnitude channel, 6 histogram of
oriented gradients channels and 3 LUV color channels) are
used and 4 decorrelating filters per channel are applied, re-
sulting in a set of 40 locally decorrelated channel features.
For detector training, AdaBoost is used to train and combine
decision trees over these features to obtain a strong classi-
fier. For more details of the LDCF detector, please refer to
(Nam, Dollár, and Han 2014).

Detection via AdaBoost For the convenience of the fol-
lowing presentation, we first give a formal problem defini-
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tion of detection via AdaBoost.
Given a set of samples {(xi, yi)}ni=1 for pedestrian detec-

tion, where x = (x1, . . . , xN )T ∈ X = R
N is the feature

vector of each sample, and y ∈ Y = {−1, 1} is the class
label, a detector (or binary classifier) is a function h which
maps each feature vector x to its corresponding class label
y, and is usually implemented as:

h(x) = sgn[f(x)] (1)

where f(x) is a predictor, sgn[·] is the sign function that
equals 1 if f(x) ≥ 0 and equals -1 otherwise. The detector
will be optimal if it minimizes the risk EX,Y [Loss(x, y)],
where Loss(x, y) is a loss function to measure the classifi-
cation error. The AdaBoost algorithm applied in LDCF uses
the following loss function:

Loss(x, y) =

{
0, if h(x) = y
1, if h(x) �= y

(2)

and learns a predictor f(x) by linear combination of weak
learners:

f(x) =

M∑
m=1

αmgm(x) (3)

where αm is a set of weights and gm(x) = sgn[φm(x)−tm]
is a set of decision stumps with φm(x) a feature response
and tm a threshold.

Specifically, the predictor is learned by gradient descent
with respect to the exponential loss:

EX,Y [exp(−yf(x))] (4)

that weak learners are selected iteratively to minimize the
classification error at each iteration:

gm(x) = argmin
g

(err(m)) (5)

where

err(m) =
n∑

i=1

ω
(m)
i [1− I(yi = gm(xi))] (6)

is the classification error and I(·) is an indicator function:

I(y = a) =

{
1, if y = a
0, if y �= a

(7)

The weight of weak learners is calculated by:

αm =
1

2
log

(
1− err(m)

err(m)

)
(8)

and the weight ω(m)
i assigned to the sample xi is updated

accordingly to increase the importance of wrongly classified
samples as well as to decrease the importance of correctly
classified samples at the next iteration:

ω
(m+1)
i = ω

(m)
i exp(−yiαmgm(xi)) (9)

Group Cost-Sensitive AdaBoost

The loss function defined in (2) is cost-insensitive, since the
costs of false positives (y = −1, h(x) = 1) and false neg-
atives (y = 1, h(x) = −1) are the same. In order to better
handle the detection of multi-resolution, we propose here a
novel group cost-sensitive AdaBoost algorithm by explor-
ing different importance of the samples from different res-
olutions so that more emphases can be placed on hard low
resolution samples.

Group Cost-Sensitive Loss To introduce different impor-
tance for the samples of different resolution, positive sam-
ples are further divided into groups with different resolution.
Here we consider the case of two resolution groups: low res-
olution samples (30-80 pixels high, denoted as xL), and high
resolution samples (taller than 80 pixels, denoted as xH ), as
defined in the Caltech pedestrian benchmark (Dollár et al.
2012). We propose a group cost-sensitive loss function as
follows:

Loss(x, y) =

⎧⎪⎨
⎪⎩

0, if h(x) = y
Cfp, if y = −1, h(x) = 1
Cfnl, if y = 1, h(xL) = −1
Cfnh, if y = 1, h(xH) = −1

(10)

with C∗ > 0. The four scenarios considered in this loss func-
tion are respectively correct detections (h(x) = y), false
positives (y = −1, h(x) = 1), false negatives (miss detec-
tions) of low resolution samples (y = 1, h(xL) = −1) and
false negatives (miss detections) of high resolution samples
(y = 1, h(xH) = −1). Note that when Cfnl = Cfnh, this
group cost-sensitive loss will be equivalent to the canonical
class cost-sensitive loss.

The costs Cfnl, Cfnh and Cfp can be decided accord-
ing to different problems. For pedestrian detection, the in-
tuition tells us that Cfnl and Cfnh should be greater than
Cfp, since miss detections are harder to be recovered than
false positives, and Cfnl should be greater than Cfnh, since
low resolution samples are harder to be detected than high
resolution ones. The optimal values of these costs will be
chosen experimentally by cross-validation. When Cfp, Cfnl

and Cfnh are specified, the group cost-sensitive exponential
loss is:

EX,Y [I ′(y = 1,x ∈ xL) exp(−yCfnlf(x))

+ I ′(y = 1,x ∈ xH) exp(−yCfnhf(x))

+I ′(y = −1,x ∈ x) exp(−yCfpf(x))]

(11)

where I ′(·) is an extended indicator function:

I ′(y = a,x ∈ b) =

{
1, if y = a and x ∈ b
0, others (12)

Group Cost-Sensitive Adaboost The proposed group
cost-sensitive AdaBoost algorithm is derived by gradient de-
scent on the empirical estimate of the expected loss in (11).
Given a set of training samples {(xi, yi)}ni=1, the definition
of the predictor f(x) as in (3) and three groups defined as:

G+L = {i|yi = 1,xi ∈ xL}
G+H = {i|yi = 1,xi ∈ xH}
G− = {i|yi = −1}

(13)
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the weak learner selected at iteration m consists of an opti-
mal step αm along the direction gm of the largest descent of
the expected loss in (11) as:

(αm, gm) = argmin
α,g

∑
i∈G+L

ω
(m)
i exp(−Cfnlαg(xi))

+
∑

i∈G+H

ω
(m)
i exp(−Cfnhαg(xi))

+
∑
i∈G−

ω
(m)
i exp(Cfpαg(xi))

(14)

The optimal step α along the direction g is the solution of:

2Cfnl · err+L · cosh(Cfnlα)− Cfnl · Ω+L · e−Cfnlα

+2Cfnh · err+H · cosh(Cfnhα)− Cfnh · Ω+H · e−Cfnhα

+2Cfp · err− · cosh(Cfpα)− Cfp · Ω− · e−Cfpα = 0
(15)

with

Ω+L =
∑

i∈G+L

ω
(m)
i ,Ω+H =

∑
i∈G+H

ω
(m)
i ,Ω− =

∑
i∈G−

ω
(m)
i

(16)
err+L =

∑
i∈G+L

ω
(m)
i [1− I(yi = g(xi))] (17)

err+H =
∑

i∈G+H

ω
(m)
i [1− I(yi = g(xi))] (18)

err− =
∑
i∈G−

ω
(m)
i [1− I(yi = g(xi))] (19)

Given the step α and the direction g, the total loss of the
weak learner (α, g) is calculated as:

errT = (eCfnlα(g) − e−Cfnlα(g))err+L + e−Cfnlα(g)Ω+L

+ (eCfnhα(g) − e−Cfnhα(g))err+H + e−Cfnhα(g)Ω+H

+ (eCfpα(g) − e−Cfpα(g))err− + e−Cfpα(g)Ω−
(20)

and the direction of the largest descent is selected to have
the minimum loss:

gm = argmin
g

(errT ) (21)

The weight ω(m)
i of each sample xi at the next iteration is

updated as follows:

ω
(m+1)
i =

⎧⎪⎨
⎪⎩

ω
(m)
i e−Cfnlαmgm(xi), if i ∈ G+L

ω
(m)
i e−Cfnhαmgm(xi), if i ∈ G+H

ω
(m)
i eCfpαmgm(xi), if i ∈ G−

(22)

The possible descent directions are defined by a set of
weak learners {gk(x)}Kk=1. The optimal step α along each
direction is obtained by solving (15), and can be done ef-
ficiently with standard scalar search procedures. Given step
α and direction g, the loss associated with the weak learner
is calculated as in (20), and the best weak learner with the
minimum loss is selected as in (21). A summary of the pro-
posed group cost-sensitive AdaBoost algorithm is presented
in Algorithm 1.

Algorithm 1 Group Cost-Sensitive AdaBoost
Input: Training set {(xi, yi)}ni=1 where xi is the feature

vector of the sample and yi ∈ {1,−1} is the class la-
bel, costs {Cfnl, Cfnh, Cfp} for different groups, set of
weak learners {gk(x)}Kk=1, and the number M of weak
learners in the final classifier.

Output: Strong classifier h(x) for GCS-LDCF detector.
1: Initialization: Set uniformly distributed weights for

each group:
2: ω

(0)
i = 1

2|G+L| , ∀i ∈ G+L; ω
(0)
i = 1

2|G+H | , ∀i ∈
G+H ; ω

(0)
i = 1

2|G−| , ∀i ∈ G−.
3: for m = {1, . . . ,M} do
4: for k = {1, . . . ,K} do
5: Compute parameter values as in (16)-(19) with

g(x) = gk(x);
6: Obtain the value of αk by solving (15);
7: Calculate the loss of the weak learner

(αk, gk(x)) as in (20).
8: end for
9: Select the best weak learner (αm, gm(x)) with the

minimum loss as in (21);
10: Update the weights ωi according to (22).
11: end for

12: return h(x) = sgn
[∑M

m=1 αmgm(x)
]
.

Multi-Resolution LDCF Detector

Finally, by incorporating the proposed group cost-sensitive
AdaBoost algorithm into the LDCF detector, we obtain a
new group cost-sensitive LDCF detector (denoted as “GCS-
LDCF” in the experiments) which has a better capability
of handling multi-resolution detection. For pedestrian detec-
tion, the learned detector is applied on each test image us-
ing a multi-scale sliding window strategy, and non-maximal
suppression is used to obtain the final detection results.

Experimental Evaluation

In order to evaluate the proposed approach, the experiments
are conducted on the Caltech pedestrian detection bench-
mark (Dollár et al. 2012), which is by far the largest, most
realistic and challenging pedestrian dataset. It consists of ap-
proximately 10 hours of 640 × 480 30Hz video taken from
a vehicle driving through regular traffic in an urban envi-
ronment. The data were captured over 11 sessions, and are
roughly divided in half for training and testing. It contains
a vast number of pedestrians – about 250,000 frames in 137
approximately minute long segments with a total of 350,000
bounding boxes and 2300 unique pedestrians were anno-
tated. This benchmark is challenging mainly because it con-
tains many low resolution pedestrians and has realistic oc-
clusion frequency. Also the image quality is somewhat lack-
ing, including blur as well as visible JPEG artifacts (blocks,
ringing, quantization).
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Table 1: Log-average miss rate (%) of popular multi-resolution detection methods on different subsets of Caltech.

MultiResC Roerei MT-DPM WordChannels GCS-LDCF
[ECCV 2010] [CVPR 2013] [CVPR 2013] [CVPR 2014] [Proposed]

Reasonable 48.45 48.35 40.54 42.30 20.20
Large Scale 17.84 16.07 16.26 21.97 3.62
Near Scale 21.19 21.79 19.23 26.54 5.84
Medium Scale 73.16 74.16 66.63 73.16 59.53

Mean 40.16 40.09 35.67 40.99 22.30

Experimental Setup

We follow a common training-testing protocol as in the lit-
erature: the pedestrian detector is trained on the training set
(set00-set05), and the detection results are reported on the
test set (set06-set10). To train the detector, we choose the
image regions labeled as “persons” that are non-occluded
with different resolutions as positive samples, and negative
samples are chosen at random locations and sizes from the
training images without pedestrians.

The training parameters in the proposed approach are
set as follows: The optimal value of the costs for different
groups are selected from Cfp = 1, Cfnh ∈ [1 : 0.1 : 10]
and Cfnl ∈ [Cfnh : 0.1 : Cfnh + 10] by cross-validation.
4096 weak classifiers are trained and combined to a strong
classifier, and the nodes of the decision trees are constructed
using a pool of random candidate regions from image sam-
ples. The multi-scale models are used to increase scale in-
variance. Three bootstrapping stages are applied with 25,000
additional hard negatives each time.

For evaluation of the results, we use the bounding boxes
labels and the evaluation software (version 3.2.1) provided
by Dollár et al. on his website1. The per-image evalua-
tion methodology is adopted, i.e. all the detection results
are compared using miss rate vs. False-Positive-Per-Image
(FPPI) curves. The log-average miss rate is also used to
summarize the detection performance, and is computed by
averaging the miss rate at 9 FPPI points2 that are evenly
spaced in the log-space in the range from 10−2 to 100. There
exist various experimental settings on Caltech to evaluate
detectors in different conditions. In order to validate the ef-
fectiveness of the proposed approach for multi-resolution
detection, our experiments are conducted on the most popu-
lar “Reasonable” subset (pedestrians of ≥ 50 pixels high and
less than 35% occluded) and three resolution-specific sub-
sets: “Large Scale” (pedestrians of ≥ 100 pixels high and
fully visible); “Near Scale” (pedestrians of ≥ 80 pixels high
and fully visible) and “Medium Scale” (pedestrians of 30-80
pixels high and fully visible).

Comparison with Other Popular Multi-Resolution
Detection Methods

We first compare the proposed approach with other popu-
lar multi-resolution detection methods in the literature, in-

1www.vision.caltech.edu/Image Datasets/CaltechPedestrians/
2The mean miss rate at 0.0100, 0.0178, 0.0316, 0.0562, 0.1000,

0.1778, 0.3162, 0.5623 and 1.0000 FPPI.

cluding MultiResC (Park, Ramanan, and Fowlkes 2010),
Roerei (Benenson et al. 2013), MT-DPM (Yan et al. 2013)
and WordChannels (Costea and Nedevschi 2014). Table 1
reports the log-average miss rate of these methods on the
“Reasonable” and three resolution-specific subsets of the
Caltech benchmark. It can be observed that the proposed ap-
proach significantly outperforms the other multi-resolution
methods on all the test sets. By averaging the performances
on four test sets, the proposed approach outperforms the
other methods by at least 13.4%, validating the effectiveness
of the proposed approach for multi-resolution detection.

Comparison with Other State-of-the-art Pedestrian
Detection Methods

We also compare the proposed approach with many other
state-of-the-art pedestrian detection methods in the litera-
ture, including VJ (Viola, Jones, and Snow 2005), HOG
(Dalal and Triggs 2005), AFS (Levi, Silberstein, and Bar-
Hillel 2013), ChnFtrs (Dollár et al. 2009), HOG-LBP
(Wang, Han, and Yan 2009), ConvNet (Sermanet et al.
2013), CrossTalk (Dollár, Appel, and Kienzle 2012), Feat-
Synth (Bar-Hillel et al. 2010), FPDW (Dollár, Belongie,
and Perona 2010), HikSVM (Maji, Berg, and Malik 2008),
LatSVM (Felzenszwalb et al. 2010), MultiFtr (Wojek and
Schiele 2008), MOCO (Chen et al. 2013), pAUCBoost
(Paisitkriangkrai, Shen, and van den Hengel 2013), Pls
(Schwartz et al. 2009), PoseInv (Lin and Davis 2008),
Shapelet (Sabzmeydani and Mori 2007), RandForest (Marı́n
et al. 2013), MultiSDP (Zeng, Ouyang, and Wang 2013),
ACF (Dollár et al. 2014), SDN (Luo et al. 2014), DBN-
Mut (Ouyang, Zeng, and Wang 2013), Franken (Mathias et
al. 2013), InformedHaar (Zhang, Bauckhage, and Cremers
2014), LDCF (Nam, Dollár, and Han 2014), ACF-Caltech+
(Nam, Dollár, and Han 2014), SpatialPooling (Paisitkri-
angkrai, Shen, and van den Hengel 2014b), SpatialPool-
ing+ (Paisitkriangkrai, Shen, and van den Hengel 2014a) and
Katamari (Benenson et al. 2014). These methods adopt var-
ious types of features and different modeling strategies. We
obtain the results of these methods directly from the same
website as the evaluation software.

Fig. 3 presents the ROC curves (miss rate vs. FPPI) and
the corresponding log-average miss rate (reported in the leg-
end of the figure) of different methods on four test sets of
the Caltech benchmark. Note that only the results of top 15
methods plus the classic VJ and HOG are displayed in the
figure due to the space limitation. We can clearly observe
that: (1) The proposed approach performs significantly bet-
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Figure 3: Comparison with state-of-the-art methods on the Caltech benchmark.

ter than the baseline detector (LDCF) on all of the four test
sets (4.60% better on “Reasonable”, 4.59% better on “Large
Scale”, 4.62% better on “Near Scale” and 2.29% better on
“Medium Scale” respectively), demonstrating that the pro-
posed detector truly benefits from exploring different costs
for different resolutions by the group cost-sensitive boost-
ing in the training phase; (2) The proposed approach out-
performs all the other state-of-the-art methods both in terms
of the ROC curves and the log-average miss rate on all of
the four test sets, indicating that our approach is an effective
way for pedestrian detection, especially in multi-resolution
cases; (3) Note that some methods in the literature also uti-
lize the additional motion or context information to help de-
tection, while our approach focuses on pedestrian detection
in static images and does not take such information into con-
sideration. Nevertheless, a possible future work is to con-

sider motion and context information for further improve-
ment.

Conclusions

In this paper, we have proposed a new group cost-sensitive
boosting based approach for handling multi-resolution
pedestrian detection. Different from the canonical boosting-
based methods in which low resolution samples are treated
by equal costs as high resolution ones, so that they are more
easily being rejected in the early stage, the proposed ap-
proach extends the popular AdaBoost by exploring differ-
ent costs for different resolution groups in the boosting pro-
cess, and places more emphases on the hard low resolution
samples to better handle multi-resolution detection. The ef-
fectiveness of the proposed approach has been validated by
its superior performance to other state-of-the-art on different
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resolution-specific test sets of the Caltech benchmark.
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