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Abstract

Skeleton based action recognition distinguishes hu-
man actions using the trajectories of skeleton joints,
which provide a very good representation for describ-
ing actions. Considering that recurrent neural networks
(RNNs) with Long Short-Term Memory (LSTM) can
learn feature representations and model long-term tem-
poral dependencies automatically, we propose an end-
to-end fully connected deep LSTM network for skeleton
based action recognition. Inspired by the observation
that the co-occurrences of the joints intrinsically charac-
terize human actions, we take the skeleton as the input
at each time slot and introduce a novel regularization
scheme to learn the co-occurrence features of skeleton
joints. To train the deep LSTM network effectively, we
propose a new dropout algorithm which simultaneously
operates on the gates, cells, and output responses of the
LSTM neurons. Experimental results on three human
action recognition datasets consistently demonstrate the
effectiveness of the proposed model.

1 Introduction

Recognizing human actions has remained one of the most
important and challenging tasks in computer vision. It fa-
cilitates a wide range of applications such as intelligent
video surveillance, human-computer interaction, and video
understanding (Poppe 2010; Weinland, Ronfard, and Boyerc
2011).

Traditional studies on action recognition mainly focus on
recognizing actions from RGB videos recorded by 2D cam-
eras (Weinland, Ronfard, and Boyerc 2011). However, cap-
turing human actions in the full 3D space in which they ac-
tually occur can provide more comprehensive information.
Biological observations suggest that humans can recognize
actions from just the motion of a few light displays attached
to the human body (Johansson 1973). Motion capture sys-
tems (CMU 2003) extract 3D joint positions using markers
and high precision camera arrays. Although slightly higher
in price, such systems provide highly accurate joint positions
for skeletons. Recently, the Kinect device has gained much
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popularity thanks to its excellent accuracy in human body
modeling and affordable price. The bundled SDK for Kinect
v2 can directly generate accurate skeletons in real-time. Due
to the prevalence of these devices, skeleton based represen-
tations of the human body and its temporal evolution has
become an attractive option for action recognition.

In this paper, we focus on the problem of skeleton based
action recognition. The key to this problem lies mainly in
two aspects. One is to design robust and discriminative fea-
tures from the skeleton (and the corresponding RGBD im-
ages) for intra-frame content representation (Müller, Röder,
and Clausen 2005; Wang, Liu, and Junsong 2012; Sung et
al. 2012; Yang and Tian 2014; Ji, Ye, and Cheng 2014).
The other is to explore temporal dependencies of the inter-
frame content for action dynamics modeling, using hierar-
chical maximum entropy Markov model (Sung et al. 2011),
hidden Markov model (Xia, Chen, and Aggarwal 2012) or
Conditional Random Fields (Sminchisescu et al. 2005). In-
spired by the success of deep recurrent neural networks
(RNNs) using the Long Short-Term Memory (LSTM) archi-
tecture for speech feature learning and time series modeling
(Graves, Mohamed, and Hinton 2013; Graves and Schmid-
huber 2005), we intend to build an effective action recogni-
tion model based on deep LSTM network.

To this end, we propose an end-to-end fully connected
deep LSTM network to perform automatic feature learning
and motion modeling (Fig. 1). The proposed network is con-
structed by inheriting many insights from recent successful
networks (Graves 2012; Krizhevsky, Sutskever, and Hinton
2012; Szegedy et al. 2015; Du, Wang, and Wang 2015) and
is designed to robustly model complex relationships among
different joints. The LSTM layers and feedforward layers
are alternately deployed to construct a deep network to cap-
ture the motion information. To ensure the model learns ef-
fective features and motion dynamics, we enforce different
types of strong regularization in different parts of the model,
which effectively mitigates over-fitting.

Specifically, two types of regularizations are proposed. (i)
For the fully connected layers, we introduce regularization
to drive the model to learn co-occurrence features of the
joints at different layers. (ii) For the LSTM neurons, we de-
rive a new dropout and apply it to the LSTM neurons in the
last LSTM layer, which helps the network to learn complex
motion dynamics. With these forms of regularization, we
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validate our deep LSTM networks on three public datasets
for human action recognition. The proposed model has been
shown to consistently outperform other state-of-the-art algo-
rithms for skeleton based human action recognition.

2 Related Work

2.1 Activity Recognition with Neural Networks

In contrast to the handcrafted features, there is a growing
trend of learning robust feature representations from raw
data with deep neural networks, and excellent performance
has been reported in image classification (Krizhevsky,
Sutskever, and Hinton 2012) and speech recognition
(Graves, Mohamed, and Hinton 2013). However, there are
only few works which leverage neural networks for skeleton
based action recognition. A multi-layer perceptron network
is trained to classify each frame (Cho and Chen 2014); how-
ever, such a network cannot explore temporal dependencies
very well. In contrast, a gesture recognition system (Lefeb-
vre et al. 2013) employs a shallow bidirectional LSTM with
only one forward hidden layer and one backward hidden
layer to explore long-range temporal dependencies. A deep
recurrent neural network architecture with handcrafted sub-
nets is utilized for skeleton based action recognition (Du,
Wang, and Wang 2015). However, the handcrafted hier-
archical subnets and their fusion ignore the inherent co-
occurrences of joints. This motivates us to design a deep
fully connected neural network which is capable of fully ex-
ploiting the inherent correlations among skeleton joints in
various actions.

2.2 Co-occurrence Exploration

An action is usually only associated with and characterized
by the interactions and combinations of a subset of the skele-
ton joints. For example, the joints “hand”, “arm” and “head”
are associated with the action “making telephone call”. An
actionlet ensemble model exploits this trait by mining some
particular conjunctions of the features corresponded to some
subsets of the joints (Wang, Liu, and Junsong 2012). Simi-
larly, actions involving two people can be characterized by
the interactions of a subset of the two persons’ joints (Yun
et al. 2012; Ji, Ye, and Cheng 2014). Inspired by the action-
let ensemble model, we introduce a new exploration mech-
anism in the deep LSTM architecture to achieve automatic
co-occurrence mining as opposed to pre-specifying in ad-
vance which joints should be grouped.

2.3 Dropout for Recurrent Neural Networks

Dropout has been demonstrated to be quite effective in deep
convolutional neural networks (Krizhevsky, Sutskever, and
Hinton 2012), but there has been relatively little research
on applying it to RNNs. In order to preserve the ability of
RNNs to model sequences, dropout applied only to the feed-
forward (along layers) connections but not to the recurrent
(along time) connections is proposed (Pham et al. 2014).
This is to avoid erasing all the information from the units
(due to dropout). Note that the previous work only con-
siders dropout at the output response for an LSTM neuron
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Figure 1: The proposed deep LSTM network with three
LSTM layers and two feedforward layers. For clarity, the
temporal recurrent structure is not shown.

(Zaremba, Sutskever, and Vinyals 2014). However, consid-
ering that an LSTM neuron consists of internal cell and gate
units, we believe one should not only look at the output of
the neuron but also into its internal structure to design effec-
tive dropout schemes. In this paper, we design an in-depth
dropout for LSTM to address this problem.

3 Deep LSTM with Co-occurrence

Exploration and In-depth Dropout

Leveraging the insights from recent successful networks, we
design a fully connected deep LSTM network for skeleton
based action recognition. Fig. 1 shows the architecture of
the proposed network, which has three bidirectional LSTM
layers, two feedforward layers, and a softmax layer that
gives the predictions. The proposed full connection archi-
tecture enables one to fully exploit the inherent correlations
among skeleton joints. In the network, the co-occurrence ex-
ploration is applied to the connections prior to the second
LSTM layer to learn the co-occurrences of joints/features.
LSTM dropout is applied to the last LSTM layer to enable
more effective learning. Note that each LSTM layer uses
bidirectional LSTM and we do not explicitly distinguish the
forward and backward LSTM neurons in Fig. 1. At each time
step, the input to the network is a vector denoting the 3D po-
sitions of the skeleton joints in a frame.

In the following, we first review LSTM briefly to make the
paper self-contained. Then we introduce our method for co-
occurrence exploration in the deep LSTM network. Lastly
we describe our dropout algorithm which is designed for the
LSTM neurons and enables effective learning of the model.

3.1 Overview of LSTM

The RNN is a successful model for sequential learning
(Graves 2012). For the recurrent neurons at some layer, the
output responses ht are calculated based on the inputs xt to
this layer and the responses ht−1 from the previous time slot

ht = θ (Wxhxt +Whhht−1 + bh) , (1)

where θ (·) denotes the activation function, bh denotes the
bias vector, Wxh is the matrix of weights between the input
and hidden layer and Whh is the matrix of recurrent weights
from the hidden layer to itself at adjacent time steps which
is used for exploring temporal dependency.
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Figure 2: The structure of an LSTM neuron.

LSTM is an advanced RNN architecture which can learn
long-range dependencies (Graves, Mohamed, and Hinton
2013). Fig. 2 shows a typical LSTM neuron, which con-
tains an input gate it, a forget gate ft, a cell ct, an output
gate ot and an output response ht. The input gate and for-
get gate govern the information flow into and out of the cell.
The output gate controls how much information from the
cell is passed to the output ht. The memory cell has a self-
connected recurrent edge of weight 1, ensuring that the gra-
dient can pass across many time steps without vanishing or
exploding. Therefore, it overcomes the difficulties in train-
ing the RNN model caused by the “vanishing gradient” ef-
fect. For all the LSTM neurons in some layer, at time t, the
recursive computation of activations of the units is

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) ,

ft = σ (Wxfxt +Whfht−1 +Wcfct−1 + bf ) ,

ct = ft� ct−1+ it � tanh(Wxcxt+Whcht−1+bc) ,

ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) ,

ht = ot � tanh (ct) ,

(2)

where � denotes element-wise product, σ (x) is the sigmoid
function defined as σ (x) = 1/(1+e−x), Wαβ is the weight
matrix between α and β (e.g., Wxi is the weight matrix from
the inputs xt to the input gates it), and bβ denotes the bias
term of β with β ∈ {i, f, c, o}. Four weight matrixes are
associated with input xt. To allow the information from both
the future and the past to determine the output, bidirectional
LSTM can be utilized (Graves 2012).

3.2 Co-occurrence Exploration

The fully connected deep LSTM network in Fig. 1 has very
powerful learning capability. However, it is difficult to learn
directly due to the huge parameter space. To overcome this
problem, we introduce a co-occurrence exploration process
to ensure the deep model learns effective features.

The co-occurrence of some joints can intrinsically char-
acterize a human action. Fig. 3 shows two examples. For
“walking”, the joints from hands and feet have high corre-
lations but they all have low correlations with the joint of
root. The sets of correlated joints for “walking” and “drink-
ing” are very different, indicating the discriminative subset
of joints varies for different types of actions. Two main as-
pects have been considered in our design of the network
and the specialized regularization we propose. (i) We ex-
pect the network can automatically explore the conjunctions
of discriminative joints. (ii) We expect the network can ex-
plore different co-occurrences for different types of actions.

Figure 3: Illustration of co-occurrences of joints for “walk-
ing” and “drinking” respectively (using the absolute values
of the covariance matrix). Joints from different parts are ac-
tive simultaneously, e.g., joints of hands and feet for “walk-
ing”. Different actions have different active joint sets.

Joints
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Figure 4: Illustration of the connections between joints and
neurons in the first layer. (a) Co-occurrence connections au-
tomatically learned for Group k (proposed). (b) Part-based
subnet connections (Du, Wang, and Wang 2015), where the
co-occurrences of joints across different parts are prohibited.

Therefore, we design the fully connected network to allow
each neuron being connected to any joints (for the first layer)
or responses of the previous layer (for the second or higher
layer) to automatically explore the co-occurrences. Note that
the output responses are also referred to as features which
are the input of the next layer. We divide the neurons in the
same layer into K groups to allow different groups to fo-
cus on exploration of different conjunctions of discrimina-
tive joints. Taking the kth group of neurons as an example
(see Fig. 4 (a)), the neurons will automatically connect the
discriminative joints/features. In our design, we incorporate
the co-occurrence regularization into the loss function

min
Wxβ

L+ λ1

∑
β∈S

‖Wxβ‖1+λ2

∑
β∈S

K∑
k=1

∥∥∥Wxβ,k
T
∥∥∥
2,1

, (3)

where L is the maximum likelihood loss function of the deep
LSTM network (Graves 2012). The other two terms are used
for the co-occurrence regularization which can be applied to
each layer. Wxβ = [Wxβ,1; · · · ;Wxβ,K ] ∈ R

N×J is the
connection weight matrix from inputs to the units associated
with β ∈ S, with N indicating the number of neurons and
J the dimension of inputs (e.g., for the first layer, J is the
number of joints multiplied by 3). The N neurons are parti-
tioned into K groups and the number of neurons in a group
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Figure 5: LSTM dropout. (a) An LSTM neuron viewed in
unfolded form. Gates, cell and output response (as marked
by large circles) can be dropped. (b) Dropout flow. The solid
arrows denote the flow where dropout is forbidden and the
dashed arrows denote the flow where dropout is allowed. A
rectangle box indicates all the LSTM neurons in this layer.

is L=�N/K�, with �·� representing the rounding up opera-
tion. Wxβ,k is the matrix composed of the (L(k−1)+1)th to
(Lk)th rows of Wxβ . Wxβ,k

T denotes its transpose. S de-
notes the set of internal units which are directly connected
to the input of a neuron. For the LSTM layer, S={i, f, c, o}
denotes the gates and cell in LSTM neurons. For the feed-
forward layer, S={h} denotes the neuron itself.

In the third term, for each group of units, a structural �21
norm, which is defined as ‖W‖2,1=

∑
i

√∑
jw

2
i,j (Cotter et

al. 2005), is used to drive the units to select a conjunction
of descriptive inputs (joints/features) since the �21 norm can
encourage the matrix Wxβ,k to be column sparse. Differ-
ent groups explore different connection (co-occurrence) pat-
terns in order to acquire the capability of recognizing multi-
ple categories of actions. The �1 norm constraint (the second
term) helps to learn discriminative joints/features.

The stochastic gradient descent method is then employed
to solve (3). The advantage of the co-occurrence learning
is that the model can automatically learn the discriminative
joint/feature connections, avoiding the fixed a priori block-
ing of joint co-occurrences across human parts (Du, Wang,
and Wang 2015) as illustrated in Fig. 4 (b).

3.3 In-depth Dropout for LSTM

Dropout tries to combine the predictions of many “thinned”
networks to boost the performance. During training, the net-
work randomly drops some neurons to force the remain-
ing sub-network to compensate. During testing, the network
uses all the neurons together to make predictions.

To extend this idea to LSTM, we propose a new dropout
algorithm to allow the dropping of the internal gates, cell
and output response for an LSTM neuron, encouraging each
unit to learn better parameters. For clarity, an LSTM neuron
is shown in Fig. 5 (a) in the unfolded form, where the units
are explicitly connected. For recurrent neural networks, the
erasing of all the information from a unit is not expected, es-
pecially when the unit remembers events that occurred many
timesteps back in the past (Pham et al. 2014). Therefore, we
allow the influence of dropout in LSTM to flow along layers
(marked by dashed arrows) but prohibit it to flow along the
time axis (marked by solid arrows) as illustrated in Fig. 5

(b). To control the influence flows, in the feedforward pro-
cess, the network calculates and records two types of acti-
vations as follows. The responses of units to be transmitted
along the time without dropout are

ĩt = σ
(
Wxixt +Whih̃t−1 +Wcic̃t−1 + bi

)
,

f̃t = σ
(
Wxfxt +Whf h̃t−1 +Wcf c̃t−1 + bf

)
,

c̃t= f̃t � c̃t−1 + ĩt � tanh
(
Wxcxt+Whch̃t−1+bc

)
,

õt = σ
(
Wxoxt +Whoh̃t−1 +Wcoc̃t + bo

)
,

h̃t = õt � tanh (c̃t) .

(4)

The responses of units to be transmitted across layers with
dropout applied are

i̊t = σ
(
Wxixt +Whih̃t−1 +Wcic̃t−1 + bi

)
�mi,

f̊t = σ
(
Wxfxt+Whf h̃t−1+Wcf c̃t−1 + bf

)
�mf ,

c̊t=
(̊
ft�c̃t−1+̊it�tanh

(
Wxcxt+Whch̃t−1+bc

))
�mc,

o̊t = σ
(
Wxoxt +Whoh̃t−1 +Wco̊ct + bo

)
�mo,

h̊t = o̊t � tanh (̊ct)�mh,

(5)

where mi,mf ,mc,mo, and mh are dropout binary mask
vectors for input gates, forget gates, cells, output gates and
output responses, respectively, with an element value of 0
indicating that dropout happens. Note that for the first LSTM
layer, the inputs xt are the skeleton joints of a frame; for the
higher LSTM layer, the inputs xt are the response outputs
of the previous layer.

During the training process, the errors back-propagated to
the output responses ht are

εth = ε̊th + ε̃th,

ε̊th = εhierh �mh, ε̃th = εrecurh ,
(6)

where εhierh denotes the vector of errors back-propagated
from the upper layer at the same time slot, εrecurh denotes
the vector of errors from the next time slot in the same layer,
ε̊t and ε̃t denote the dropout errors from the upper layer and
recurrent errors from the next time slot, respectively.

By taking derivative of h̊t with respect to o̊t based on (5),
we get the errors from h̊t to o̊t which represent the errors
from upper layer with dropout involved

ε̊to = (̊εth � ∂h̊t

∂o̊t
)�mo = ε̊th � tanh (̊ct)�mo. (7)

Similarly, based on (4), we get the errors back-propagated
from h̃t to õt which represent the errors from the next time
slot in the same layer without dropout

ε̃to = ε̃th � ∂h̃t

∂õt
= ε̃th � tanh (c̃t) . (8)

Then, the errors back-propagated to the output gates are the
summation of the two types of errors

εto = ε̊to + ε̃to. (9)
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In the same way, we derive the errors propagated to the cells,
forget gates, and input gates, based on (4) and (5).

During the testing process, we use all the neurons but
multiplying the units of LSTM neurons (in the LSTM layer
where dropout is applied) by the probability values of 1− p,
where p is the dropout probability of that unit. Note that the
simple dropout which only drops the output responses ht

(Zaremba, Sutskever, and Vinyals 2014) is a special case of
our proposed dropout.

3.4 Action Recognition using the Learned Model

With the learned deep LSTM network, the probability that a
sequence X belongs to the class Ck is

p(Ck|X) =
eok∑C
i=1 e

oi
, k = 1, · · · , C,

o =

T∑
t=1

(
W−→

h o

−→
h t +W←−

h o

←−
h t + bo

)
,

(10)

where C denotes the number of classes, T represents the
length of the test sequence, o = [o1, o2, · · · , oC ], −→h t and←−
h t denote the output responses of the last bidirectional
LSTM layer. Then, the class with the highest probability is
chosen as action class.

4 Experiments

We validate the proposed model on the SBU kinect interac-
tion dataset (Yun et al. 2012), HDM05 dataset (Müller et al.
2007), and CMU dataset (CMU 2003) whose groundtruth
was labeled by ourselves. We have also tested our model on
the Berkeley MHAD action recognition dataset (Ofli et al.
2013) and achieved 100% accuracy. To investigate the im-
pact of each component in our model, we conduct experi-
ments under different configurations represented as follows:

• Deep LSTM is our basic scheme without regularizations;

• Deep LSTM + Co-occurrence is the scheme with our pro-
posed co-occurrence regularization applied;

• Deep LSTM + Simple Dropout is the scheme with the
dropout algorithm proposed by Zaremba et al. (Zaremba,
Sutskever, and Vinyals 2014) applied to our basic scheme;

• Deep LSTM + In-depth Dropout is the scheme with our
proposed in-depth dropout applied;

• Deep LSTM + Co-occurrence + In-depth Dropout is our
final scheme with both co-occurrence regularization and
in-depth dropout applied.

Down-sampling the skeleton sequences in temporal is per-
formed to have the frame rate of 30fps on the HDM05
dataset and CMU dataset. To reduce the influence of noise in
the captured skeleton data, we smooth each joint’s position
of the raw skeleton using the filter (−3, 12, 17, 12,−3) /35
in the temporal domain (Savitzky and Golay 1964; Du,
Wang, and Wang 2015). The number of groups (K) in our
model is set to 5, 10, and 10 for the first three layers exper-
imentally. We set the dropout probability p to 0.2 for each
unit in an LSTM neuron, which makes the overall dropout

probability of an LSTM neuron approach 0.5 (this can be de-
rived based on (5)). Note that when dropout is applied, the
number of neurons in the corresponding layer is doubled as
suggested by previous work (Srivastava et al. 2014). We set
the parameters λ1 and λ2 in (3) experimentally.

4.1 SBU Kinect Interaction Dataset

The SBU kinect interaction dataset is a Kinect captured hu-
man activity recognition dataset depicting two person inter-
action, which contains 230 sequences of 8 classes (6,614
frames) with subject independent 5-fold cross validation.
The smoothed positions of joints are used as the input of the
deep LSTM network for recognition. The number of neu-
rons is set to 100×2, 100, 110×2, 110, 200×2 for the first
to fifth layers respectively, where 2 indicates bidirectional
LSTM is used and thus the number of neurons is doubled.

We have compared our schemes with other skeleton
based methods (Yun et al. 2012; Ji, Ye, and Cheng 2014;
Du, Wang, and Wang 2015). Note that we add an additional
layer to fuse the two subnets corresponding to the two per-
sons when extending Hierarchical RNN scheme for use in
the two person interaction scenario (Du, Wang, and Wang
2015). We summarize the results in terms of the average
recognition accuracy (5-fold cross validation) in Table 1.

Table 1: Comparisons on SBU kinect interaction dataset.

Methods Acc.(%)
Raw skeleton (Yun et al. 2012) 49.7
Joint feature (Yun et al. 2012) 80.3

Raw skeleton (Ji, Ye, and Cheng 2014) 79.4
Joint feature (Ji, Ye, and Cheng 2014) 86.9

Hierarchical RNN (Du, Wang, and Wang 2015) 80.35
Deep LSTM 86.03

Deep LSTM + Co-occurrence 89.44
Deep LSTM + Simple Dropout 89.70

Deep LSTM + In-depth Dropout 90.10
Deep LSTM+Co-occurrence+In-depth Dropout 90.41

Table 1 shows that our basic scheme of Deep LSTM
achieves comparable performance to the method using hand-
crafted complex features (Ji, Ye, and Cheng 2014). The pro-
posed schemes of Deep LSTM + Co-occurrence and Deep
LSTM + In-depth Dropout can improve the recognition ac-
curacy by 3.4% and 4.1% respectively over Deep LSTM,
indicating that the co-occurrence exploration boosts the dis-
crimination of features and the proposed LSTM dropout is
capable of learning a more effective model. Deep LSTM
+ In-depth Dropout is superior to Deep LSTM + Sim-
ple Dropout. Note that the deep LSTM network achieves
remarkable (5.6%) performance improvement in compari-
son with the hierarchical RNN network (Du, Wang, and
Wang 2015). That is because allowing full connection of
joints/features with neurons rather than imposing a priori
subnet constraints facilitates the interaction among joints
especially when the joints do not belong to the same part,
or same person. Our scheme with combined regularizations
achieves the best performance.
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4.2 HDM05 Dataset

The HDM05 dataset contains 2,337 skeleton sequences per-
formed by 5 actors (184,046 frames after down-sampling).
For fair comparison, we use the same protocol (65 classes,
10-fold cross validation) as used by Cho and Chen (Cho and
Chen 2014). The pre-processing is the same as that done in
the hierarchical RNN scheme (Du, Wang, and Wang 2015)
(centralize the joints’ positions to human center for each
frame and smooth the positions). The number of neurons is
100×2, 110, 120×2, 120, 200×2 for the five layers respec-
tively. Table 2 shows the results in terms of average accu-
racy. Our basic deep LSTM achieves better results than the
Multi-layer Perception model, which suggests that LSTM
exhibits better motion modeling ability than the MLP. With
the proposed co-occurrence learning and in-depth dropout
regularization, our full model also performs better than the
manually designed hierarchical RNN approach.

Table 2: Comparisons on HDM05 dataset.

Methods Acc.(%)
Multi-layer Perceptron (Cho and Chen 2014) 95.59

Hierarchical RNN (Du, Wang, and Wang 2015) 96.92
Deep LSTM 96.80

Deep LSTM + Co-occurrence 97.03
Deep LSTM + Simple Dropout 97.21

Deep LSTM + In-depth Dropout 97.25
Deep LSTM+Co-occurrence+In-depth Dropout 97.25

4.3 CMU Dataset

We have categorized the CMU motion capture dataset into
45 classes for the purpose of skeleton based action recog-
nition1. The categorized dataset contains 2,235 sequences
(987,341 frames after down-sampling) and is the largest
skeleton based human action dataset so far. This dataset
is much more challenging because: (i) the lengths of se-
quences vary greatly; (ii) the within-class diversity is large,
e.g., for “walking”, different people walk at different speeds
and along different paths; (iii) the dataset contains complex
actions such as dance, doing yoga.

We have evaluated the performance on both the entire
dataset (CMU) and a subset of the dataset (CMU subset).
For this subset, we have chosen eight representative action
categories containing 664 sequences (125,667 frames af-
ter down-sampling), with actions of jump, walk back, run,
sit, getup, pickup, basketball, cartwheel. The same pre-
processing as used for the HDM05 dataset is performed. The
number of neurons is set to 100×2, 100, 120×2, 120, 100×2
for the five layers. Three-fold cross validation is conducted
and the results in terms of average accuracy are shown in Ta-
ble 3. We can see that the proposed model achieves signifi-
cant performance improvement, indicating that it can better
learn the discriminative features and model long-range tem-
poral dynamics even for this challenging dataset.

1http://www.escience.cn/people/zhuwentao/29634.html

Table 3: Accuracy (%) comparisons on CMU dataset.

Methods CMU subset CMU
Hierarchical RNN

(Du, Wang, and Wang 2015) 83.13 75.02

Deep LSTM 86.00 79.53
Deep LSTM + Co-occurrence 87.20 79.60

Deep LSTM + Simple Dropout 87.80 80.59
Deep LSTM + In-depth Dropout 88.25 80.99

Deep LSTM+
Co-occurrence+In-depth Dropout 88.40 81.04

4.4 Discussions

To further understand our deep LSTM network, we visual-
ize the weights learned in the first LSTM layer on the SBU
kinect interaction dataset in Fig. 6 (a). Each element rep-
resents the absolute value of the weight between the corre-
sponding skeleton joint and input gate of that LSTM neu-
ron. It is observed that the weights in the diagonal positions
marked by the red ellipse have high values, which means the
co-occurrence regularization helps learn the human parts au-
tomatically. In contrast to the part based subnet fusion model
(Du, Wang, and Wang 2015), the learned co-occurrences of
joints by our model do not limit the connections to be in the
same part, as there are many large weights outside the di-
agonal regions, e.g., in the regions marked by white circles,
making the network more powerful for action recognition.
This also signifies the importance of the proposed full con-
nection architecture. By averaging the energy of the weights
in the same group of neurons for each joint, we obtain Fig.
6 (b) which has five groups of LSTM neurons. It is observed
that different groups have different weight patterns, prefer-
ring different conjunctions of joints.

(a) (b)

Figure 6: Visualization of the absolute values of input gate
weights in the first layer on SBU kinect interaction dataset.
Horizontal axis denotes the indexes of 30 joints of two per-
sons. (a) Vertical axis denotes the 100 LSTM neurons. Each
element represents the absolute value of the weight between
the corresponding joint and input gate unit of that LSTM
neuron. Every three nearby joints form a part of a person.
(b) Vertical axis denotes the five groups of LSTM neurons.
We observe different groups have different weight patterns,
preferring different conjunctions of joints.
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5 Conclusion

In this paper, we propose an end-to-end fully connected deep
LSTM network for skeleton based action recognition. The
proposed model facilitates the automatic learning of fea-
ture co-occurrences from the skeleton joints through our
designed regularization. To ensure effective learning of the
deep model, we design an in-depth dropout algorithm for
the LSTM neurons, which performs dropout for the internal
gates, cell, and output response of the LSTM neuron. Exper-
imental results demonstrate the state-of-the-art performance
of our model on several datasets.
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