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Abstract

Videos can be conserved on different media. However,
storing on media such as films and hard disks can suffer
from unexpected data loss, for instance from physical
damage. Repair of missing or damaged pixels is essen-
tial for video maintenance and preservation. Most meth-
ods seek to fill in missing holes by synthesizing similar
textures from local or global frames. However, this can
introduce incorrect contexts, especially when the miss-
ing hole or number of damaged frames is large. Further-
more, simple texture synthesis can introduce artifacts in
undamaged and recovered areas. To address aforemen-
tioned problems, we propose the diversified dynami-
cal Gaussian process latent variable model (D2GPLVM)
for considering the variety in existing videos and thus
introducing a diversity encouraging prior to inducing
points. The aim is to ensure that the trained inducing
points, which are a smaller set of all observed undam-
aged frames, are more diverse and resistant for context-
aware and artifacts-free based video repair. The defined
objective function in our proposed model is initially not
analytically tractable and must be solved by variational
inference. Finally, experimental testing illustrates the
robustness and effectiveness of our method for damaged
video repair.

Introduction

Videos, from black and white films to modern blockbusters,
are an indispensible part of contemporary life. The cellu-
loid or hard disks used to store videos inevitably suffer from
natural deterioration or, sometimes, deliberate damage. Such
damage normally appears as scattered missing blobs or large
holes in video frames, which has an adverse impact on the
appreciation and research value of the videos. It is, therefore,
useful to recover damaged parts of videos. However, this is
not trivial, especially when the missing areas are large.

One major difficulty in video repair lies in the uncertainty
and variety of video scenes and the fact that objects are often
highly dynamic in the video sequence. A naive approach to
video repair is to regard the damaged frame as a single im-
age and then applying image inpainting, such as in (Crim-
inisi, Perez, and Toyama 2004), to recover the missing part.
Although such inpainting techniques retain linear structures
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like object contours, they tend to fill in the holes by syn-
thesizing neighboring texture without considering temporal
information from other video frames. Since neighboring in-
formation is limited, these methods are likely to repair the
video in the wrong context. Other methods (Wexler, Shecht-
man, and Irani 2004) have been proposed to fill in missing
holes by sampling and synthesizing a number of patches
from neighboring frames. However, this is still not always
reliable, since the video sequences are likely to be dynamic
or complex. In such circumstances, a scene presents in one
frame may disappear in other frames and, sometimes, the
patches for synthesis are too small to satisfy larger holes.
Furthermore, the aforementioned approaches are highly de-
pendent on texture synthesis techniques, which can create
saw-shaped artifacts at the boundaries of the original region
and the recovered part in a single frame.

Recently, Damianou et al. (Damianou, Titsias, and
Lawrence 2014) developed a dynamical Gaussian process
latent variable model (DGPLVM) to smoothly repair video
without saw-shaped artifacts in the presence of missing pix-
els. To achieve this, a Gaussian process (GP) prior based on
auxiliary inducing points was introduced so that the vari-
ational Bayes approach was tractable. The latent variables
were then variationally integrated out and a closed-form
lower bound on a marginal likelihood function computed.
The original purpose of inducing points in (Csato 2002;
Csato and Opper 2002; Seeger, Williams, and Lawrence
2003; Snelson and Ghahramani 2006; Candela and Ras-
mussen 2005; Titsias 2009) was to speed up computation by
regarding it as a smaller set representing the entire observed
frames. In this approach, the inducing point was also critical
to obtaining a closed-form lower bound of the defined log
likelihood function to render the model robust to overfitting.

However, it transpires that (Damianou, Titsias, and
Lawrence 2014) tends to generate relatively similar inducing
points that can introduce ghost effects in recovered frames.
This is because the inducing points trained in DGPLVM
have a tendency to focus on frequent shots or those with
salient features within the scenes. We propose D2GPLVM
to address this problem, in which a diversity encouraging
prior is applied to the inducing points so that they are more
diverse and capture more distinct scenes from the observed
complete frames. Since inducing points are pivotal to pre-
dicting missing pixels, more resistant inducing points en-
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Figure 1: A schematic of the porposed D2GPLVM. (a) A
graphical model of the proposed method. (b) The training
frames. (c)-(d) A comparison of the generated Z with and
without the diversity encouraging prior. (e) A random dam-
aged frame. (d) The image repaired using our method.

hance video repair performance. However, directly integrat-
ing out latent variables is infeasible in our model since it
is nonlinear. Thus, the variational inference approach is ap-
plied to approximate the marginal likelihood by maximizing
a Jensen’s lower bound and then integrate the latent vari-
ables. The parameters of D2GPLVM are optimised by maxi-
mizing the Jensen’s lower bound using scaled conjugate gra-
dient (SCG). Afterwards, a given damaged video can be re-
paired by the trained D2GPLVM regardless of its damaged
area and form. In the remainder of this paper, we first re-
view the DGPLVM and then introduce our D2GPLVM. To
demonstrate the robustness of D2GPLVM, we perform ex-
periments on a hundred of various video clips from black
and white films to modern movies.

Related Work

Completion approaches are broadly classified into image
inpainting and video repairing. In this section, we review
works related to both of these approaches.

Image Inpainting

Most inpainting approaches (Drori, Cohen-Or, and Yeshu-
run 2003; Sun et al. 2005; Bertalmio and Sapiro 2000;
Bertalmio et al. 2009; Mo, Lewis, and Neumann 2004;
Sobiecki et al. 2013; Min and Dugelay 2013) exploit consis-
tency in neighboring pixels or textures to recover the miss-
ing parts. However, these methods are inclined to fail when
the missing region is inhomogeneous with its surroundings.
Other methods (Hosoi et al. 2011; Amano and Sato 2002;
Amano 2004) have attempted to deal with various real-world
objects inpainting tasks by defining a similarity term be-
tween the input image and the base eigenvector derived by
applying PCA to a subspace of the training samples. Based
on (Amano and Sato 2002; Amano 2004), (Hosoi et al.
2011) was able to inpaint any object without first specifying
the object class beforehand and could inpaint in real time.

However, these methods are still imperfect since the dam-
aged objects class for inpainting is much more diverse than
expected.

In general, image inpainting exploits neighboring texture
information to fill in the missing pixels. These inpainting
techniques can work effectively under the circumstances that
the missing area in an image is small. This is to say that im-
age inpainting is not applicable to video repair since video
context can be complex and the damaged region may be too
large. As a result, the recovered videos may have wrong con-
texts using image inpainting (see Fig.3).

Video Repair

The video repair method proposed in (Jia et al. 2004) in-
ferred occluded background and large motion by sampling
and aligning movels (structured moving objects) from the
captured video. Missing static background was repaired by
constructing a layered mosaic in addition to image repair
(Jia and Tang 2004). To repair moving pixels, an optimal
alignment based on a homographic transform was computed
by assuming that the moving pixels were projections of
cyclic motions ((Seitz and Dyer 1997)), where cyclic mo-
tions were detected by time-frequency analysis (Cutler and
Davis 2009). As an extension of (Jia et al. 2004), (Jia et al.
2006) used tensor voting (Medioni, Lee, and Tang 2000) to
address the pertinent spatio-temporal issues in background
and motion repair. Variable illumination and moving cam-
eras were also studied. However, although (Jia et al. 2006)
utilized texture synthesis to recover the occluded area, it is
possible that the occluded region texture may not appear in
the neighbouring pixels or frames, resulting in inaccurately
repaired pixels with artifacts.

In (Wexler, Shechtman, and Irani 2004), Wexler et al.
attempted to fill in missing portions by sampling spatio-
temporal patches from the input video. Their method defined
and used similarity measurements in space and time do-
mains. This method was successful due to the judicious ex-
tension of (Efros and Leung 1999) in which non-parametric
sampling was used to handle spatial and temporal informa-
tion simultaneously. They demonstrated that the patches se-
lected for completion may contain errors if the background
is complex (e.g., non-textured) and the result will not pre-
serve speed irregularities and may destroy complex struc-
tures.

Unlike image inpainting, these method unexceptionally
exploited the global temporal information to achieve video
repair. However, this is still problematic since a video may
include complex objects and scenes. In that case, simply
searching and synthesizing similar patches from neighbor-
ing frames can introduce severe artifacts in the observed and
recovered areas. Hence, for the scenes containing compli-
cated objects, such methods may not generate a smooth re-
paired video by preserving the structure of objects.

Dynamical GPLVM

In this section, the basic concepts of dynamical Gaussian
process latent variable model (DGPLVM) are first intro-
duced for better comprehension of our model.

3642



In DGPLVM, Y ∈ Rn×p (with columns {y:,j}pj=1) de-
notes the observed data where n is the number of data points
and p is the dimensionality of each data point in Y. Here, Y
is associated with latent variables F ∈ Rn×p (with columns
{f:,j}pj=1), which is the same size as Y and

p(Y |F ) =

p∏
j=1

N (y:,j |f:,j , σ−1IN ). (1)

For the sake of dimensionality reduction, another latent
variable X ∈ Rn×q (q ≤ p) is introduced, such that

p(F |X) =

p∏
j=1

N (f:,j |0,Kff ). (2)

Here, Kff is a n × n kernel matrix and the kernel function
here is an exponentiated quadratic (RBF) as follows:

k(xi,:, xk,:) = σ2
f exp

(
− 1

2

q∑
j=1

αj(xi,j − xk,j)
2
)
, (3)

where each xi,: is the ith row of X and Kff = k(xi,:, xk,:).
In DGPLVM, each datapoint yi,: is observed at corre-

sponding time ti. Therefore, the prior distribution of X is:

p(X) =

q∏
j=1

N (x:,j |0,Kx), (4)

where x:,j refers to one column of X and Kx = k(ti, t
′
i) is

the covariance matrix obtained by evaluating the covariance
function k on the observed times t.

Furthermore, (Damianou, Titsias, and Lawrence 2014) in-
troduced the auxiliary inducing variable U ∈ Rm×p, which
is a set of m inducing points ui,: ∈ Rp, evaluated at their as-
sociated inducing input locations Z ∈ Rm×q(with columns
{z:,j}qj=1). Likewise,

p(U) =

p∏
j=1

N(0,Kuu). (5)

Here, Kuu = k(zi,:, zk,:). The introduced inducing points
can not only speed up computation but also render the objec-
tive function tractable. Interest readers may refer to (Dami-
anou, Titsias, and Lawrence 2014) for more details.

Diversified Dynamical GPLVM

In DGPLVM, Damianou et al. proposed a Bayesian ap-
proach to train the GPLVM. By taking inducing points into
consideration, the input variables of Gaussian process could
be robustly integrated out. Then, the trained model was used
to recover videos in the presence of missing pixels. How-
ever, the inducing points trained from DGPLVM were highly
similar and could not fulfill the repair of videos with more
complex scenes.

Here, we propose the D2GPLVM with repect to the re-
pulsion property of inducing points due to the fact that real
world videos may have much more diverse scenes than ex-
pected. To be exact, given a video with an unknown number

of damaged frames, let Y ∈ Rn×p denote all undamaged
frames, where n and p are the number of undamaged frames
and pixels in the video respectively. F is the noise-free ver-
sion of Y, whilst X is the reduced dimension version of Y.
Since a video is time sequential, the aforementioned time ti
is referred to as the frame serial number.

Remember that the inducing points U ∈ Rm×p are a
small set representing the entire undamaged frames. Mean-
while, the distribution p(U) has a covariance matrix Kuu

defined in Eq. (5). Here, a diversity prior of covariance ma-
trix Kuu would be modeled by:

p(U ∈ Y ) = |Kuu|, (6)

where |Kuu| refers to the determinant of matrix Kuu. The
inducing points selected with respect to such prior can cover
multiple distinct scenes of a video instead of focusing on the
most salient ones.

Therefore, the new objective function is:

F (θ) = logP (Y ) + λ log |Kuu|, (7)

where θ = {σ2
f , σ, α1, ..., αj} are the hyperparameters in

our proposed model using the same symbols as in DG-
PLVM. Furthermore, λ > 0 is used to balance the weights
between measurements of likelihood and the diversity en-
couraging prior.

Variational Inference

The new objective function F (θ) can be factorized as:

F (θ) = log

∫
|Kuu|λ

p∏
j=1

p(y:,j |f:,j)
(
p(f:,j |u:,j , X)p(X)dX

)
p(u:,j)dUdF. (8)

Note that integration over X is unfeasible since X
is an input, in a rather complex non-linear manner, of
p(f:,j |u:,j , X), which contains the kernel matrix Kff .

To see that, the specific form of p(f:,j |u:,j , X) is derived
based on Eq. (2) and Eq. (5):

p(F |U,X) =

p∏
j=1

p(f:,j |u;,j , X)

=

p∏
j=1

p(f:,j |aj ,Σf ), (9)

where aj = KfuK
−1
uu u:,j , Σf = Kff −KfuK

−1
uuKuf .

Thus, we use variational distribution q(F,U,X) to ap-
proximate the true posterior P (F,U,X|Y ) with the form:

q(F,U,X) =

(
p∏

j=1

p(f:,j |u:,j , X)q(u:,j)

)
q(X). (10)

Here, q(X) is a variational distribution that follows:

q(X) =

n∏
i=1

N(xi,:|μi,:, Si), (11)
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where each covariance matrix Si is diagonal. Another vari-
ational distribution q(U) is arbitrary and will be explained
later. In terms of Jensen’s inequality, the lower bound
F
(
q(X), q(U)

)
of the objective function could be derived

by:

F
(
q(X), q(U)

)
=∫

q(F,U,X) log
|Kuu|λp(Y )

q(F,U,X)
dXdFdU. (12)

After inserting Eq. (10) into Eq. (12), we have:

F
(
q(X), q(U)

)
=

∫ p∏
j=1

p(f:,j |u:,j , X)q(u:,j)q(X)

log
|Kuu|λ

∏p
j=1 p(y:,j |f:,j)p(u:,j)p(X)∏p
j=1 q(u:,j)q(X)

dXdFdU. (13)

Let 〈·〉p be a shorthand for expectation with respect to the
distribution p, then:

F (q(X), q(U)) = −
∫

q(X)log
p(X)

q(X)
dX + λlog|Kuu|

p∑
j=1

(∫
q(u:,j)q(X)〈logp(y:,j |f:,j)〉p(f:,j |u:,j ,X)dXdu:,j

+ 〈logp(u:,j)

q(u:,j)
〉q(u:,j)

)
. (14)

Since Kuu = k(zi,:, zk,:), the term λlog|Kuu| can be placed
outside the integral. To simplify the sum term at the end of
Eq. (14), let the formulation within the sum notation be de-
noted by:

F̂j

(
q(X), q(U)

)
= 〈logp(u:,j)

q(u:,j)
〉q(u:,j)

+

∫
q(u:,j)q(X)〈logp(y:,i|f:,j)〉p(f:,j |u:,j ,X)dXdu:,j .

(15)

Thus, the lower bound F
(
q(X), q(U)

)
may be re-expressed

in the form:

F
(
q(X), q(U)

)
=

p∑
j=1

F̂j

(
q(X), q(U)

)−KL
(
q(X)||p(X)

)
+ λlog|Kuu|.

(16)

Now, the lower bound F
(
q(X), q(U)

)
consists of three

parts: F̂j

(
q(X), q(U)

)
, KL

(
q(X)||p(X)

)
and the log like-

lihood of the diversity encouraging prior λlog|Kuu|. Since
both of q(X) and p(X) are Gaussian distributions, the KL
term can easily be calculated:

KL
(
q(X)||p(X)

)
=

1

2

n∑
i=1

tr
(
μi,:μ

T
i,: + Si − logSi

)− nq

2
. (17)

According to the definitions of q(X) and distributions in Eq.
(5) , F̂j

(
q(X), q(U)

)
can be expressed as:

F̂j(q(X), q(U)) =

1

2σ2
tr
(〈Kff 〉q(X)

)− 1

2σ2
tr
(
K−1

uu 〈KufKfu〉q(X)

)
+

∫
q(u:,j) log

e〈logN(y:,j |aj ,σ
2Ip)〉q(X)p(u:,j)

q(u:,j)
du:,j (18)

Note that there is a KL-like quantity in the Eq. (18), such
that the optimal q(u:,j) is supposed to be proportional to:

q(u:,j) ∝ e〈logN(y:,j |aj ,σ
2Ip)〉q(X)p(u:,j). (19)

F̂j(q(X), q(U)) can be upper bounded by F̂j(q(X)) af-
ter applying the reversing Jensen’s inequality (King and
Lawrence 2006) to the KL-like quantity containing q(u:,j):

F̂j(q(X)) =

1

2σ2
tr
(〈Kff 〉q(X)

)− 1

2σ2
tr
(
K−1

uu 〈KufKfu〉q(X)

)
+ log

∫
e<logN(y:,j |aj ,σ

2Ip)>q(X)p(u:,j)du:,j . (20)

Now q(U) is optimally eliminated, F̂j(q(X)) can be cal-
culted as follows:

F̂j(q(X)) =

[
log

σ−n|Kuu| 12
(2π)

n
2 |σ−2ψ2 +Kuu| 12

e−
1
2y

T
:,jWy:,j

]

− ψ0

2σ2
+

1

2σ2
tr(K−1

uu ψ2), (21)

where ψ0 = tr
(〈Kff 〉q(X)

)
, ψ1 = 〈Kfu〉q(X), ψ2 =

〈KufKfu〉q(X) and W = σ−2In − σ−4ψ1(σ
−2ψ2 +

K−1
uu )ψ

T
1 .

With F̂j

(
q(X), q(U)

)
and KL

(
q(X)||p(X)

)
in hand, we

can optimize the parameters θ in our model using a gradient-
based algorithm.

Repairing Damaged Video

A set of partially observed frames Y∗ = {Y u
∗ , Y

o
∗ } in a video

sequence is given in the prediction stage. Here, Y o
∗ denotes

the observed part in the video frames and Y u
∗ refers to the

missing part. Our task is to calculate the following predictive
density:

P (Y∗|Y ) ≈
∫

P (Y∗|F∗)q(F∗|X∗)q(X∗)dX∗dF∗. (22)

Like F and X , F∗ and X∗ are namely the latent variables
of new testing data Y∗. To compute above, we need to opti-
mise with respect to the parameters (u∗, S∗) of the Gaussian
variational distribution q(X∗). The standard GP prediction
is employed here to obtain q(X∗) which can be further fac-
torized as follows:

q(X∗) =
∫

p(X∗|X)q(X)dX, (23)
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where q(X) is already obtained in the training stage and
p(X∗|X) can be derived from the conditional GP prior
(Rasmussen and Williams 2006).

According to the predictive density, we need to compute
q(F∗|X∗) now. By following Eq. (10), q(F∗|X∗) is:

q(F∗|X∗) =
p∏

j=1

∫
p(f:,j |u:,j , X)q(u:,j)du:,j . (24)

Note that p(f:,j |u:,j , X) is already known in training stage
and the specific expression of variational distribution q(u:,j)
is given in Eq. (19).

So, to predict Y∗, we need to first predict its latent function
F∗ according to:

q(F∗) =
∫

q(F∗|X∗)q(X∗)dX∗. (25)

With q(F∗|X∗) and q(X∗) in hand now, the mean is
E[F∗]=BTΨ∗1 and the covariance is:

Cov(F∗) = σ2I +BT

(
Ψ∗2 −Ψ∗1(Ψ

∗
1)

T

)
B +Ψ∗0I

− tr

((
K−1

uu − (Kuu + σ−2Ψ2)
−1

)
Ψ∗2

)
I, (26)

where B = σ−2(Kuu + σ−2Ψ2)
−1ΨT

1 Y , ψ∗0 = tr(Kuu),
Ψ∗1 = 〈Ku∗〉 and Ψ∗2 = 〈Ku∗KT

u∗〉. Notice that the Ψ
statistics involving the test latent variable x∗ appear natu-
rally in these expressions. Using the above expressions, the
predicted mean of Y∗ is equal to E(F∗) and the predicted
covariance is equal to Cov(F∗) + σ−1I .

(a) (b)

(c) (d)

Figure 2: (a)-(c) MAEs and SSIMs of block damage re-
pair in videos. (b)-(d) MAEs and SSIMs of repairing video
with scattered damage repair in videos. The red line is our
method. The smaller the MAE value is, the more similar the
video frames between repaired video and ground truth, and
vice versa for SSIM.

Table 1: Average MAE and SSIM of Plots (a), (b), (c), (d) in
Fig. 2 respectively.

BGPLVM DGPLVM EB D2GPLVM

MAE of (a) 10.68 9.53 29.26 7.33

MAE of (b) 11.84 10.73 52.87 7.91

SSIM of (c) 0.83 0.84 0.76 0.88

SSIM of (d) 0.89 0.90 0.37 0.95

Results

In this section, we conduct experiments on movie clips from
the Hollywood dataset 1. Since D2GPLVM requires a cer-
tain number of frames for training, the clips used for testing
were at least seven seconds in length. For each sequence,
40 percent of the frames were randomly selected to generate
artificial damage. To be precise, we assumed that half the
pixels in one frame were missing, and providing two kinds
of damage for testing: block damage and scattered damage.
More specifically, block damage was generated by cutting
off either the left/right or top/bottom half part of one frame.
Furthermore, a number of missing pixels were distributed
across the whole frame to produce scattered damage. Our
method was performed on 100 movie clips in the dataset
and compared with three other methods: Bayesian Gaussian
process latent variable model (BGPLVM) (Damianou, Tit-
sias, and Lawrence 2014), DGPLVM and exemplar based
inpainting (EB) (Criminisi, Perez, and Toyama 2004). Here,
BGPLVM is a variant of DGPLVM without dynamic prior.
The EB method filled the missing pixels with neighbouring
textures.

To demonstrate the robustness of our approach, we tested
both black-and-white and color films. Since the test se-
quence resolution was not fixed, it was not easy to obtain
specific times used for training and repair. However, in gen-
eral, it took about one minute for training and around two
seconds for repair. The code was run on Matlab 2014a on
a computer configured with a 3.2GHz CPU and 8GB mem-
ory. Of note, our approach maintained a similar execution
time for repair as DGPLVM and BGPLVM, but was much
faster than exemplar-based inpainting, which took over 15
minutes for entire video inpainting. Note that only a single
parameter λ in our model controls the diversity of the opti-
mized inducing points, which is manually set as 0.01 for all
100 videos here. The results can be further improved if the
cross-validation method is employed.

First, mean absolute error (MAE) and structural similar-
ity (SSIM) were calculated to assess the fidelity of recov-
ered frames on all clips. The MAE and SSIM values for
one clip were subsequently obtained by averaging the sum
of the MAEs and SSIMs for all frames. Exemplar based in-
painting consistently showed the worst performance (Fig. 2).
DGPLVM incorporates the dynamical sequential prior into
BGPLVM, rendering it more competent than BGPLVM for
time sequence based video repair. By taking the diversity
encouraging prior into account, our method substantially en-
hanced damaged video recovery (Fig. 2). Moreover, so as to
further clearly demonstrate the superiority of our method,

1http://www.di.ens.fr/∼laptev/actions/hollywood2/
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Damaged BGPLVM DGPLVM Exemplar Based D2GPLVM Ground Truth

seq 1

seq 2

seq 3

seq 4

Figure 3: A schematic of video repair. Two recovered frames of the four video sequences are randomly displayed. Our method
consistently outperforms the others and provides smooth and clearly recovered results.

we also computed the average value of MAEs and SSIMs in
the plots of (a), (b), (c), (d). This can be seen in Table 1 that
our method unexceptionally significantly outperforms other
methods in respect of the MAE and SSIM measurements.

Examples of video reapir in four video sequences by four
different methods are shown in Fig. 3. The original frames
with half the pixels missing are shown in the first column,
while the next four columns are a comparison with the other
methods and the last column is the ground truth. As men-
tioned above, since exemplar based inpainting only exploits
local image features for texture synthesis, it is likely to intro-
duce errors during repair. Without special constraints, BG-
PLVM and DGPLVM tend to generate ghost effects in the
recovered frames because the inducing points created by
BGPLVM and DGPLVM are usually more similar than di-
verse. Consequently, these methods fail to extract compre-
hensive distinct scenes to better recover damaged videos,
especially those with constantly changing shots, a dynamic
background and/or moving objects. Our method offers sta-
ble repair and outperforms the other approaches in different
video scenarios.

Conclusion

This paper presents D2GPLVM for video repair by simul-
taneously exploring dynamic and diversity properties under
the GPLVM framework. Compared to DGPLVM, the diver-
sity encouraging prior is essential in our model to extract
more distinct features from the observed training frames.
Meanwhile, our method has the inherent advantage of re-
covering incomplete frames with more complex sceneries
since these types of video usually have more diverse charac-
teristics that cannot be captured by traditional DGPLVM. In-
stead of using local neighboring texture synthesis, our prob-
abilistic model utilizes global temporal information to re-
cover smoother frames with large missing holes. Finally, our
model reformulates the objective function of traditional DG-
PLVM and introduces a lower bound of the objective func-
tion by variational inference. Therefore, the objective func-
tion of our model is analytically tracktable by maximizing
its variational lower bound. We illustrate the effectiveness
of our method by comparing it with a number of other meth-
ods on a movie dataset of 100 various video clips.
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