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Abstract

Graph matching plays an important role in many fields
in computer vision. It is a well-known general NP-hard
problem and has been investigated for decades. Among
the large amount of algorithms for graph matching, the
algorithms utilizing the path following strategy exhib-
ited state-of-art performances. However, the main draw-
back of this category of algorithms lies in their high
computational burden. In this paper, we propose a novel
path following strategy for graph matching aiming to
improve its computation efficiency. We first propose
a path estimation method to reduce the computational
cost at each iteration, and subsequently a method of
adaptive step length to accelerate the convergence. The
proposed approach is able to be integrated into all the
algorithms that utilize the path following strategy. To
validate our approach, we compare our approach with
several recently proposed graph matching algorithms on
three benchmark image datasets. Experimental results
show that, our approach improves significantly the com-
putation efficiency of the original algorithms, and offers
similar or better matching results.

Introduction
Graph matching involves establishing correspondences be-
tween the vertices of two graphs. It is a fundamental problem
in computer science and closely relates to a lot of research
problems in computer vision, including for instance fea-
ture registration (Torresani, Kolmogorov, and Rother 2008;
Jiang, Yu, and Martin 2011), image classification (Lazebnik,
Schmid, and Ponce 2006; Wu et al. 2013), object recogni-
tion (Duchenne, Joulin, and Ponce 2011) and shape match-
ing (Berg, Berg, and Malik 2005). Graph matching is a well-
known general NP-hard problem of which global optimum
is hardly guaranteed for graphs of reasonable sizes. Conse-
quently, approximate algorithms seeking acceptable subop-
timal solutions are popular, and the research interest of this
problem mainly focuses on investigating more accurate and
faster algorithms.

Although the graph matching problem has been inves-
tigated for decades, it is still a challenging problem due
to the objective function being non-convex and the con-
straints on the solution being combinatorial. There are a
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large amount of algorithms (Gold and Rangarajan 1996;
Leordeanu and Hebert 2005; Cour, Srinivasan, and Shi 2007;
Cho, Lee, and Lee 2010; Leordeanu and Hebert 2009;
Zaslavskiy, Bach, and Vert 2009; Zhou and Torre 2012;
Liu and Qiao 2014; Liu et al. 2014; Zass and Shashua 2008;
Egozi, Keller, and Guterman 2013) utilizing constraints re-
laxation to harness the solution searching. Among these al-
gorithms, the ones utilizing the path-following strategy ex-
hibited state-of-art performances (Zaslavskiy, Bach, and
Vert 2009; Zhou and Torre 2012; Liu and Qiao 2014). These
approaches reformulate graph matching as a convex-concave
relaxation procedure (CCRP) problem, which is solved by
interpolating between two approximate simpler formula-
tions, and they use the path following strategy to recast iter-
atively the bistochastic matrix 1 solution in the discrete do-
main. However, all these algorithms suffer from high com-
putational burden and thus are hard to be applied in large
graphs. It therefore demands research attention on how to
reduce the computational burden of this category of algo-
rithms.

Addressing the above mentioned issues, we propose a
novel path following strategy to improve the computational
efficiency of the path following algorithms, which achiev-
ing similar or even better matching accuracy. In particular,
our strategy extends the traditional path following strategy
in two aspects: (1) We propose a path estimation method
that uses the temporal solutions in previous iterations to esti-
mate the solution in current iteration, and then adopt this es-
timation as the start point to search the local minima. Since
such estimation is usually closer to the local minima than
the previous solution, we spend less time on searching for
local minima in each iteration. (2) We derive an adaptive
step length on the path estimation to dynamically adjust the
step length to further accelerate the convergence.

As a general strategy, our approach can be fused into all
the algorithms that utilize the origin path following strat-
egy. In this work, we integrate the proposed approach into
two state-of-the-art graph matching algorithms, FGM (Zhou
and Torre 2012) and GNCCP (Liu and Qiao 2014), denote
the enhanced algorithms as FGM+EST and GNCCP+EST
respectively. For a thorough evaluation, we compare the

1A bistochastic matrix is a square matrix of nonnegative real
number, of which each row (and column) sums to one.
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two algorithms with not only their baselines but also some
recently proposed algorithms (Cho, Lee, and Lee 2010;
Leordeanu and Hebert 2009; Egozi, Keller, and Guterman
2013) on three public benchmarks. The results show that
the proposed adaptive path prediction strategy offers dra-
matic improvement in computational efficiency. Specifi-
cally, FGM+EST and GNCCP+EST reduces the computa-
tion time of FGM and GNCCP by about about 7 and 50
times, respectively. As for matching accuracy, the proposed
algorithms produce better or similar performances as their
baselines, and in general outperform other graph matching
algorithms.

This paper have several contributions: (1) we propose a
path estimation strategy to reduce the computational bur-
den of path following algorithms for graph matching; (2)
we propose using adaptive step lengths for further accelera-
tion; and (3) we integrate the proposed strategies to improve
two state-of-the-art graph matching algorithms, and demon-
strated their effectiveness in a thorough evaluation.

Related works
Since graph matching is in nature a combinatorial problem
and there is no known efficient algorithm for global opti-
mum, a common way is to search for approximate solu-
tions under relaxed conditions or constraints. There are a
large number of literatures dedicated to this problem, among
which two comprehensive surveys are reported in (Conte et
al. 2004; Foggia, Percannella, and Vento 2014). Thoroughly
reviewing all graph matching papers is beyond the scope of
this paper, in the following we sample some related ones that
inspire our study.

As graph matching is inherently a discrete optimization
problem, an important class of approximate algorithms re-
formulate it in the continuous domain by relaxing related
constraints. The continuous solution is later discretized to-
wards the final solution. Gold and Rangarajan (1996) pro-
pose the graduated assignment algorithm which uses Tay-
lor expansions to iteratively solve a series of linear approx-
imations of the cost function. Leordeanu and Hebert (2005)
present an efficient and robust solution by spectral relax-
ation that ignores the assignment constraints and is solved
via eigen-analysis. The assignment constraints are then
enforced during the discretization step. The same author
(Leordeanu and Hebert 2009) later propose an integer pro-
jection algorithm which focuses on the discretization step
taking a continuous solution as input. Cour, Srinivasan, and
Shi (2007) extend the spectral relaxation (Leordeanu and
Hebert 2005) by encoding affine constraints into the spec-
tral decomposition. Another contribution of this work is to
apply bistochastic normalization to balance the affinity ma-
trix. Cho, Lee, and Lee (2010) reformulate graph match-
ing as a vertex selection problem and introduce an affinity-
preserving random walk algorithm. The algorithm is proved
to be equivalent to the spectral relaxation (Leordeanu and
Hebert 2005) for the integer quadratic programming (IQP)
formulation.

The path following algorithm involving several recent
work is attracting research attention due to its excellent
matching performance. This group of algorithms is firstly

proposed in (Zaslavskiy, Bach, and Vert 2009), where graph
matching is reformulated as a convex-concave relaxation
procedure (CCRP) problem. The authors propose the path
following algorithm to iteratively search the solution by
tracking a path of local minima of a series of functions that
linearly interpolate between the two relaxations. Zhou and
Torre (2012) apply the similar strategy to the general frame-
work defined on affinity matrices, and factorize an affinity
matrix into a Kronecker product of smaller matrices. Liu
and Qiao (2014) propose the graduated nonconvexity and
concavity procedure (GNCCP) to equivalently realize CCRP
through a much simpler way without involving the convex or
concave relaxation explicitly.

Another interesting class of algorithms is the probabilis-
tic approach inspired by Zass and Shashua (2008), where
a probabilistic framework is employed for (hyper)graph
matching. The authors regard the pairwise affinity matrix be-
ing an empirical estimate of the pairwise assignment prob-
ability, and assume the statistical independence between the
assignments of different vertices in graphs. Egozi, Keller,
and Guterman (2013) extend the work by dropping the
second assumption to achieve improvement on matching
performance, and present a probabilistic interpretation of
the spectral relaxation scheme proposed by Leordeanu and
Hebert (2005).

Focusing on graph matching, our work is inspired by or
build on top of these previous studies. The algorithms us-
ing the path following strategy exhibited state-of-art per-
formances but suffer from high computational burden. Our
work aims to reduce the computational cost of these algo-
rithms, and the excellent experimental results further vali-
date its advantage.

Path following for graph matching

Problem statement and notations

A graph G = (V,E) of size n is defined by a finite set of n
vertices V = {v1, . . . , vn} and a set of edges E ⊂ V× V.
Such a graph can be equivalently represented by a symmet-
ric adjacency matrix A of size n × n, where A(i, j) = 1
if there is an edge between vertices vi and vj , and 0 other-
wise. An important generalization is a weighted graph which
is defined by associating a nonnegative real-valued weight
A(i, j) = w(i, j) to all pair of vertices. This generalization
is important because these weights are crucial in capturing
structural relations among vertices in many applications. In
the rest of this paper, all adjacency matrices mentioned are
weighted with real values unless otherwise stated.

Given two graphs G1 = (V1,E1) and G2 = (V2,E2)
of size n1 and n2 respectively, the graph matching problem
consists of finding a correspondence X ∈ {0, 1}n1×n2 be-
tween vertices of the two graphs that maximizes the follow-
ing score of global consistency:

E1(X) =
∑
i1,i2

c(i1, i2)X(i1, i2)+

∑
i1,i2,j1,j2

d(i1, j1, i2, j2)X(i1, i2)X(j1, j2),
(1)
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where c(·) measures the vertex compatibility and d(·) the
edge compatibility. The assignment matrix X denotes the
vertex correspondence, i.e., X(i1, i2) = 1 if the i1-th vertex
of G1 corresponds to the i2-th vertex of G2. In most cases, X
is constrained to be a one-to-one matching, i.e., X1n2

≤ 1n1

and XT 1n1
≤ 1n2

(1n denotes vectors of n ones).
A commonly specified formulation of Eq. (1) for graph

matching is defined on adjacency matrices

E2(X) = tr(CTX) + α‖A1 −XA2X
T ‖2F , (2)

where C is the cost matrix for vertex assignment, α ≥ 0
is the confidence of comparison of edges, A1 and A2 are
adjacency matrices of graphs G1 and G2 respectively, and
‖ · ‖F is the Frobenius norm.

A more general formulation of Eq. (1) for graph matching
is formulated in a pairwise compatibility form

E3(x) = xTKx, (3)

where x = vec(X)T ∈ {0, 1}n1n2 is an indicator vector and
K ∈ R

n1n2×n1n2 is the affinity matrix computed as follows:

K(i1i2, j1j2)=

{
c(i1, i2) if i1 = j1 and i2 = j2,
d(i1,j1,i2,j2) if A1(i1,j1)A2(i2,j2)>0,
0 otherwise.

(4)
This formulation is more general than Eq. (2) due to its abil-
ity to encode not only the difference of edge weight but
also many complex compatibility functions. Consequently,
we mainly discuss and test graph matching algorithms for
Eq. (3).

The path following algorithm

Zaslavskiy, Bach, and Vert (2009) first reformulates E2(X)
in Eq. (2) by interpolating between two simpler relaxed for-
mulations. The first relaxation is obtained by expanding the
convex quadratic function E2(X) from the set of permuta-
tion matrices P on the set of bistochastic matrices D:

min
X∈D

E2(X), (5)

and the second relaxation is a concave function

min
X∈D

E4(X)=−tr(ΔX)−2vec(X)T(LT
A1

⊗ LT
A2
)vec(X),

(6)
where matrices Δ(i, j) = (DA1(i, i)−DA2(j, j))

2, DA and
LA represent the diagonal degree matrix and the Laplacian
matrix of an adjacency matrix A respectively, and ⊗ denotes
the Kronecker product of two matrices. The permutation ma-
trix that minimizes E4(X) over P is the solution of the graph
matching problem. Note that, the minimum of E4(X) on D
is in fact in P because of its concavity. This property is very
important to guarantee the final solution is discretized.

The authors proposed a path following strategy to search
the solution by tracking a path of local minima over D of a
series of functions

Eλ = (1− λ)E2 + λE4, (7)

for 0 ≤ λ ≤ 1. This approach starts at λ = 0 finding the
unique local minimum of E2, and then iteratively searches

the local minimum of Eλ+dλ
given the local minimum of Eλ

as the start point using the Frank-Wolfe algorithm (Franke
and Wolf 1956). It ends at λ = 1 and takes the local mini-
mum of E4 as the final solution. More details about the path
following algorithm please see the literature (Zaslavskiy,
Bach, and Vert 2009).

Zhou and Torre (2012) applied the similar path following
strategy to optimize the more general formulation E3 in Eq.
(3), and factorize an affinity matrix into a Kronecker product
of smaller matrices, each of them encodes the structure of
the graphs and the affinities between vertices and between
edges. Liu and Qiao (2014) proposed the graduated non-
convexity and concavity procedure (GNCCP) to equivalently
realize CCRP on partial permutation matrix. This approach
provides a much simple way for CCRP without involving
the convex or concave relaxation explicitly.

The proposed approach

Numerical continuation method

As discussed in (Zaslavskiy, Bach, and Vert 2009), the path
following algorithm may be considered as a special case
of numerical continuation methods (Allgower and Georg
2003). These methods allow to estimate curves given in the
following implicit form:

T (u) = 0, where T is a mapping: Rm+1 → R
m. (8)

In fact, the path following strategy corresponds to a partic-
ular implementation of the so-called generic predictor cor-
rector approach (Allgower and Georg 2003) widely used in
numerical continuation methods.

In the case of path following in graph matching, we need
to solve a set of constrained optimization problems

x∗ = argmin
x

Eλ(x),

s.t.

{
Bx = 12n,
x ≥ 0n2 .

(9)

parameterized by λ, where Bx = 12n encodes the one-to-
one matching constraints (B ∈ R

2n×n2

). This results in
the following system of Karush-Kuhn-Tucker (KKT) equa-
tions (Kuhn and Tucher 1951):⎧⎨

⎩
∇Eλ(x) +BTα+ μ = 0n2 ,

Bx− 12n = 02n,
dot(μ, x) = 0n2 .

(10)

for each λ, where αi are Lagrange multiplier encoding
equality constraints and μi are KKT multipliers encoding in-
equality constraints. Denote T (λ, x, α, μ) the left-hand part
of the KKT equation system, we thus reformulate the graph
matching problem to a parameterized nonlinear equation
system T (λ, x, α, μ) = 0.

From the implicit function theorem (Kudryavtsev 2001),
we know that solutions of the parameterized nonlinear
equation system T (λ, x, α, μ) = 0 forms a smooth one-
dimensional curve which can be parameterized by λ.
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Algorithm 1: Path Estimation(x, d, t, k )

% x = {x1, x2, ..., xt−1}: solutions of previous iterations
% d = {d1, d2, ..., dt−1}: step lengths of previous iterations
% s′, x′: estimated speed and solution point at current iteration
% t: index of current iteration
% k: parameter for estimation
1 : if t < k + 1 then

2 : x′ ← xt−1

3 : else

4 : s′ ← 0
5 : for i = 1 to k do
6 : st−i ← (xt−i − xt−i−1)/dt−i−1

7 : s′ ← s′ + (k − i)st−i

8 : end for

9 : s′ ← s′/
∑k−1

i=1 i
10: x′ ← xt−1 + s′dt−1

11: end if

12: return x′

Path estimation

As discussed in the previous section, the path of solu-
tion points for the set of functions Eλ is a smooth one-
dimensional curve and can be parameterized by λ. We thus
are able to estimate the t-th solution point using the previous
t− 1 solution points.

At each iteration t, denote xt−k, ..., xt−1 the previous k
points of temporal solutions, the moving speed of each point
is computed as si = xi − xi−1, t − k + 1 ≤ i ≤ t − 1. We
estimate the moving speed s′t and point x′

t at iteration t as

s′t =

∑k−1
i=1 (k − i) · st−i∑k−1

i=1 i
, (11)

x′
t = xt−1 + s′t. (12)

The motivation behind this estimation is the smoothness
of the path, which implies the similarity between moving
speeds of consecutive iterations.

Once the estimation x′
t is ready, it is used as the start point

to search for the local minima xt. Compared with xt−1,
which is used in the original path following algorithms as the
start point, x′

t is in general closer to xt and thus the search
procedure is more efficient. The excellent experimental re-
sults described later further validate this point. The path es-
timation algorithm is summarized in Algorithms 1.

Adaptive step length

It is usually hard to choose a proper step length dλ of each
iteration in practice. Too small steps lead to high computa-
tional burden while too large ones may hurt matching accu-
racy. To address the issue, we propose using adaptive step
lengths. Denote dt the step length for iteration t, and dt
should depend on the estimation x′

t. When x′
t is very close

to the local minimum xt, suggesting that high smoothness of
the path around xt, we can afford using a large dt; by con-
trast, when x′

t is far from xt, a small dt is more reasonable.
Our adaptive step length uses a growing rate ρ to dynami-

cally adjust the step length. Initially, we set the step length as
d1 = dmin, where dmin represents the minimum step length
allowed. Then, at each iteration t, dt increases or decreases

Algorithm 2: GNCCP+EST, updated GNCCP algorithm

1 : Initialization: x1 ∈ D, d1 ← dmin, λ ← 1, t ← 1
2 : while λ > −1 and xt not discretized do

3 : x′t ← Estimation(x, d, t, k) % path estimation
4 : p ← x′t % start point to search local minimum
5 : while p not converged do % Frank-Wolfe algorithm
6 : y = argminy tr(∇Eλ(p)

T y), s.t.y ∈ D
7 : α = argminα Eλ(p+ α(y − p)), s.t.0 ≤ α ≤ 1
8 : p ← p+ α(y − p)
9 : end while
10: t ← t+ 1, xt ← p
11: dt ← AdaptiveStep(x′t, xt, d, t, k) % Eq. (13)
12: λ ← λ− dt
13: end while
14: return xt

by ρ times depends on the similarity between x′
t and xt.

Specifically, we have

dt←
{
ρdt−1, if tr((xt − x′

t)
�(xt − x′

t))≤θ

max(dmin,
dt−1

ρ ), otherwise

(13)
where θ is the threshold of the error tolerance of the estima-
tion. Once the update on dt is done, we run the optimization
(Frank-Wolfe) for the new value λ+dt. The idea behind this
adaptation schema is to choose dt which keeps the estima-
tion x′

t close enough to the real local minimum xt.

Upgrading existing path following algorithms

This proposed methods of path estimation and adaptive step
length are able to be combined with all algorithms that uti-
lize the path following strategy, for instance PATH (Za-
slavskiy, Bach, and Vert 2009), FGM (Zhou and Torre 2012)
and GNCCP (Liu and Qiao 2014). Due to space limitation,
we only illustrate the upgrading of GNCCP.

The upgraded algorithm (GNCCP+EST) is shown in Al-
gorithm 2, where Eλ in lines 6 and 7 is the linearly interpo-
lation between the convex relaxation and the concave relax-
ation of the original objective function (more details in (Liu
and Qiao 2014)). The parameter k controls the number of
previous solution points that are used to estimate the next
solution point. We set k = 10, dmin = 0.002 and θ = 0.001
throughout our experiments.

Experiments

We compare the proposed FGM+EST and GNCCP+EST al-
gorithms with the original FGM and GNCCP algorithms and
three recent graph matching algorithms, IPFP (Leordeanu
and Hebert 2009), RRWM (Cho, Lee, and Lee 2010) and
PSM (Egozi, Keller, and Guterman 2013), and report exper-
imental results on three benchmark datasets.

Experiments on the CMU house dataset

The CMU house image sequences is commonly used to test
the performance of graph matching algorithms (Cho, Lee,
and Lee 2010; Zhou and Torre 2012; Duchenne, Joulin, and
Ponce 2011; Torresani, Kolmogorov, and Rother 2008). This
dataset includes 110 frames of image sequences, in which 30
landmarks were manually labeled across all frames. We test
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source image pair IPFP: 16/20

RRWM: 6/20 PSM: 16/20

GNCCP: 3/20 GNCCP+EST: 16/20

FGM: 15/20 FGM+EST: 17/20

Figure 1: An example of graph matching on the CMU house
dataset. Graph edges are represented by yellow lines, true
matches by green lines and false matches by red lines. The
algorithm, the number of true matches per ground truths for
each subfigure are captioned (same for Fig. 3 and 5).

all possible image pairs, total 550 pairs gaped by 10, 20, ...,
100, and use 3 different settings of nodes (n1, n2) =(30,30),
(25, 30) and (20, 30). In the settings where n1 < 30, we
randomly choose n1 points among 30 landmark points.

In the experiment, decreasing n1 implies the increase of
outlier, while increasing sampling gaps implies increase the
degree of deformation. We use Delaunay triangulation (Lee
and Schachter 1980) to connect the landmarks, and edge
weights are computed as the Euclidean distance between
the connected nodes. The affinity matrix is conducted by
K(ia, jb) = exp(−(A1(i, j) − A2(a, b))

2/2500), where
A1(i, j) and A2(a, b) are the weights of the two edges.

Fig. 1 represents an example for graph matching with 10
outliers and significant deformation. Fig. 2 shows the perfor-
mance curves for n1 = 30, 25, and 20 with respect to variant
sequence gaps. All algorithms except IPFP achieve perfect
matching when no outliers existing (n1 = 30) and have sim-
ilar matching performances with five outliers (n1 = 25).
When we increase the number outliers to 10 (n1 = 20),
FGM, FGM+EST and PSM gain similar matching accuracy
and outperform other algorithms. In the aspect of computa-
tional efficiency, our approach brings dramatically improve-
ment into both GNCCP and FGM algorithms. The proposed
GNCCP+EST and FGM+EST algorithms spend only about
4% and 18% of computational time of the original GNCCP
and FGM algorithms respectively. The computational effi-
ciency of them exceeds the PSM algorithm and is close to
the RRWM and IPFP algorithms.

Computational time Matching accuracy

(n1, n2) = (30, 30)

(n1, n2) = (25, 30)

(n1, n2) = (20, 30)

Figure 2: Comparison of graph matching with respect to se-
quence gap on the CMU house dataset.

Experiments on the Pascal dataset

This dataset from (Leordeanu, Sukthankar, and Hebert
2012) consists of 30 pairs of car images and 20 pairs of
motorbike images selected from Pascal 2007. Each pair con-
tains 30 ∼ 60 ground-truth correspondences. To test the per-
formance against noise, we randomly select 0 ∼ 20 outlier
nodes from the background. We compute the feature, pi, for
each node i as its orientation of the normal vector at that
point to the contour where the point was sampled. We uti-
lize the Delaunay triangulation (Lee and Schachter 1980) to
connect the nodes and associate each edge c with a couple of
values [dc, θc]

T , where dc is the pairwise distance between
the connected nodes and θc is the absolute angle between the
edge and the horizontal line. Consequently, the node affinity
between nodes i1 and i2 is computed as exp(−|pi1 − pi2 |),
and the edge affinity between edges c1 and c2 is computed
as exp(−(|dc1 − dc2 |+ |θc1 − θc2 |)/2).

Fig. 3 represents an example for graph matching of mo-
torbike images with 10 outliers on this dataset. The match-
ing performance and computational time of each algorithm
with respect to the outlier number was summarized in Fig. 4.
The original GNCCP and FGM algorithms have very huge
computational burden comparing to other algorithms. For-
tunately, both of them are benefited significantly in com-
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source image pair IPFP: 1/46

RRWM: 34/46 PSM: 28/46

GNCCP: 27/46 GNCCP+EST: 38/46

FGM: 31/46 FGM+EST: 39/46

Figure 3: A matching example on the Pascal dataset.

Computational time Matching accuracy

Figure 4: Comparison of graph matching with respect to the
outlier number for the Pascal dataset.

putational efficiency from our new path following strategy.
In fact, the computational costs of the GNCCP+EST and
FGM+EST algorithms are reduced to as less as only about
2% and 15% of the original GNCCP and FGM algorithms
respectively. The computational efficiency of them exceeds
the PSM algorithm and is close to the RRWM and IPFP
algorithms. The FGM+EST algorithms is in line with the
FGM algorithm and outperforms other algorithms in terms
of matching accuracy. It is interesting that the GNCCP+EST
algorithm achieves remarkable improvement in matching
accuracy comparing to the GNCCP algorithm with certain
numbers of outliers.

Caltech image dataset

In this experiment, we test our approach on a real image
dataset containing 30 image pairs provided in (Cho, Lee,
and Lee 2010) which are collected from Caltech-101 and
MSRC datasets. For each image pair, the authors provide
detected MSER keypoints (Donoser and Bischof 2006), ini-

source image pair IPFP: 16/17

RRWM: 11/17 PSM: 11/17

GNCCP: 12/17 GNCCP+EST: 16/17

Figure 5: A matching example on the Caltech dataset.

Table 1: Graph matching results on the Caltech dataset.
Algorithm IPFP RRWM PSM GNCCP GNCCP+EST
Accuracy 66.30 75.49 67.40 74.92 75.60
Time (s) 0.05 0.61 15.53 6.79 0.27

tial matches, affinity matrix, and manually labeled ground
truth feature pairs. In (Cho, Lee, and Lee 2010), candidate
matches were filtered using the distance of 128-dim SIFT
descriptor (Lowe 2004) where all the low-quality candidate
matches were filtered if the feature pair is more distant in
SIFT feature space than a loose threshold δ = 0.6. The FGM
algorithm (and the corresponding FGM+EST algorithm) is
absent in this experiment because the provided affinity ma-
trices cannot be directly factorized by the FGM algorithm
due to its omission of many candidate matches.

A representative example for graph matching of cat im-
ages with dramatical non-grid deformation is shown in
Fig. 5. The matching accuracy and computational time of
each algorithm are summarized in table 1. The proposed
GNCCP+EST algorithm spend only about 4% of computa-
tional time of the original GNCCP algorithm, and also ex-
ceeds the RRWM algorithm and the PSM algorithm in terms
of computation efficiency. Our new algorithm also gains im-
provement in matching accuracy, and outperforms all other
algorithms.

Conclusion

We proposed a novel path following strategy for graph
matching aiming to improve the computational efficiency.
We integrated our approach into various algorithms that uti-
lized the original path following strategy. Experimental re-
sults reveal that our approach can consistently improve dra-
matically the computation efficiency of the original algo-
rithms. Furthermore, in terms of matching accuracy, our ef-
ficient approach achieves better or similar results compared
with the original ones.
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