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Abstract

In this paper, we propose a novel similarity measure and then
introduce an efficient strategy to learn it by using only similar
pairs for person verification. Unlike existing metric learning
methods, we consider both the difference and commonness of
an image pair to increase its discriminativeness. Under a pair-
constrained Gaussian assumption, we show how to obtain the
Gaussian priors (i.e., corresponding covariance matrices) of
dissimilar pairs from those of similar pairs. The application
of a log likelihood ratio makes the learning process simple
and fast and thus scalable to large datasets. Additionally, our
method is able to handle heterogeneous data well. Results on
the challenging datasets of face verification (LFW and Pub-
Fig) and person re-identification (VIPeR) show that our algo-
rithm outperforms the state-of-the-art methods.

1 Introduction

Person verification, i.e., verifying whether two unseen im-
ages contain the same person or not, has attracted increasing
attention in computer vision. There exist two main clues in
the images - face and human body, based on which, the prob-
lem of person verification can be further classified into two
subproblems: face verification and person re-identification.
Both of them are challenging due to variations in illumina-
tion, viewpoint, pose and expression. A general framework
of addressing these two subproblems includes feature ex-
traction and matching, which solves the issues of (1) how to
extract efficient and robust features and (2) how to measure
the similarity between an image pair based on the extracted
features, respectively. This paper is mainly dedicated to the
latter - similarity learning.

Recently, learning a similarity measure (Köstinger et al.
2012; Gal Chechik and Bengio 2010; Nguyen and Bai 2010;
Bohne et al. 2014; Cao, Ying, and Li 2013) has been well
studied and utilized to address the task of person verifica-
tion. Among them, metric learning aims at learning a Maha-
lanobis metric while similarity metric learning is to learn a
bilinear similarity metric or a cosine similarity metric. How-
ever, a single metric is inappropriate to handle heteroge-
neous data. To overcome this limitation, many approaches
based on more metrics are put forward.
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In this paper, we propose a novel similarity measure
which can be further rewritten as a combination of a Maha-
lanobis metric and a bilinear similarity metric. With more
metrics, it is able to handle heterogeneous data well. We
also present an efficient strategy to jointly learn the simi-
larity measure by using only similar pairs. Different from
triplets (Schultz and Joachims 2003) or quadruplets (Law,
Thome, and Cord 2013), we employ pairwise constraints
because it is easier to specify labels in the form of equiv-
alence constraints (Köstinger et al. 2012). To be specific,
given an image pair, we first introduce the concepts of differ-
ence and commonness, which are defined by the subtraction
between the pair and the summation of them, respectively.
Under a pair-constrained Gaussian assumption (detailed in
section 3), we then show how to calculate the Gaussian pri-
ors (or ’priors’ for brevity) of dissimilar pairs from those of
similar pairs. Inspired by KISS metric (KISSME) (Köstinger
et al. 2012), we employ a log likelihood ratio to directly
compute our similarity measure in terms of priors of la-
beled similar pairs. The time complexity of our method is
O(Nd2 + d3), where d is the dimension of PCA-reduced
features and N is the number of similar pairs. Therefore, our
method is scalable to large-scale data as long as d is small.
Considering that large scale learning sometimes refers to
the regime where learning is limited by computational re-
sources rather than availability of data (Gal Chechik and
Bengio 2010) and that our method has low time complexity,
we then name our approach as large scale similarity learning
(LSSL) using similar pairs. We validate the performances of
LSSL on challenging datasets of face verification (LFW and
PubFig) and person re-identification (VIPeR). Experimental
results show that LSSL is both fast and accurate.

In summary, the main contributions are two-fold: (1) We
propose a novel similarity measure and introduce a fast and
efficient method to learn it; (2) Benefiting from the con-
sideration of both difference and commonness of an im-
age pair and from a pair-constrained Gaussian assumption,
we point out how to deduce priors of dissimilar pairs from
those of similar pairs. The latter contribution is interest-
ing and important because it is useful for those based on
Bayesian rule (Moghaddam, Jebara, and Pentland 2000)
(e.g., KISSME) and avoids dealing with dissimilar pairs.

The rest of this paper is organized as follows. We review
the related work on similarity learning and give a brief intro-

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

3655



duction to KISSME in section 2. The proposed method and
experimental results are shown in sections 3 and 4, respec-
tively. In section 5, we conclude the paper.

2 Related Work

According to the literature survey (Bellet, Habrard, and Seb-
ban 2014), learning a global Mahalanobis metric has dom-
inated the metric learning literature and competitive results
are obtained. Based on the learned matrix M , the distance
or similarity between a d-dimensional pair (xi, yj) is:

dM (xi, yj) = (xi − yj)
TM(xi − yj) (1)

where M ∈ Rd×d is a positive semi-definite matrix. On
the basis of labeled pairs, how to learn M gives rise to
different metric learning methods. The first Mahalanobis
distance learning approach - Xing (Xing et al. 2002) opti-
mizes M by maximizing the sum of distances between dis-
similar points under the constraint of maintaining a small
overall distances between similar points. Afterwards, Wein-
berger et al. (Weinberger, Blitzer, and Saul 2006) intro-
duces one of the most widely used Mahalanobis distance
learning method named Large Margin Nearest Neighbors
(LMNN) by strengthening the correlation of target neigh-
bors while keeping instances from different classes far away.
Without regularization, LMNN is prone to over-fitting dur-
ing training. To overcome this problem, Davis et al. (Davis
et al. 2007) propose Information Theoretic Metric Learn-
ing (ITML) which guarantees the closeness of the possi-
ble solution to a given distance metric prior. In contrast
to previous methods, KISSME which learns the Maha-
lanobis metric from equivalence constraints in (Köstinger
et al. 2012), does not rely on complex optimization and
is orders of magnitudes faster. In (Law, Thome, and Cord
2014), a linear regularization term is incorporated in the
objective function, which minimizes the k smallest eigen-
values of the Mahalanobis metric. Under the regulariza-
tion, the rank of a learned Mahalanobis metric is explic-
itly controlled and the recognition on both controlled and
real datasets are greatly improved. Instead of the Maha-
lanobis metric, other similarity metric for verification prob-
lems have two main forms: the bilinear similarity met-
ric sM (xi, yj) = xT

i Myj (Gal Chechik and Bengio
2010) and the cosine similarity metric CSM (xi, yj) =

xT
i Myj/(

√
xT
i Mxi

√
yTi Myj) (Nguyen and Bai 2010).

To address the limitations of a global Mahalanobis met-
ric or a similarity metric in dealing with heterogeneous
data (Bellet, Habrard, and Sebban 2014; Bohne et al. 2014),
many local metric learning methods are proposed recently.
A generalized similarity measure is proposed in (Cao, Ying,
and Li 2013) - Sub-SML, which combines the similarity
function and distance function. Then, the learned metrics
preserve the discriminative power. In (Li et al. 2013), a joint
model bridging a global distance metric and a local decision
rule is proposed to achieve better performance than met-
ric learning methods. Large Margin Local Metric Learnig
(LMLML) (Bohne et al. 2014) introduces a novel local met-
ric learning method that first computes a Gaussian Mixture
Model from the labeled data and then learns a set of local

metrics by solving a convex optimization problem. It is flex-
ible and can be applied to a wide variety of scenarios.

2.1 A Brief Introduction to KISSME

In consideration of the fact that the solution of our method
is inspired by KISSME, we briefly introduce it in this sub-
section. Additionally, in experiments, we also show how to
improve KISSME based on our method.

In a statistical inference perspective, KISSME aims at
learning a global Mahalanobis metric (defined by Eq. 1)
from equivalence constraints. As there is a bijection between
the set of Mahalanobis metric and that of multivariate Gaus-
sian distribution 1 , the Mahalanobis metric can be directly
computed in terms of the covariance matrix without opti-
mization. To seek their connection, the log likelihood ratio
defined by Eq. 2 is employed:

s(z) = 2 log
P (z|HS)
P (z|HD)

= C + zT (Σ−1
zD − Σ−1

zS )z (2)

where C = d× log |ΣzD|
|ΣzS | is a constant (here, d is the dimen-

sion of z). In KISSME, z refers to the difference of an image
pair (xi-yj) and is assumed to follow two different Gaussian
distributions (one is based on HS which represents the hy-
pothesis of a similar pair while the other on HD denoting
the hypothesis of a dissimilar pair).

It can be seen that a higher value of s(z) indicates that
the pair is similar with a high probability. After stripping
the constant C which just provides an offset, M in Eq. 1
can be written as Σ−1

zD − Σ−1
zS . To make M be a positive

semi-definite matrix, the authors of (Köstinger et al. 2012)
further re-project it onto the cone of positive semi-definite
matrixes, i.e., clipping the spectrum of M by eigenanalysis.
Though simple, KISSME achieves surprisingly good results
in person re-identification (Yang et al. 2014).

3 Large Scale Similarity Learning

In this section, we first propose a novel similarity measure.
Then, we demonstrate how to learn it using only similar
pairs based on a statistical inference perspective. A pair-
constrained Gaussian assumption is made in the following.
Under this assumption, we further show how to preprocess
the features. Finally, we discuss the parameter setting and
the benefit of PCA and compare with a previous work.
Pair-constrained Gaussian Assumption Let us assume
that we have a data set of N d-dimensional similar pairs
{(x1, y1), ..., (xN , yN )}. Any instance xi (or yi), i =
1, 2, ..., N is represented by

xi = μi + εi1 (or yi = μi + εi2) (3)

where μi is an implicit variable which refers to the i-th sim-
ilar pair (xi, yi) while εi1 (or εi2) is also an implicit vari-
able denoting the variation of xi (or yj) within the similar
pair. The independent variables μ and ε (subscript omitted)
are supposed to follow two different Gaussian distributions
N (0, Sμ) and N (0, Sε), where Sμ and Sε are two unknown
covariance matrixes.

1e.g., Gaussian distribution of d-dimensional similar pairs:
P (z|HS) = N (0,ΣzS) = 1

(2π)d/2
1

|ΣzS |d/2 exp{− 1
2
zTΣ−1

zS z}.
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Figure 1: An illustration of difference and commonness in 2-
dimensional Euclidean space. Each feature is l2-normalized.
(x1, y1) (red) denotes a similar pair while (x2, y2) (yellow)
represents a dissimilar pair. The green circle is a unit one.

3.1 The Proposed Similarity Measure

For an image pair (xi, yj), each of which is a column and
normalized with the l2-norm (explained in the subsection of
this section: Date Preprocessing), the difference eij and com-
monness mij are defined by Eq. 4. For brevity, we will omit
the subscript when we do not treat the variable as a specific
instance in the following.{

e = x− y
m = x+ y

(4)

Fig. 1 illustrates the difference and commonness in 2-
dimensional Euclidean space. (x1, y1) (red) denotes a simi-
lar pair while (x2, y3) (yellow) represents a dissimilar pair.
We find that for a similar pair (x1, y1), the value of ‖e11‖2 is
small but that of ‖m11‖2 is high. Meanwhile, for a dissimilar
pair (x2, y3), the value of ‖e23‖2 is high but that of ‖m23‖2
is small. Therefore, if we combine e and m, we can expect
more discriminativeness than those metric learning methods
which only consider the difference of an image pair.

We then propose a new similarity measure which is de-
fined by subtracting the dissimilarity score eTBe from sim-
ilarity score mTAm:

r(x, y) = mTAm− λeTBe (5)

where A and B are two matrixes, parameterizing the simi-
larity and dissimilarity scores, respectively, and the param-
eter λ is used to balance the effects between similarity and
dissimilarity scores. In (Gal Chechik and Bengio 2010), it
is pointed out that although adding a positive semi-definite
constraint is useful for reducing overfitting in the condition
of little training data, if there are sufficient training data,
which is the most case in modern applications, the process of
adding the constraint consumes additional computation time
and its benefit is limited. With this view, we do not impose
the positive semi-definite constraint on the learned A or B.

3.2 Jointly Learn A and B from Similar Pairs

Inspired by KISSME (Köstinger et al. 2012), we employ the
log likelihood ratio (defined in Eq. 2) to compute A and B

directly. Under the pair-constrained Gaussian assumption, it
is easy to know that based on HS and HD, m follows two
Gaussian distributions while e follows another two Gaus-
sian distributions. Since s(z) = zT (Σ−1

zD −Σ−1
zS )z (discard-

ing the constant C) indicates that the pair is similar with
a high probability, s(z) can be taken as a similarity score
while −s(z) as a dissimilarity score, e.g., s(m) = mTAm
and s(e) = −eTBe. Thus, we can obtain{

A = Σ−1
mD − Σ−1

mS
B = Σ−1

eS − Σ−1
eD.

(6)

For a similar pair (xi, yi), i = 1, 2, ..., N , we have xi =
μi + εi1 and yi = μi + εi2. Then eii = εi1 − εi2 and
mii = 2μi + εi1 + εi2. Under the pair-constrained Gaussian
assumption, we know that μi, εi1 and εi2 are independent.
Then, we have cov(e, e) = 2Sε and cov(m,m) = 4Sμ+2Sε

(subscript omitted). Thus, for similar pairs, P (m|HS) =
N (0,ΣmS) and P (e|HS) = N (0,ΣeS), where{

ΣmS = 4Sμ + 2Sε

ΣeS = 2Sε.
(7)

For a dissimilar pair (xi, yj), i �= j, i, j = 1, 2, ..., N ,
we have xi = μi + εi1 and yj = μj + εj2. Then eij =
μi − μj + εi1 − εj2 and mij = μi + μj + εi1 + εj2. Under
the pair-constrained Gaussian assumption, we know that μi,
μj , εi1 and εj2 are independent. Then, we have cov(e, e) =
2Sμ+2Sε and cov(m,m) = 2Sμ+2Sε (subscript omitted).
Thus, for dissimilar pairs, P (m|HD) = N (0,ΣmD) and
P (e|HD) = N (0,ΣeD), where{

ΣmD = 2Sμ + 2Sε

ΣeD = 2Sμ + 2Sε.
(8)

By comparing Eq. 7 with Eq. 8, we observe that ΣmD +
ΣeD = ΣmS +ΣeS and ΣmD = ΣeD. Thus, ΣmD and ΣeD
can be directly calculated by the priors of labeled similar
pairs by Eq. 9:

ΣmD = ΣeD =
1

2
(ΣmS +ΣeS) = Σ. (9)

With it, it is interesting to note that (1) we can neglect the
dissimilar pairs and thus saving the time to deal with them
and (2) KISSME can be improved by rewriting M as Σ−1−
Σ−1

eS . We will compare their performances in experiments.
Learning Priors of Similar Pairs When computing ΣmS
and ΣeS , we do not rely on how to estimate Sμ and Sε

both of which have implicit meanings. Instead, we choose
the maximum likelihood estimate (MLE) to compute them
based on the labeled similar pairs:{

ΣmS = 1
N

∑N
i=1 miim

T
ii

ΣeS = 1
N

∑N
i=1 eiie

T
ii

(10)

where mii = xi + yi, eii = xi − yi, i = 1, 2, ..., N .
Learning Priors of Dissimilar Pairs from Those of Simi-
lar Pairs Based on Eqs. 9 and 10, we can derive priors of
dissimilar pairs - ΣmD and ΣeD from the learned priors of
similar pairs - ΣmS and ΣeS :

ΣmD = ΣeD = Σ =
1

2N

N∑
i=1

(miim
T
ii + eiie

T
ii). (11)
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Thus, A and B in Eq. 6 are jointly learned:{
A = Σ−1 − Σ−1

mS
B = Σ−1

eS − Σ−1 (12)

where ΣmS and ΣeS are defined by Eq. 10 while Σ in Eq. 11.
Based on Eqs. 4, 5 and 12, we can further reformulate our

similarity measure as a combination of a bilinear similarity
metric and a Mahalanobis metric:

r(x, y) = xTMby − (x− y)TMd(x− y) (13)
with {

Mb = 4(Σ−1 − Σ−1
mS)

Md = Σ−1
mS + λΣ−1

eS − (1 + λ)Σ−1 (14)

where Mb and Md parameterize the bilinear similarity met-
ric and the Mahalanobis metric, respectively. Therefore,
with more metrics, our LSSL is able to handle the hetero-
geneous data better than those approaches which are only
based on a single metric. In experiments, we will compare
the performances of the bilinear similarity metric, Maha-
lanobis metric and LSSL which are learned in our methods.
The learning scheme of LSSL is described in Algorithm 1.

Algorithm 1 Large Scale Similarity Learning Using Similar
Pairs
Input: A data set of N d-dimensional similar training

pairs {(x1, y1), ..., (xN , yN )} after PCA.
Output: A ∈ Rd×d and B ∈ Rd×d.

1: normalize each data with the l2-norm;
2: compute ΣmS and ΣeS by Eq. 10;
3: compute Σ by Eq. 11;
4: compute A and B by Eq. 12.

3.3 Data Preprocessing

According to the pair-constrained Gaussian assumption, μ
and ε, which are two independent variables, follow two
Gaussian distributions N (0, Sμ) and N (0, Sε). Then, vari-
ables of e and m are independent and follow two Gaussian
distributions with zero mean. Based on them, we show how
to preprocess the features.
Zero Mean Suppose that for any similar pair (xi, yi), i =
1, ..., N , there is a corresponding ’negative’ similar pair
(−xi,−yi), i = 1, 2, ..., N . Then, variable e or m follows a
zero-mean distribution since eii+(−eii) = mii+(−mii) =
0, i = 1, 2, ..., N . Thus, zero-mean distribution of e and m
always holds. Based on Eq. 10, if we discard the priors of the
’negative’ similar pairs, the results of ΣeS and ΣmS remain
unchanged. So, in practice, we do not calculate the priors of
the ’negative’ similar pairs.
Independence Based on the pair-constrained Gaussian
assumption, two random variables e and m are indepen-
dent and follow two Gaussian distributions with zero mean.
In such a case, independence is equivalent to orthogonal-
ity (Gareth James and Tibshirani 2013). Then we make e
and m orthogonal by normalizing each feature using the l2-
norm. This is because

〈e,m〉 = 〈x− y, x+ y〉 = 〈x, x〉 − 〈y, y〉+
(〈x, y〉 − 〈y, x〉) = 1− 1 + 0 = 0

(15)

where 〈., .〉 denotes the inner product. In this way, the inde-
pendence between e and m is guaranteed. Note that what-
ever was done to preprocess the features 2 , the last step
is normalizing each feature with the l2-norm (see Algo-
rithm 1).

3.4 Discussion

Parameter Setting In Eq. 14, when we compute Md, there
is a parameter λ balancing the similarity and dissimilarity
scores. It is not very sensitive and takes value in [0.9,1.5]. In
experiments, we set λ to 0.9, 1.2 and 1.5 for LFW, PubFig
and VIPeR, respectively.
The Benefit of PCA It is hard to obtain reliable estimations
of priors of high-dimension data without sufficient data. In
view of this, we use PCA to reduce the dimension and rep-
resent the Gaussian distributed data efficiently.
Comparison with a previous work In (Li et al. 2013), the
LADF learns a global Mahalanobis metric as a similarity
measure and the idea of similarity/dissimilarity is reflected
in the local decision rule when they make decisions. How-
ever, our LSSL aims to learn a discriminative similarity mea-
sure, which is intuitively defined in Eq. 5.

4 Experiments

We evaluate the performances of the proposed LSSL on
three publicly available challenging datasets: Labeled Faces
in the Wild (LFW) (Huang et al. 2007), Public Figures Face
Database (PubFig) (Kumar et al. 2009) and Viewpoint In-
variant Pedestrian Recognition (VIPeR) (Gray, Brennan, and
Tao 2007). The first two datasets focus on face verification,
while the last one on person re-identification.

Firstly, we fairly compare LSSL with existing similarity
learning approaches on LFW dataset. In addition, we further
test the performance of LSSL on PubFig dataset in attribute
space. Finally, we show that LSSL with improved features
achieves a new state-of-the-art result on VIPeR dataset.

4.1 Datasets and Setup

LFW Labeled Faces in the Wild (LFW) is a widely used
dataset and can be considered as the current state-of-the-
art face recognition benchmark. There are 13,233 uncon-
strained face images of 5,749 individuals collected from the
web. It is very challenging because there are large variations
in pose, lighting, facial expression, age, gender, ethnicity
and general imaging and environmental conditions. For the
face verification task, persons who appear in testing have not
been seen in training.

We follow the standard ’restricted’ evaluation protocol.
The images are divided into 10 folds that are used for cross-
validation and there are 300 similar pairs and 300 dissimilar
pairs in each fold. The subjects in the 10 folds are mutually
exclusive. In the restricted setting, no inference on the iden-
tity of the image is allowed. Image pairs of 9 folds are used
for training while the remaining fold is used for testing. The
average result over 10 trials is reported.

2There is a slight improvement if we preprocess the features by
subtracting the mean of all samples.
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Method Accuracy(%)
ITML 78.9 ± 0.5
Xing 74.4 ± 0.6
KISSME 80.6 ± 0.6
LDML 77.5 ± 0.5
PCCA-X 2

RBF 83.8 ± 0.4
Fantope Regularization 83.5 ± 0.5
LMLML(Intra-PCA) 85.4 ± 0.5
Sub-SML(Intra-PCA) 85.6 ± 0.6

LSSL(PCA) 85.5 ± 0.5
LSSL(Intra-PCA) 86.2 ± 0.4

Table 1: Comparison of LSSL with existing similarity learn-
ing approaches on the LFW in the restricted setting. Results
are shown in terms of mean and standard error (best in bold).

PubFig Public Figures Face Database (PubFig) is also
a challenging large-scale real-world dataset. It contains
58,797 images of 200 persons collected from Google images
and Flickr. 10 folds are used for cross-validation with 1000
similar pairs and 1000 dissimilar pairs in each fold. Images
in each fold are sampled from 14 individuals. For the verifi-
cation task, testing is conducted on individuals who have not
been seen in the training. Similar to LFW, we also choose the
’restricted’ setting. The identity of the subject is unknown in
training. We also report the average result over 10 runs.
VIPeR Viewpoint Invariant Pedestrian Recognition
(VIPeR) is one of the most popular dataset for person re-
identification. It consists of 1264 images from 632 pedestri-
ans with the resolution of 128×48. For each person, a pair
of images are taken from two disjoint cameras with differ-
ent views. It suffers from viewpoint, pose and illumination
changes. To compare our approach with others, we randomly
choose 316 image pairs for training and the remaining 316
image pairs are used for testing. In the stage of testing, im-
ages from one camera are employed as a probe set while
those from the other camera as a gallery set. Then, we switch
the probe and gallery. The average of the results is regarded
as one run. We report the final average results over 100 runs.

4.2 Face Verification: LFW

Features To fairly compare with other approaches, we
use the commonly used SIFT descriptors (Lowe 2004)
(downloaded from the website of (Guillaumin, Verbeek, and
Schmid 2009)) to represent the ’funneled’ face images. We
then employ PCA to project the original 3456 dimensional
features to a 100 dimensional subspace.

In Table 1, we compare LSSL with existing similarity
learning approaches: ITML, Xing, KISSME, LDML (Guil-
laumin, Verbeek, and Schmid 2009), PCCA-X 2

RBF (Mignon
and Jurie 2012), Fantope Regularization (Law, Thome,
and Cord 2014), LMLML (Intra-PCA) and Sub-SML(Intra-
PCA). The results of the first four metric learning methods
were generated with their original codes which are publicly
available. Other results are copied from the public reports or
released by the corresponding authors, all of which are based
on the same SIFT descriptors under the restricted setting of

Method Accuracy(%)
Gaussian Distribution 70.6 ± 1.8
KISSME 77.7 ± 0.9
Qwise+LMNN 77.6 ± 2.0
LMNN+Fantope 77.5 ± 1.6

LSSL 79.2 ± 0.8

Table 2: An overview of the state-of-the-art results (mean
and standard error) on PubFig (best in bold).

LFW. LSSL(PCA) only uses PCA to reduce the dimension
while LSSL(Intra-PCA) further employs Intra-PCA to re-
duce the effect of large intra-pair variations. Note that Intra-
PCA (using similar pairs for training) is also fast.

From Table 1, we can see that LSSL(PCA) outperforms
the other approaches except Sub-SML(Intra-PCA) while
LSSL(Intra-PCA) obtains the best result with 86.2% ± 0.4%
verification rate. Additionally, all of LSSL, Sub-SML and
LMLML which employ more metrics, perform better than
PCCA-X 2

RBF which achieves the best result of a single met-
ric. These observations validate the effectiveness of LSSL
and also demonstrate that multiple metrics show better per-
formance than a single metric. Even though we can obtain
better results by employing Intra-PCA, we also find that in
some cases, it may lead to a singular covariance matrix of
dissimilar pairs for KISSME, which will harm its final per-
formance. In the following experiments, to fairly compare
with KISSME, we only use PCA to preprocess the features.

4.3 Face Verification: PubFig

Features To represent the faces in PubFig, we adopt the 73-
dimensional features provided by (Kumar et al. 2009). The
’high-level’ visual features are extracted by automatically
encoding the appearance in either nameable attributes such
as gender, race, age etc. or ’similes’. We employ PCA to
project the features to a 65 dimensional subspace.

In Table 2, we give an overview of the state-of-the-art
methods reported in recent years. By use of the same fea-
tures, LSSL performs better than KISSME. In addition,
LSSL also outperforms other methods with different feature
types and learners, including Gaussian Distribution (Parikh
and Grauman 2011), Qwise+LMNN (Law, Thome, and
Cord 2013) and LMNN+Fantope (Law, Thome, and Cord
2014). Thus, LSSL achieves a new state-of-the-art result
(79.2% ± 0.8%) on FubFig in the restricted setting.

4.4 Person Re-identification: VIPeR

Features To represent the individuals in VIPeR, we ex-
tract the features based on the codes provided by the au-
thors of salient color names based color descriptor (SC-
NCD) (Yang et al. 2014) and color names (Joost van de
Weijer and Larlus 2009) as follows: (1) We employ ten
horizontal stripes of equal size; (2) SCNCD, color names
and color histograms are computed and fused; (3) The fi-
nal image-foreground (Yang et al. 2014) feature represen-
tation is extracted in six different color spaces including
RGB, rgb, l1l2l3, HSV, YCbCr, and Lab. By doing so, the
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Figure 2: Comparison of LSSL with several classic metric
learning methods on the VIPeR.

Rank 1 5 10 20

Final(ImgF) 37.8% 68.5% 81.2% 90.4%
CVPDL 34.0% 64.2% 77.5% 88.6%
LOMO+XQDA 40.0% - 80.5% 91.1%
MtMCML 28.8% 59.3% 75.8% 88.5%
SSCDL 25.6% 53.7% 68.1% 83.6%
MLF 43.4% - 84.9% 93.7%
LSSL 47.8% 77.9% 87.6% 94.2%

Table 3: Comparison with the state-of-the-art methods re-
ported in recent 2 years on VIPeR dataset. Best in bold.

obtained features are more robust to illumination, partial oc-
clusion and scale changes. We employ PCA to reduce the
dimension of the features to 75. All the results are shown in
the form of commonly used Cumulated Matching Character-
istic (CMC) curve (Wang et al. 2007), which means that we
can find the right matching people within the first n Ranks.

Using the same features, we first compare LSSL with four
classic metric learning methods: Xing, LMNN, ITML and
KISSME. In Fig. 2, we observe that LSSL significantly out-
performs other metric learning approaches at Ranks 1-30.

Additionally, in Table 3 we also compare the perfor-
mance of our method with the state-of-the-art methods (re-
ported in recent 2 years) which focus on feature learning
and/or matching, e.g., Final(ImgF) (Yang et al. 2014), MtM-
CML (Lianyang Ma and Tao 2014), semi-supervised cou-
pled dictionary learning (SSCDL) (Xiao Liu and Bu 2014),
Mid-level Filter (MLF) (Rui Zhao and Wang 2014), cross-
view projective dictionary learning (CVPDL) (Sheng Li
and Fu 2015), and LOMO+XQDA (Shengcai Liao and Li
2015). The best result in previous works is achieved by
MLF (Rui Zhao and Wang 2014) with 43.4% at Rank 1. Our
method achieves a new state-of-the-art result 47.8% (4.4%
higher than MLF) at Rank 1.

Method Md Mb Md and Mb

LFW 82.6 ± 0.5 81.2 ± 0.5 85.5 ± 0.5
PubFig 78.3 ± 0.9 73.9 ± 0.7 79.2 ± 0.8

Table 4: Results (mean and standard error (%)) of single
metric and joint metrics on LFW and PubFig. Best in bold.

4.5 Performance Analysis

Single Metric v.s. Joint Metrics According to Eqs. 13
and 14, the Mahalanobis metric and the bilinear similarity
metric can be jointly learned in our method. Then, we con-
duct experiments on LFW and PubFig to validate two prob-
lems: (1) which metric is more important and (2) whether the
combination of two metrics are better than a single metric.

From Table 4, we can find that (1) in comparison between
Md and Mb, the Mahalanobis metric performs better than
the bilinear similarity metric and (2) joint metrics are more
discriminative than a single metric based on Md (or Mb).

Method KISSME iKISSME
LFW 80.6 ± 0.6 82.2 ± 0.6
PubFig 77.7 ± 0.9 78.6 ± 0.9

Table 5: Comparison of KISSME and iKISSME on LFW
and PubFig (mean and standard error (%)). Best in bold.

KISSME v.s. iKISSME In section 3, we observe that
KISSME (defining M as Σ−1

eD − Σ−1
eS ) can be improved by

rewriting M as Σ−1 − Σ−1
eS where Σ is defined by Eq. 11.

We name it as improved KISSME (iKISSME). To compare
their performances, we conduct the experiments on LFW
and PubFig. Results are shown in Table 5. It is obvious that
iKISSME performs better than KISSME on both LFW and
PubFig. This observation demonstrates the feasibility and
effectiveness of Eq. 11 when we compute the priors of dis-
similar pairs. It also reflects that we can expect a more ac-
curate estimate of the priors of dissimilar pairs if they are
selected appropriately (e.g., the priors are computed based
on more dissimilar pairs).
Training Time In (Köstinger et al. 2012), KISSME has
been demonstrated to be orders of magnitudes faster than
comparable methods such as SVM, ITML, LDML and
LMNN in traing. So we just compare the training time be-
tween LSSL and KISSME on the VIPeR dataset. All of them
are evaluated on a PC with the 3.40 GHz Core I7 CPU with
8 cores. The average training time of KISSME is 66.8 ms
while that of LSSL is 1.6 ms. That is, LSSL is approximately
42 times faster than KISSME. It benefits from avoiding deal-
ing with the dissimilar pairs.

5 Conclusion

To address the task of person verification, we present a novel
similarity measure and introduce an efficient method to learn
it. Benefiting from the consideration of both difference and
commonness of an image pair and from a pair-constrained
Gaussian assumption, we show how to learn the priors of
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dissimilar pairs from those of similar pairs. Our proposed
LSSL is very fast for training, which is important for real ap-
plications. Experimental results demonstrate the efficiency
of LSSL on dealing with person verification problems.

Acknowledgments

This work was supported by the Chinese National Nat-
ural Science Foundation Projects #61203267, #61375037,
#61473291, #61572501, #61572536, National Science and
Technology Support Program Project #2013BAK02B01,
Chinese Academy of Sciences Project No. KGZD-EW-102-
2, and AuthenMetric R&D Funds.

References
Bellet, A.; Habrard, A.; and Sebban, M. 2014. A survey
on metric learning for feature vectors and structured data.
Technical report.
Bohne, J.; Ying, Y.; Gentric, S.; and Pontil, M. 2014. Large
margin local metric learning. In ECCV.
Cao, Q.; Ying, Y.; and Li, P. 2013. Similarity metric learning
for face recognition. In ICCV.
Davis, J. V.; Kulis, B.; Jain, P.; Sra, S.; and Dhillon, I. 2007.
Information-theoretic metric learning. In ICML.
Gal Chechik, Varun Sharma, U. S., and Bengio, S. 2010.
Large scale online learning of image similarity through
ranking. Journal of Machine Learning Research 11:1109–
1135.
Gareth James, Daniela Witten, T. H., and Tibshirani, R.
2013. An introduction to statistical learning. Statistical The-
ory and Methods.
Gray, D.; Brennan, S.; and Tao, H. 2007. Evaluating appear-
ance models for recognition, reacquisition, and tracking. In
Workshop on PETS.
Guillaumin, M.; Verbeek, J.; and Schmid, C. 2009. Is that
you? metric learning approaches for face identification. In
ICCV.
Huang, G. B.; Ramesh, M.; Berg, T.; and Learned-Miller, E.
2007. Labeled faces in the wild: A database for studying
face recognition in unconstrained environments. Technical
Report 07–49, University of Massachusetts, Amherst.
Joost van de Weijer, Cordelia Schmid, J. V., and Larlus, D.
2009. Learning color names for real-world applications. TIP
1512C–1523.
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