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Abstract

Parsing human into semantic parts is crucial to human-centric
analysis. In this paper, we propose a human parsing pipeline
that uses pose cues, i.e., estimates of human joint locations,
to provide pose-guided segment proposals for semantic parts.
These segment proposals are ranked using standard appear-
ance cues, deep-learned semantic feature, and a novel pose
feature called pose-context. Then these proposals are selected
and assembled using an And-Or graph to output a parse of the
person. The And-Or graph is able to deal with large human
appearance variability due to pose, choice of clothes, etc. We
evaluate our approach on the popular Penn-Fudan pedestrian
parsing dataset, showing that it significantly outperforms the
state-of-the-arts, and perform diagnostics to demonstrate the
effectiveness of different stages of our pipeline.

Introduction

The goal of human parsing is to partition the human
body into different semantic parts such as hair, face, torso,
arms, and legs. This provides rich descriptions for human-
centric image analysis which is increasingly important
for many computer vision applications such as content-
based image/video retrieval (Weber et al. 2011), person re-
identification (Ma et al. 2011; Cheng et al. 2011), video
surveillance (Yang and Yu 2011), action recognition (Wang
et al. 2012; Zhu et al. 2013; Wang, Wang, and Yuille 2013),
and clothes fashion recognition (Yamaguchi et al. 2012).
But human parsing is very challenging in real-life scenarios
due to extreme variability in human appearance and shape
caused by human poses, clothes types, and occlusion/self-
occlusion patterns.

The leading approach to human parsing uses a segment-
based graphical model, which first generates segment/region
proposals for human parts (Yamaguchi et al. 2012; Yang,
Luo, and Lin 2014) based on low-level appearance cues
(e.g., similarity of color/texture, or grouping edges) and
then selects and integrates these proposed segments using
a graphical model (Bo and Fowlkes 2011; Yang, Luo, and
Lin 2014; Dong et al. 2014; Liu et al. 2015). But the low-
level cue for part proposal generation and ranking is prob-
lematic for complex images. To select proposals, a proposed
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Figure 1: Human parsing using pose (pose-guided-proposals
and pose-context features) and deep-learned part semantic
cues. (a) Left: original image with estimated pose joints.
Right: the inferred part label map by deep semantic cues.
(b) Pose-guided part proposal generation. Left: without pose
information. Right: with pose information. (c) Top-ranked
part segments after part ranking and selection. Left: with-
out pose-context and deep semantic features. Middle: using
pose-context feature only. Right: using both pose-context
and deep semantic features. (d) Final parsing results. Left:
without pose-context and deep semantic features. Middle:
using pose-context feature only. Right: using both pose-
context and deep semantic features.

solution is to use pose information. But this pose informa-
tion is only used at the final stage (Dong et al. 2014) and
so cannot correct errors made in the original proposal gen-
eration. As illustrated in Fig. 1 and Fig. 2, our approach
uses pose-guided-proposals and pose-context, obtained from
high-level pose analysis, to improve the quality of part pro-
posals (in Fig.1(b)), to provide effective features for ranking
proposals (in Fig.1(c)), and to enable us to select and inte-
grate these proposals using a graphical model (in Fig.1(d)).

The overall strategy of our approach is illustrated in
Fig. 2. Given an input image, we first (bottom left) use a
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Figure 2: Illustration of our human parsing pipeline.

state-of-the-art pose estimation algorithm (Chen and Yuille
2014) to estimate the locations of the joints and other salient
parts of humans. We use the estimates of the joint positions
to obtain pose-guided-proposals for part segments (top left)
based on the intuition that part segments should be corre-
lated to joint positions (e.g., the lower-arm should appear be-
tween the wrist and the elbow), which yields a limited set of
proposals with high recall. Next we compute rich feature de-
scriptors for each segment proposal, including a novel pose-
context feature which captures spatial/geometrical relation-
ship between a proposed segment and the estimated human
pose joints. We also use standard appearance features and
complementary deep-learned part semantic features com-
puted by a fully convolutional network (FCN) (Long, Shel-
hamer, and Darrell 2015; Hariharan et al. 2015; Chen et
al. 2015; Tsogkas et al. 2015). Then we rank the segment
proposals based on these features and select the top-ranked
ones. This leaves a small number of high-quality proposals
for each part category which are used as input to the part
assembling stage.

For part assembling, we propose an And-Or graph (AOG)
(Zhu and Mumford 2007; Zhu et al. 2008; 2012; Wang and
Yuille 2015), which is an efficient way to represent the large
variability of human appearances. We perform inference
over this AOG to select and combine part segment proposals
so as to parse the human body. Compared with traditional
AOGs, our AOG has more flexible and efficient structure
(i.e. each leaf node allows arbitrary number of data-mined
part subtypes) and includes an extension of the pose-context
feature as a pairwise term to measure the compatibility of
adjacent parts. Unlike the local pose features in Dong’s AOG
(2014), our AOG measures the consistency between pose
and segment both locally and globally.

We evaluate our method on a popular pedestrian parsing
benchmark dataset (i.e., Penn-Fudan (Wang et al. 2007)),
and show that our approach outperforms other state-of-the-
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arts by a significant margin.

Pose-Guided Human Parsing Pipeline

Given a pedestrian image I, we first adopt a state-of-the-
art pose estimation approach (Chen and Yuille 2014) to
estimate human pose joints £ = {l1,lp, -+ ,[14}, where [;
denotes the location of the j-th pose joint. Here we use
the same 14 joints as those commonly used in the hu-
man pose estimation literature (Yang and Ramanan. 2011;
Chen and Yuille 2014). As shown in Fig. 2, based on the
human pose cues, our human parsing pipeline has three suc-
cessive steps: part segment proposal generation, part pro-
posal selection, and part assembling. We will introduce the
first two steps below, and elaborate on our AOG-based part
assembling method in the next section.

Pose-guided part segment proposal generation. To gen-
erate part segment proposals, we modify the RIGOR algo-
rithm (Humayun, Li, and Rehg 2014), which can efficiently
generate segments aligning with object boundaries given
user defined initial seeds and cutting thresholds. In this pa-
per, we propose to generate the seeds based on the estimated
pose joint locations. Specifically, given the observation that
part segments tend to be surrounding corresponding pose
joints, for each joint we sample a set of seeds at the 5 x 5
grid locations over a 40 x 40 image patch centered at this
joint. We use 8 different cutting thresholds, yielding about
200 segment proposals for each joint. Combining proposals
from all the joints, we further prune out duplicate segments
(with intersect-over-union (IOU) > 0.95 as threshold) and
construct a segment pool S = {sy, 52, -, sy} that contains
around 800 segment proposals for each image. We use these
segments as candidate part segments in the latter two steps.

Part proposal selection. We consider the following im-
age features for each segment proposal s; € S: (i) ¢"2” (s7),
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Figure 3: Illustration of the proposed pose-context feature.

a second order pooling (O2P) feature (Carreira et al. 2012)
for describing appearance cues; (ii) ¢**"(s;), an appearance
feature (Khan et al. 2010) capturing skin color cues; (iii)
@Po%(s;, L), a pose-context feature we propose in this paper,
which measures the spatial relationship between the seg-
ment s; and the predicted pose joint configuration £; (iv)
¢ P%*¢(s;, L), a non-linearly coded version of ¢”**(s;, L);
(v) ¢/"(s;,H), a deep-learned semantic feature using FCN,
which measures the compatibilities between the segment im-
age patch and high-level part semantic cues from FCN.

We now describe the proposed pose-context feature
@P*(s;, £). As shown in Fig. 3, centered at s;, the image
is equally divided into eight orientations (I — VIII) and three
region scales (S1, S2 and S3), yielding 24 spatial bins in to-
tal. Then each joint [; € L falls into one of these spatial
bins, producing a binary feature to quantize the spatial re-
lationship of /; w.r.t. s;. After that, we concatenate binary
features of all the joints, and obtain a 24 X 14 = 336 di-
mensional pose-context feature to describe the spatial rela-
tionship of s; w.r.t. L. Specifically, S1 and S2 are the regions
eroded and dilated by 10 pixels from the segment’s boundary
respectively. S3 is the rest region of image. This segment-
dependent definition of region scales depicts semantically
meaningful geometric cues from the predicted pose infor-
mation, e.g. the lower boundary of the short skirt segment
should be around the knee joints. The three-scale design
(rather than using the segment edge alone) makes the fea-
ture robust to pose estimation errors.

The pose-context feature can be highly non-linear in the
feature space, which might be suboptimal for linear classi-
fiers/regressors. This motivates us to apply non-linear cod-
ing technology (Yang et al. 2009; Wang et al. 2010) on
the pose-context feature to achieve linearity. We adopt a
soft-assignment quantization (SAQ) coding method (Liu,
Wang, and Liu 2011) to encode the pose-context feature into
its coded version ¢“P?*(s;, L), with a dictionary of pose-
guided part prototypes D = {bm}ﬁ’i |» learned via K-means
clustering algorithm on the pose-context feature representa-
tion of ground-truth part segment examples. Specifically, to
balance K different part categories, we separately perform
clustering and obtain N, = 6 prototypes/clusters for each
part category, resulting in a dictionary of Np = K X N,
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Figure 4: The learned prototypes/clusters for part category
face. We show exemplar images for 3 out of 6 clusters. Clus-
ter (1): frontal face or back face. Cluster (2): frontal/back
face on the left. Cluster (3): side face on the left. The other
clusters correspond to the symmetric patterns w.r.t. those
shown here.

codewords. Given D, we compute the Euclidean distance
between original pose-context feature of s; and each proto-
type by din =Il ¢77(si, L) = by |l Thus ¢ (s;, L) is
formally defined as the concatenation of both the normal-
ized and un-normalized codes w.r.t. D:

DO ’ ’ T
¢C pove(ShLlD) = [ai,lan' ’ai,ND7ai’17.'. ’ai,N@] ’ (1)
ai

ZNgma - denote the un-
j=1 "6

normalized and normalized code ValL{es w.r.t. b, respec-
tively. A is a hyper-parameter of our coding method. The
coded pose-context feature is adopted in training the SVR
models for part proposal selection. The learned part proto-
types, which generally correspond to different viewpoints of
a part or different appearance patterns of a part (e.g. long
pants or skirts for the lower-clothes category), are used to
define part subtypes in our AOG. As illustrated in Fig. 4,
the learned face prototypes generally correspond to different
typical views of the face category. Besides, we propose to
encode the pairwise pose-context feature (i.e. concatenated
pose-context features of a pair of candidate segments), used
as a pairwise term in our AOG design. We perform cluster-
ing separately for each adjacent part pair and learn a class-
specific dictionary for this pairwise pose-context feature. In
this paper, the dictionary size is set by N, = 8 for each part
pair. As visualized in Fig. 5, the learned part-pair prototypes
are very meaningful which capture typical viewpoints and
part type co-occurrence patterns for adjacent parts.

For the deep-learned semantic feature, we train a FCN-
16s deep network (Hariharan et al. 2015; Wang et al. 2015)
with the output to be the part ground truth map, and then
produce pixel-wise part potential maps H, from which bi-
nary part label masks B can be obtained via argmax over
the potential maps. Thus, for a segment s;, this deep feature

where a;,, = exp~) and q,

im =



Figure 5: The learned prototypes/clusters for the adjacent
part pair upper-clothes and lower-clothes. We show 3 out of
8 clusters. Cluster (1): the person with short sleeved upper-
clothes and short pants. Cluster (2): the person with short
sleeved upper-clothes and long pants. Cluster (3): the person
with long sleeved upper-clothes and long pants.

@ (s;, H) consists of three components: (1) the mean value
inside s; of H for each part class; (2) the mean value along
the contour of s; from H for each part class; (3) The ToU
value between s; and B for each part class.

Our final feature descriptor of s; is the concatenation of
the aforementioned features, i.e.,

@(si, L H) =4 (s;), $™"(s51), ¢’ " (51, H),
¢pose(si’£), ¢c—pose(si, .C)]T

On basis of this hybrid feature representation, we train a
linear support vector regressor (SVR) (Carreira et al. 2012)
for each part category. Let P denote the total number of part
categories and p € {1,2,---, P} denote the index of a part
category. The target variable for training SVR is the IoU
value between the segment proposal and ground-truth label
map of part p. The output of SVR is given by Equ. (3).

g (il L, H) = B, ¢(si, L,H), )

where ,, is the model parameter of SVR for the p-th part
category. Thus, for any part p, we rank the segment propos-
als in S based on their SVR scores {g”(s;)|s; € S}. Finally,
we select the top-n,, scored segments separately for each part
category and combine the selected segment proposals from
all part categories to form a new segment pool S C S.

@

Part Assembling with And-Or Graph

There are two different groups of classes (i.e., parts and part
compositions) in our AOG model: the part classes are the
finest-level constituents of human body; the part composi-
tions correspond to intermediate concepts in the hierarchy
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of semantic human body constituents. Specifically, we de-
fine them as follows. Parts: hair, face, full-body clothes,
upper-clothes, left/right arm, lower-clothes, left/right leg
skin, left/right shoe. Part Compositions: head, head & torso,
upper-body, left/right leg, human body.

To assemble the selected part segments, we develop a
compositional AOG model as illustrated in Fig. 6, which
facilitates flexible composition structure and standard learn-
ing/inference routines. Let P and C denote the number of
parts and the number of part compositions respectively. For-
mally, our AOG model is defined as a graph G = (V, &),
where V = 7~ U N denotes a set of vertices and & refers to
the set of edges associated. Meanwhile, 7 = {1,2,---, P}
and N = {P+1,P+2,---,P + C} denote the set of part
indices and the set of part composition indices respectively.
In our AOG, each leaf vertex p € 7 represents one human
body part and each non-leaf vertex ¢ € N represents one
part composition. The root vertex corresponds to the whole
human body while the vertices below correspond to the part
compositions or parts at various semantic levels. Our goal is
to parse the human body into a series of part compositions
and parts, which is in a hierarchical graph instantiated from
the AOG model.

The vertex of our AOG is a nested subgraph as illus-
trated at the bottom of Fig. 6. For a leaf vertex p € 7, it
includes one Or-node followed by a set of terminal nodes
as its children. The terminal nodes correspond to different
part subtypes learned by clustering the pose-context feature
of training part segments (see last section for details), and
the Or-node represents a mixture model indicating the se-
lection of one part subtype from terminal nodes. Formally,
we define a state variable z, € {0,1,2,---, K} to indicate
that the Or-node selects the z,-th terminal node as the part
subtype for leaf vertex p. As an example of a green node
in Fig. 6, the lower-clothes part can select one kind of sub-
type (e.g. long pants or skirt) from its candidate part sub-
types. In addition, there is one special terminal node rep-
resenting the invisibility of the part due to occlusion/self-
occlusion, which corresponds to the state z, = 0. For a non-
leaf vertex ¢ € N, it includes one Or-node linked by a set of
And-nodes plus one terminal node. The Or-node of non-leaf
vertex represents this part composition has several different
ways of decompositions into smaller parts and/or part com-
positions. The And-node corresponds to one possible con-
figuration of the decomposition of c¢. As shown in Fig. 6,
the non-leaf vertex head can be composed by one of several
different configurations of two child vertices (i.e., face and
hair). Similar to the leaf vertices, we also induce a state vari-
ablez, € {0, 1,2, .-, K.} to indicate that the Or-node of part
composition ¢ selects the z.-th And-node as the configura-
tion of child vertices for z. # O or this part composition is
invisible when z. = 0.

Further, we define another state variable y to indicate the
selection of segment from the candidate pool of a part or part
composition. For a leaf vertex p € 7,y, € {0,1,2,-- -, Npz,t
represents that the part p selects the y,-th segment proposal
(i.e., sf;z”) from the segment pool S p.2,» Outputted by its seg-
ment ranking model on subtype z,. Meanwhile, y, = 0 is
a special state which coincides with the invisibility pattern
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Figure 6: Illustration of the architecture of our AOG model.

Figure 7: Illustration on the structure of vertices in AOG. (a)
leaf vertex; (b) non-leaf vertex. The symbols of OR, AND
and T represent the Or-node, And-node and terminal node
respectively. Please see Eqn. (6) and Eqn. (7) about the no-
tations of model parameters.

of part p (i €., Zp = 0). To make the notations consistent,
we use 50 " to represent an “null” segment for part invis-
ibility. For a non-leaf vertex ¢ € N, y, € {0,1,2,--- ,n.}
indicates a segment 577 € S, is selected, where s is ob-
tained by the union of its child vertices’ candidate segments
and SL.,ZL_ denotes the candidate segment pool for the z. And-
node. When y. = 0, likewise, the sg’z" represents a null seg-
ment indicating the invisibility pattern of part composition
c. Let Ch(c, z.) denote the set of child vertices for part com-
position ¢ and configuration z.. Formally, sy% is defined by
Equ. (4), where U represents a pixel-wise union operation
of combing the child vertices’ segment masks to generate a
new segment.

Sy ¢ = Upecnc, zf)sﬂ , “

Part Composition (c)
human body

Adjacent Part Pairs (R,)
(upper-clothes, lower-clothes), (full-body clothes, left leg skin)
(full-body clothes, right leg skin)
head (hair, face)
head & torso (upper-clothes, hair), (upper-clothes, face)
(full-body clothes, hair), (full-body clothes, face)

upper-body (left arm, upper-clothes), (right arm, upper-clothes)
(left arm, full-body clothes), (right arm, full-body clothes)
lower-body (lower-clothes, left leg skin), (lower-clothes, right leg skin)
(lower-clothes, left shoe), (lower-clothes, right shoe)
left leg (left leg skin, left shoe)
right leg (right leg skin, right shoe)

Table 1: The list of adjacent part pairs.

Let Y = (yi,)2, . ¥pP,YP+1, VP2, s ypec) and Z =
(21,22, ,2P>»2ZP+1,2P+2, " * »Zp+c) denote the structural so-
Iution of AOG. We define a global score function of AOG
F(Y,Z|S,L,H) (here S = U sz) to measure

PET , 2p#0
the compatibility between (Y, Z) and (S, £, H) for image
I, which can be calculated as shown in Equ. (5), where
f(p,2p) is a local score function of leaf vertex p, which
consists of only one unary term, while f(ye,ze, {(Vu, 24) :
u € Ch(c,z.)}) denotes a score function of non-leaf vertex
¢, which consists of two pairwise terms.

FOY,ZIS, LH) = ). f0p3p) (5)
PeT
+ D SOz A030) 1 € Chie, z0)))
ceN

For each leaf vertex p € 7 (i.e., a part), we compute
f(p>zp) by Equ. (6), in which w? and b? denote the weight
and bias parameters of unary term for part p respectively.
Particularly, bg is the bias parameter for the invisibility pat-
tern of p. Besides, gZ _ is dependent on the part subtype
Zp, implying the regression models defined in Equ. (3) are
trained by different parts and subtypes. Fig. 7 (a) illustrates
the structure of a leaf vertex and its corresponding model
parameters.

FOpz) = bE Wl gl (UL H), 2, %0 (6)
P <p bg’ Zp _ 0

For each non-leaf vertex ¢ € N (i.e., a part composition),
we compute f(Ve, Ze, {(Vu, 24) * 1 € Ch(c, z.)}) by Eqn. (7),

f(yc’ Zm {(yy’ Z/,l) : ﬂ € Ch(C9 ZC)}) (7)
_ bi + u(ye, Zes {(yy’ Zp) : p € Ch(c,zo)D), 2 #0
- 65 ZC = 0
where
u(yes Zes {(y,u’ Z,u) s € Ch(c,ze)h) (3
ew T cz
Z W(z I,Jzﬂ) "D(s ’ ‘S};uzp
peChleze)
n Z EZ}I pzi)z) lﬁ( ;Jlil,zm , ;’;sz |_£)
(P1.p2)ER.

Concretely, Eqn. (7) can be divided into three terms:



(1) the bias term of selecting z. for the Or-node, i.e. b; . b

is the bias parameter when part composition c is invisible

(In this case, all the descendant vertices are also invisible

and thus the latter two terms are zero).

(2) the sum of parent-child pairwise terms (i.e., vertical

edges) for measuring the spatial compatibility between

the segment of part composition ¢ and the segments

. .2

) Eﬁ‘f) P85, ™),

ueCh(c,z)

”,sfy':") denotes a spatial compatibility fea-

ture of segment pair (sy°, sj;;z“) and wgf’“ ,)) refers to cor-
c ZesZu

responding weight vector. Specifically, ¢ is defined by
[dx; dx?; dy; dy?; ds; ds?], in which dx, dy represent the
spatial displacement between the center locations of two
segments while ds is the scale ratio of them.

of its child vertices, i.e.

C,Z
where ¢(sy”

(3) the sum of pairwise terms (i.e., side-way edges) for mea-
suring the geometric compatibility on all segment pairs
specified by an adjacent part-pair set R., which defines a
couple of adjacent part pairs for ¢ (e.g., for the part com-
position of lower body, we consider lower-clothes and leg
skin to be an adjacent part pair). Tab. 1 lists the adja-
cent part pairs for each non-leaf vertex. To avoid double
counting in recursive computation of Eqn. (8), R, only
includes the relevant part pairs which have at least one

child vertex of c. This side-way pairwise potential corre-

pi.Z DP2,2p
spondsto 3 Ef" "f)) W(s yp‘l ", s\ | L) in Eqn. (8),
(p1.p2)eR. P12
where w(sﬁl il'””‘ , szz”z |.L) represents a geometric compati-
bility feature of segment pair (sf' sy and wP)
P 2 (Z,;, Zpy)

is corresponding weight vector. In this paper, we use a
coded version of pose-context feature for . Specifically,
we adopt the same coding process as in ¢ 7?%(s;, L) but
using the concatenated pose-context features for segment

. D1sZp, pZsz
pair (S)’m > 8y, ).

In Fig. 7 (b), we illustrate the structure of a non-leaf vertex
and its corresponding model parameters.

Learning and Inference for AOG

The score function in Equ. (5) is a generalized linear model
w.r.t. its parameters. We can concatenate all the model pa-
rameters to be a single vector W and rewrite Equ. (5) by
F(Y,Z|L,S,H) = WL S, HY.Z). LS HY,Z)
is a re-organized sparse vector gathering all the features
based on the structural state variable (Y,Z). In our AOG
model, Z determines the topological structure of a feasible
solution (i.e., parse tree), and Y specifies the segments se-
lected for the vertices of this parse tree. Given a set of la-
belled examples {(Y,,Z,)|n = 1,2,---,J}, we formulate a
structural max-margin learning problem on W ( Equ. (9) ),

J
min IWIW+C 3 &, )
n=1

W L,S, Hy, Y0, Z) - W DL, S,, H,, Y, Z)

>AYy,Z,,Y,Z)-E,, s.t.¥VY and Z,

where A(Y,,Z,,Y,Z) is a structural loss function to penal-
ize a hypothesized parse tree (Y, Z) different from ground
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truth annotation (Y,,Z,). Similar to Yadollahpour, Batra,
and Shakhnarovich (2013), we adopt a relative loss as in
Equ. (10), i.e., the loss of hypothesized parse tree relative
to the best one (Y*, Z*) that could be found from the candi-
date pool. That is,

A(Yn’ Zl’w Y’ Z) = 5(Yn’ Zrb Y’ Z) - 6(Yn7 Zn’ Y*’ Z*)’ (10)

where 6(Y,Z,Y ,Z) = peT IoU(sf’pZ”, sp,z”) is a function

of measuring the part segmentation dlﬁerence between any
two parse trees (Y,Z) and (Y',Z). In this paper, we em-
ploy the commonly-used cutting plane algorithm (Joachims,
Finley, and Yu 2009) to solve this structural max-margin op-
timization problem of Equ. (9).

For inference on AOG models, dynamic programming
(DP) is commonly used in the literature (Zhu et al. 2012;
2008). Our model, however, contains side-way pairwise
terms which form closed loops. These closed loops are fairly
small so DP is still possible. In this paper, we combine the
DP algorithm with state pruning for model inference, which
has a bottom-up scoring step and a top-down backtracking
step.

For the bottom-up scoring step, we compute the score of
each vertex (to be specific, the score of the subgraph rooted
at that vertex) in a bottom-up manner, only retraining the
top-k scored candidate state configurations of each vertex
for subsequent inference. The score of a subgraph Q@ € G
(Q = (Vg,Ep)) is defined in Equ. (11), which is equivalent
to Equ. (5) whenQ = G.

FQ(YQ,ZQ|S,.£, 7‘{) = (11)
D G+ DL FOeze 0wz 1€ Chic,z)

PETNVg ceNNVy

We set £ = 10, making the inference procedure tractable
with a moderate number of state configurations for each ver-
tex. We show in a diagnostic experiment that this greedy
pruning scarcely affects the quality of the result while re-
ducing the inference time significantly.

After getting the score of the root vertex (i.e., whole hu-
man body), we backtrack the optimum state value from the
retained top-k list for each vertex in a top-down manner.
Concretely, for each part composition vertex ¢ we select the
best scored state configuration value of (Y, z¢, {(Vu, 24) 1 f €
Ch(c, z.)}), and recursively infer the optimum state values of
the selected child vertices given each u € Ch(c,z.) as the
root vertex of a subgraph. In the end, we can obtain the best
parse tree from the pruned solution space of our AOG, and
output corresponding state values (Y, Z) to produce the final
parsing result.

Experiments

Data & implementation details. We evaluate our algo-
rithm on the Penn-Fudan benchmark (Wang et al. 2007),
which consists of pedestrians in outdoor scenes with much
pose variation. Because this dataset only provides testing
data, following previous works (Bo and Fowlkes 2011;
Rauschert and Collins 2012; Luo, Wang, and Tang 2013), we
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Figure 8: Comparison of our part segment proposal method
(RIGOR+POSE) to the baseline (RIGOR). The green aster-
isks on the plots represent the APR/AOI of the RIGOR pool
for the pool size n = 2000. (Best viewed in color)

train our parsing models using the HumanEva dataset (Si-
gal and Black 2006), which contains 937 images with pixel-
level label maps for parts annotated by Bo and Fowlkes. The
labels of the two datasets are consistent, which include 7
body parts { hair, face, upper-clothes, lower-clothes, arms
(arm skin), legs (leg skin), and shoes }. For the pose model,
we use the model provided by Chen and Yuille, trained on
the Leeds Sports Pose Dataset (Johnson and Everingham
2010).

In part ranking & selection, we train linear SVR models
for P = 10 part categories and select top n, = 10 segments
for each part category, as candidates of the final assembling
stage. We treat left part and right part as two different part
categories. For the segment feature used in the AOG (i.e. the
unary term), we first normalize each kind of feature inde-
pendently, then concatenate them together and normalize the
whole feature. All the normalization is done with L2 norm.
For simplicity, we only train one SVR model g”(s;| L, H) for
each part category p so that gf’ = gP, ¥z, # 0 in Equ. (6).
However, due to the weight parameter w” is dependent on
the part type z,, in training the AOG, the unary terms of dif-
ferent part subtypes are type-specific in the AOG model.

Effectiveness of pose for part proposal generation. We
first investigate how the pose cues help the part proposal
generation. Specifically, we compare our pose-guided seg-
ment proposal method with the baseline algorithm, i.e. the
standard RIGOR algorithm (Humayun, Li, and Rehg 2014).

For evaluating the proposal algorithms, two standard cri-
teria are used, i.e. average part recall (APR) and average
part oracle IoU (AOI). The first measures how much por-
tion of the ground-truth segments is covered (i.e., over 50%
IoU) by the proposals, and the second measures the best IoU
the proposal pool can achieve on average of all ground-truth
segments. As shown in Fig. 8, our method significantly im-
proves the quality of part segment proposals compared to the
baseline by over 10% on average.

Effectiveness of features for part proposal selection. To
investigate various features and their complementary prop-
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erties for part proposal selection, we sequentially add them
into our SVR model and test the performance/quality of the
selected part segments.

In Tab. 2, we report the AOI scores for the top-1 ranked
part segment and the top-10 ranked part segments respec-
tively. Firstly, we can see the performance monotonically
improves with more features used, which demonstrates the
effectiveness of all features we proposed. By comparing (2)
and (3), we can see a significant boost of the top-1 accu-
racy, indicating that the pose information becomes much
more effective with the coded pose context feature. Finally,
by adding the deep semantic feature in (4), the performance
of selected part segment improves further. We set n, = 10
because it strikes a good trade off between the quality and
pool size of the selected part segments.

Methods \hair face u-cloth I-cloth arms legs shoes\mean
(1): 02p + skin 57.1 535 709 709 26.6 204 156 | 450
S0P 68.8 669 80.0 814 546 553 453 | 64.6
): (1) + pose 61.7 58.6 732 727 299 234 175 |48.1
’ P 69.9 66.4 80.6 823 564 543 458 | 65.1
B): (2) + c-pos 61.8 589 732 719 39.8 448 265|538
' “PoS€169.9 664 80.5 824 558 59.1 474|659
(4): 3) + fen 644 59.0 774 771 414 43.6 351 | 56.9
' 70.7 66.6 822 834 559 593 48.8 | 66.7

Table 2: Comparison of four part models by AOI score (%)
for top-1 ranked segment (top) and top-10 ranked segments
(bottom). Models are numbered as (1) to (4), from top to
bottom.

Effectiveness of the AOG. To show the effectiveness of
our AOG design, we set up two experimental baselines for
comparison: (1) Naive Assembling: considering only the
unary terms and basic geometric constraints as defined in
the paper (Bo and Fowlkes 2011), e.g. upper-clothes and
lower-clothes must be adjacent. (2) Basic AOG: considering
only the unary terms and the parent-child pairwise terms,
without the side-way pairwise terms.

Tab. 3 shows that the basic AOG with parent-child spatial
relations outperforms the naive assembling model, and by
adding the pairwise side-way edges, the performance boosts
further, which demonstrates the effectiveness of each com-
ponent in our AOG model. For comparison, we also test
the result of the AOG model without state pruning, which
clearly justifies the use of state pruning in AOG inference.
We can see that state pruning leads to neglectable decrease
in accuracy while it reduces the inference runtime signifi-
cantly, from 2 min. to 1 sec. per image.

Comparisons to the state of the art. We compare our
approach with four state-of-the-art methods in literature,
namely FCN (Wang et al. 2015), SBP (Bo and Fowlkes
2011), P&S (Rauschert and Collins 2012), and DDN (Luo,
Wang, and Tang 2013). Specially, for FCN, we use the code
provided by Wang et al. (2015) and re-train the networks
with our training set.



Methods | hair face u-cloth arms I-cloth legs | Avg
Naive Assembling [62.3 53.5 77.8 369 783 28.2|56.2
Basic AOG 63.1 529 77.1 380 781 359|575
Ours 63.2 56.2 781 40.1 80.0 45.5]|60.5

Ours (w/o pruning) |63.2 56.2 78.1 40.1 80.0 45.8|60.5

Table 3: Per-pixel accuracy (%) of our AOG and two base-
lines.

Method | hair face u-cloth arms l-cloth legs shoes | Avg*
FCN |48.7 49.1 702 339 696 299 36.1 |50.2
P&S [40.0 428 752 247 73.0 46.6 - 50.4
SBP 449 608 748 262 712 420 - 533
DDN [432 57.1 775 274 753 523 - 56.2
Ours |63.2 562 781 40.1 80.0 455 350 | 60.5

Table 4: Comparison of our approach with other state-of-the-
art methods on the Penn-Fudan dataset in terms of per-pixel
accuracy (%). The Avg* means the average without shoes
class since it was not reported in other methods.

We show the quantitative comparison in Tab. 4. Our
model outperforms the FCN by over 10% and the state-of-
the-art DDN method by over 4%, from which we can see
most improvement is from small parts such as hair and arms.
It implies that by using the pose cues we can produce high-
quality segment candidates that align to the boundaries for
small parts. In addition, our AOG model together with the
pose-context feature can leverage long-range spatial context
information, making our model robust in shape variations
and appearance ambiguities.

Fig. 9 (a) illustrates that our model is better at parsing
small parts than FCN-32s and FCN-16s; Fig. 9 (b) gives typ-
ical parsing results of our method on Penn-Fudan; Fig. 9 (c)
shows three failure examples due to color confusion with
other objects, multiple instance occlusion, and large vari-
ation in lighting respectively, which generally fail most of
current human parsing systems. For the first and the third
failure cases, we got accurate pose estimation but failed to
generate satisfactory segment proposals for lower-clothes,
which suggests that we either adopt stronger shape cues in
the segment proposal stage or seek richer context informa-
tion (e.g. handbag in the first case). For the second case, we
got a bad pose estimation due to occlusion and thus mixed
two people’s parts during assembling, which indicates the
necessity of handling instance-level pose estimation or seg-
mentation.

Conclusion

The contributions of this work are threefold: (1) We present
an AOG-based human parsing pipeline which integrates top-
down pose information into all three stages (i.e. pose-guided
part proposals and pose-context features in part selection &
assembling), obtaining state-of-the-art segmentation accu-
racy on a benchmark human parsing dataset, Penn-Fudan;
(2) We propose semantically meaningful pose-context fea-
tures that describe the geometric relationship between seg-
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(a) Comparision between our method and FCN.

(b) Additional parsing results of our method.
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(c) Some failure cases of our method.

Figure 9: Qualitative results of our method on the Penn-
Fudan dataset.

ment and pose joints; (3) We present a modular AOG with
flexible composition structure. We show extensive experi-
mental results that validate the effectiveness of each compo-
nent of our pipeline.

In the future, we may adopt useful shape cues for the
part proposal and selection stages, and combine CNN with
graphical models in a more efficient way to better utilize
their complementary role in the human parsing task.
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