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Abstract

This paper presents a robust multi-view method for tracking
people in crowded 3D scene. Our method distinguishes it-
self from previous works in two aspects. Firstly, we define
a set of binary spatial relationships for individual subjects
or pairs of subjects that appear at the same time, e.g. being
left or right, being closer or further to the camera, etc. These
binary relationships directly reflect relative positions of sub-
jects in 3D scene and thus should be persisted during infer-
ence. Secondly, we introduce an unified probabilistic frame-
work to exploit binary spatial constraints for simultaneous 3D
localization and cross-view human tracking. We develop a
cluster Markov Chain Monte Carlo method to search the op-
timal solution. We evaluate our method on both public video
benchmarks and newly built multi-view video dataset. Re-
sults with comparisons showed that our method could achieve
state-of-the-art tracking results and meter-level 3D localiza-
tion on challenging videos.

Introduction

Tracking multiple people in 3D scene is crucial for high-
level video understanding tasks, e.g. recognizing human ac-
tivities, behaviours or social activities. Despite impressive
results achieved Hofmann, Wolf, and Rigoll (2013) Fan,
X.Shen, and Wu (2013), existing methods still suffer from
occlusions, frequent intersections, missing detections of hu-
mans and other challenges, in particular for crowded scenes,
e.g. parking-lot, office etc. In this work, we study a multi-
view method for simultaneous tracking and localizing mov-
ing subjects in 3D scene map with sub-meter accuracy.

The major contribution of this work is to explore a set of
binary spatial relationships between subjects in images, i.e.
being left or right, being closer to the camera central, which
are all expressed in binary forms and can be directly mined
from 2D image observations, e.g. detection results. These re-
lationships, once mined, are potentially helpful for two pur-
poses: i) registering the detected boxes in other views or the
3D scene map; ii) tracking human over frames in different
views.

On the one hand, in order to localize a detected human
box in 3D or other views, existing multi-view 3D track-
ers Fleuret et al. Khan and Shah (2006) usually select the
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bottom-central point as footprints and apply the view-to-
map or cross-view ground homograph. This is however in-
feasible for crowded scenes, e.g. office, because persons are
usually occluded by furniture or other persons. Fortunately,
human detection boxes, although being incomplete, usually
reflect pair-wise 3D spatial relationship between subjects.
Taking two boxes A and B detected in the same frame for
instance, if A is larger than B, the person A is likely to stand
closer to the camera than B; if the central point of box A lo-
cates on the left to box B, so do their footprints.

On the other hand, binary spatial relationships can be used
to help track moving persons that have frequent intersec-
tions. The basic idea follows the Ising/Potts prior, that two
moving people are likely to preserve their spatial relations,
e.g. being left, over a certain time period. If person A locates
on the left of person B at time t, the two people should have
the same pair-wise spatial relationship at time t + 1. In ad-
dition, these consistency constraints can be used to suppress
noise detections while associating boxes to subjects .

We develop an unified probabilistic method to automati-
cally mine binary constraints for various objectives, includ-
ing localizing truncated human boxes in 3D scene, identify-
ing detected boxes across views, recovering missing detec-
tions and tracking subjects over time. These objectives are
mutually beneficial and should be solved jointly. In particu-
lar, we describe each trajectory as a continuous function of
3D locations w.r.t time and enforce high-order smoothness
over time to facilitate trajectory estimation from incomplete
observations.

For inference, we introduce an iterative cluster Markov
Chain Monte Carlo (MCMC) method Tu and Zhu (2002)
to search the optimal solution. Once initialized, we use a
set of dynamics to drive the current solution to a new one
to simulate a Markov Chain in the solution space. At each
step, our method changes the status of a cluster of nodes, in-
stead of a single node Khan, Balch, and Dellaert (2005), to
speed up the sampling process Barbu and Zhu (2007). The
new solution is accepted with a probability and the dynam-
ics are paired with each other to make the search reversible
that shall guarantee convergence to global optimal. We eval-
uate the proposed method on both public benchmarks and a
newly built video dataset. Results with comparisons to other
popular trackers show that our method could achieve state-
of-the-art tracking results and localize moving subjects in
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3D scene with meter-level accuracy in crowded scenes.

Related works
Our method is inspired by the pioneer works of Hoiem et
al Hoiem, Efros, and Hebert (2006) which tried to utilize a
property of perspective geometry, i.e., the perceived size of
the objects scales inversely with the distance to the camera.
Different from pruning object hypothesis Hoiem, Efros, and
Hebert (2006) or recovering depth maps Ladicky, Shi, and
Pollefeys (2014), our goal is to track objects in 3D scene.

Our work is also closely related to the following three re-
search streams.

Multi-view object tracking is usually addressed as a data
associating problem across cameras. Typical solutions in-
clude, homograph constrains Khan and Shah (2006), human-
part constraints Gupta, Mittal, and Davis (2008), joint
background reconstruction and foreground tracking Hof-
mann, Wolf, and Rigoll (2013), Marked Point Process Utasi
and Benedek (2011),network flow optimization Leal-Taixe,
Pons-Moll, and Rosenhahn (2013) Wu et al. (2009), multi-
view SVM Zhang et al., shortest path method Berclaz et
al. (2011) and probabilistic occupancy grid method Fleuret
et al.. In contrast, we define a set of binary spatial con-
straints between subjects, and introduce an unified proba-
bilistic method to automatically extract these constraints for
3D tracking and localization purposes .

The existing methods address the challenges of miss-
ing detections, false alarm, and occlusions with different
strategies. Mittal and Davis Mittal and Davis (2003), Fan et
al. Fan, X.Shen, and Wu (2013) proposed to integrate high-
level recognition and low-level object tracking which works
well against occlusions or intersections. Lin et al. Lin et al.
(2014) presented an inspring spatio-temporal method for ex-
tracting foregrounds that can significatlly reduce the effects
of scene clutters. Yang et al. Yang et al. (2014) explicitly
addressed occlusions in a probabilistic framework for multi-
target tracking. Zhang et al. Zhang, Li, and Nevatia (2008),
Henriques et al. Henriques, Caseiro, and Batista (2011) and
Pirsiavash et al. Pirsiavash, Ramanan, and Fowlkes (2011)
introduced global optimization frameworks to track objects
over long-range, which are helpful to recovering trajecto-
ries from occlusions. Milan et al. Milan, Schindler, and Roth
(2013) addressed multiple object tracking by defining bi-
level exclusions. Wang et al. Wang et al. (2014) proposed to
infer tracklets, i.e. short trajectories, and further solved data
association problem. Possegger et al. Possegger et al. (2014)
relied on geometric information to efficiently overcome de-
tection failures when objects are significantly occluded. In
contrast, this work presents a different way to address these
challenges, i.e. mining binary spatial constraints that should
be respected during inference, which is particularly effective
for crowded scenes.

MCMC sampling has been used for tracking purpose in
past literature. Khan et al. Khan and Shah (2006) integrated
MCMC technique with particle filer tracking framework. Yu
et al. Yu, Medioni, and Cohen (2007) utilized single site
sampler for associating foreground blobs to trajectories. Liu
et al. Liu, Lin, and Jin (2013) introduced a spatial-temporal
graph to jointly solve region labeling and object tracking

by Swendsen-Wang Cut method Barbu and Zhu (2007). In
this work, we extend cluster sampling technique for 3D hu-
man tracking and design a set of reversible dynamics to ef-
ficiently search the optimal.

Probabilistic Formulation

We formulate multi-view 3D human tracking in a proba-
bilistic framework. Let K denote the number of trajectories,
Vi detected human boxes regardless of views, ci ∈ [0,K]
the trajectory index. ci=0 means the box i is a false alarm.
Let V = {(Vi, ci)} denote the set of boxes, and τ =
{(τk, tsk, tek)} pool all trajectories where tsk, t

e
k are staring

frame and ending frame respectively. τ0 collects all boxes
not belonging to any trajectory. We aim to solve the follow-
ing representation:

W = (K,V, τ) (1)

which formulates 3D localization and cross-view human
tracking jointly.

We search for the optimal solution by maximizing a pos-
terior:

p(W |I) ∝ exp{−E(W, I)} (2)

where I is the input video sequences, E(W, I) the energy
function . We define E(W, I) over the following aspects:

E(W, I) = Epri + Ereg +
∑

v

{Eapp
v + Esloc

v + Etrack
v }+ Espline (3)

where Epri = exp{−K} is used to encourage the compact-
ness.

In the rest of this section, we first introduce scene model
used and then introduce other probabilistic terms.

Scene Model

We mainly consider crowded scenes in surveillance system,
e.g. parking-lot, office etc., which include frequent intersec-
tions and heavy occlusions. For each scene, there are 5-6
cameras mounted on top of wall/building, sharing field of
view (FOVs) with each other. All cameras are hold horizon-
tally w.r.t. the ground. Each scene is provided with a top-
view scene map, i.e. cropped Google Earth maps for outdoor
scenes, or floorplan for indoor scenes.

We manually extract the following scene information. i)
Ground-plane region in images; ii) cross-view homograph
matrix from one view to another view, denoted as Hu,v ∈
R3×3 where u, v index the cameras; iii) projection matrix
that transforms a 3D coordinate into a view, denoted as
Mu; iv) view-to-map homograph matrix between each view
( ground region) and the scene map, denoted as Hu, being
slightly misused to facilitate notations.

Objective: cross-view Registration

The term Ereg is defined over cross-view registration errors.
Let < (xu

i , y
u
i ), (x

v
i , y

v
i ) > indicate the footprints of the

same subject in the views u and v, respectively. We have.

Ereg =
∑

u,v

∑

i

‖H
u,v ◦ (xu

i , y
u
i )− (xv

i , y
v
i )‖ (4)

3554



where Hu,v◦ indicates an operator that applies a cross-view
homograph matrix to register the input coordinate in a view
into another view. Eq. (4) is used to minimize sum of cross-
view registration errors.

Objective: Appearance

The term Eapp is defined to encourage that appearance sim-
ilarities of detected human boxes belonging to the same tra-
jectory and appearance discrepancies between trajectories
should be both maximized. Formally, for a view v, let i index
the detected boxes, ci index the trajectories, fi appearance
feature (e.g. color, gradient). We have the following appear-
ance energy term,

Eapp
v = −

∑

i,j

log
P (ci = cj , ‖fi − fj‖)
P (ci �= cj , ‖fi − fj‖) (5)

where ‖fi − fj‖ indicates the norm of feature distance be-
tween fi and fj , P (ci = cj , ‖fi−fj‖) denotes the probabil-
ity of ci = cj given the feature measurement. We adopt the
nearest neighbor method Hoiem, Efros, and Hebert (2005)
to estimate the likelihood ratio from the current tracking
results. Note that we extract appearance from individual
views, instead of cross-view, because the same patterns (e,g.
t-shirt) could have arbitrarily different appearances while
being observed from different cameras. We rely on 3D lo-
cations, rather than appearance, to register human boxes as
introduced later.

Objective: 3D Localization

The term Esloc
v is defined over 3D localization of human

boxes, following three observations. Firstly, the size of a
head box, once detected Rothrock and Zhu (2013), usually
linearly reflects the relative distance between a subject to the
camera. Secondly, binary spatial relationship between two
detected human boxes, e.g. being left or right in images, is
not sensitive to occlusions to some extent. Thirdly, if we can
project a 3D cubic of standard human size (e.g., 1.8 meter
tall, 0.6 meter width/length) into a view, the simulated box
should at least overlap with the detected box at the same po-
sition.

We localize all the detected boxes jointly that appears in
same image. Let v indicate the camera, (xi, yi) denote the
desired footprint of the box i. Let (Xi, Yi) denote the 3D lo-
cation of box i. We have (Xi, Yi) = Hv−1 ◦ (xi, yi). We de-
fine another operator: boxi = Mv � (Xi,Yi) that applies the
projection matrix Mv to project a 3D cubic of average per-
son size standing at (Xi, Yi) into the view v. Let ¯boxi denote
the detected box with center position (x̄i, ȳi) and head-size
s̄i.

For each image, we measure the detected boxes and col-
lect two sets of pairings of boxes:
• U left = {(i, j)} where the detected box i locates on the

left of the box j and the x-components of their footprints
should satisfy: xi < xj ;

• U size = {(i, j)} where the box i is smaller than the box j,
i.e., s̄i < s̄j and thus the y-components of their footprints
should satisfy: yi < yj .

Thus, we formulate 3D localization as minimizing the fol-
lowing objective:
Esloc

t,v =
∑

i

‖(xi, yi)−R(x̄i, s̄i))‖2 + λl
∑

<i,j>∈U left

[xi < xj ]

+λs
∑

<i,j>∈U size

[yi < yj ] + λo
∑

i

[π(boxi, ¯boxi) = 0] (6)

where the operator [·] returns 1 if the inside expression is
true. π(boxi, ¯boxi) returns 0 if two boxes overlap. The lin-
ear functionR(x̄i, s̄i)→ (xi, yi) returns the estimated foot-
print. To obtain R() for each view, we apply the operators
◦ and � at every point on the ground region to generate the
population of human boxes.

Objective: Spline Fitting

We describe each moving subject as a continuous spline
function of 3D locations w.r.t. time t. Let �Xk

i = (Xk
i , Y

k
i )

denote the 3D location of the subject k at the time ti,
Bl(t) denote the quadratic basis function Eilers and Marx
(1996), tsk and tek index the frame when a person appears
or disappears, respectively. Our goal is to solve a function
τ : ti → �Xk

i that can be written as a linear combination of
Bl:

τk(t) =
∑

l

αk
l Bl(t), s.t., τ ′′k (t

s
k) = τ ′′k (t

e
k) = 0 (7)

where τ ′′k (t) is the second derivation, and the constraints en-
force that curvature at time tsk and tek equals zero. Following
Eq. (7), the objective of spline fitting can be formulated as
follows:

Espline =
∑

k

∑

i

| �Xk
i −

∑

l

αk
l B

k
l (ti)|2 (8)

Eq. (8) is used to learn a parametric representation for each
subject from a set of noisy or incomplete 3D points. This is
possible with the enforcement of high-order smoothness.

Objective: Temporal Consistency

We exploit binary spatial constraints for tracking purpose.
The basic idea is to encourage consistency of pair-wise re-
lationships between human boxes over time. Formally, let
τi(t) and τj(t) denote the 3D positions of the subjects i and
j at the time t, respectively. Let τvj (t) = (Hv)−1 ◦ τj(t) de-
note the footprint in the view v. For each view v, we pool all
the pairs of boxes < i, j > at the time t if box i locates on the
left of box j, denoted as < v, t, i, j >∈ V left. Similarly, we
collect the box pairs< i, j > for head box i being larger than
head box j, denoted as < v, t, i, j >∈ V size. Thus, we have
the objective of temporal consistency defined as follows:

Etrack
v =

∑

<v,t,i,j>∈V left

1
left(< v, t+ 1, i, j >) (9)

+λwidth
∑

<v,t,i,j>∈V size

1size(< v, t+ 1, i, j >) (10)

where 1left(< v, t + 1, i, j >) returns 0 if the box i locating
on the left of the box j at the time t + 1, and 1 otherwise.
Similarly, 1size(< v, t+ 1, i, j >) returns 0 if the head box i
is larger than the head box j at the time t + 1, and 1 other-
wise.
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Algorithm 1 Algorithm for multi-view 3D human tracking
1: Input: multi-view image sequences;
2: Initialization: scene calibration (Section 5.1); detect human

boxes and head boxes;
3: Build an adjacent graph and

3.1 Initialization: 3D localization;
3.2 Initialization: cross-view box identification;
3.3 Initialize 3D tracking Einicke and White (1999);

4: Iterate until convergence,
4.1 Randomly choose the Dynamic I or II to get the new solu-

tion W’;
4.2 Top-down: 3D trajectory re-projection;
4.3 Bottom-to-up: robust spline fitting by the Perturb-and-

Fitting method;
4.4 Accept W ′ with a probability α(W → W ′);

Inference

We develop an iterative procedure based on cluster sampling
technique Tu and Zhu (2002) to maximize a posterior prob-
ability p(I|W ).

Our method starts with an initial solution and then simu-
lates a Markov Chain in solution space by a set of dynamics.
We first build an adjacent graph that takes human detection
boxes as graph nodes. We link two nodes in the same frame
or consecutive frames if they are spatially close Liu, Lin,
and Jin (2013). There are two types of dynamics: I) sampling
the number of trajectories K from a Gaussian distribution
learnt from the training data; II) assigning each graph node
to one of K trajectories or false alarm. The new solution is
accepted with a probability. Let W denote the current solu-
tion status, and W ′ the new status, the acceptance probabil-
ity is defined following the Metropolis-Hasting strategy Tu
and Zhu (2002):

α(W →W ′) =
q(W →W ′)p(W ′|I)
q(W ′ →W )p(W |I) (11)

where q(W → W ′) is the proposal probability. For the Dy-
namic I, q(W →W ′) is fixed to be a constant.

Algorithm 1 summarizes the sketch of our method. In step
3.3, we utilize the extended Kalman Filtering Einicke and
White (1999) to get the initial 3D tracking results. In the rest
of this section, we introduce the details of the initialization,
dynamics and bottom-to-up/ top-down computations.

Initialization: Scene Calibration, 3D localization,
Cross-view Identification

We calibrate a scene with multiple cameras as follows.

• Utilize the Deep Neural Network Wang et al. (2014)
method to segment video frame into semantic regions
(e.g. ground, tree).

• Extract key points from the ground region, and match to
other views to obtain cross-view correspondences. Then,
we solve the objective function of Eq. (4) to minimal to
get the cross-view homographs. Eq. (4) is a nonlinear least
square problem, which can be efficiently solved by the
Levenberg-Marquardt algorithm Pujol (2007).

t t

tt

A B

C D

Figure 1: Four atomic status for graph coloring. Each blob
represents a 3D location.

• Manually annotate view-to-map homograph for one of the
cameras, from which we could obtain view-to-map ho-
mographs for all other cameras (by multiplying the cross-
view homographs).

• For each view, we calculate the projection matrix, denoted
as Mv by using Hv and a set of detected human boxes
which are assumed to be the projections of a human of
1.8 meter tall.

We localize a detected human box in 3D scene map
by optimizing Eq. (6) which aims to infer both footprints
{(xi, yi)} and 3D locations for each box input. This leads
to a least square problem with three bound constraints (i.e.
the last three terms), which can be efficiently solved by the
Trust-region based method proposed by Coleman et al. Cole-
man and Li (1996).

Once human boxes localized in 3D scene, we identify two
boxes in different views as the same subject if their 3D dis-
tance is less then a threshold (e.g. 0.5 meter). We simply
prune the isolated boxes that are not matched to any boxes
in other views. This step may lead to miss some detections.
We shall deal with this issue in other bottom-to-up compu-
tations.

Dynamic-II: Graph based Data Association

The dynamic-II is used to reconfigure the current result as
follows.

Firstly, we link every two consecutive nodes belonging to
the same subject, and compute a local probability, denoted
as qe, for how likely two nodes (i.e. human boxes) belong to
the same subject or same color. We set the edge probability
as the feature likelihood, i.e. qe ∝

∑
v logP (ci = cj , ‖fv

i −
fv
j ‖)) where fv

i is the feature descriptor extracted from the
region of subject i in the view v.

Secondly, we turn off edges at random according to their
associated probability to form a set of connected compo-
nents (CCPs).

Last, we choose one of the CCPs and assign the selected
nodes to a new color(or new subject) to change the solution
status as follows: if there is no lifespan overlapping between
the selected CCP and the existing nodes of the new color,
we simply add edges to link them together 1; otherwise, we

1For a trajectory, if there is no box assigned at a time, we simply
add a virtual node.
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Figure 2: Spline fitting under different levels of noises (i.e.
2σ = 0.6, 1.2, 2, 3 meters).

will randomly choose one of the following moves, as Fig. 1
illustrates: A↔ B or C ↔ D, switch; A|B → C or A|B →
D, merge; C → A|B or D → A|B, split. Herein, A|B
means A or B.

The proposal probability for the Dynamic II is calculated
as q(W → W ′) =

∏
e∈C qe, where C denotes the edges

turned off around the selected CCP.

Bottom-to-up: Robust Spline Fitting

We introduce a robust Perturb-and-Fitting algorithm to in-
terpolate 3D points that belong to the same subject. Our
method is motivated by the RANSAC method and the work
by Papandreou and Yuille Papandreou and A.Yuille (2010).
It starts with randomly selecting part of the input 3D points
as inliers and alternates the following steps.
• Inject random noises into each point (Xi, Yi) =

(Xi, Yi) + σ ∗ (rand()− 1) where rand() returns a ran-
dom value between 0 and 1 and 2σ is the maximal noise
allowed (e.g. 2 meters);

• Solve the optimal spline by minimizing Eq. (8) w.r.t αk
l ,

which has closed form solution;
• Identify in-liner points according to the fitting errors by

the newly solved spline model.
We alternate these three steps until convergence. Once the
optimal spline model solved, we can apply the operator Mv�
to estimate the 2D box sequence.

Fig. 2 shows several exemplar results of the Perturb-and-
Fitting algorithm under different levels of noises . We use
the groundtruth 3D locations of a moving person and add
four different levels of noises, i.e. 2σ = 0.6, 1.2, 2, 3 meters.
We then apply the Perturb-and-Fitting method to interpolate
these noisy 3D points. These results show that our fitting
algorithm can work robustly against noises.

Top-down: 3D Trajectory Re-projection

We project the learnt 3D trajectory splines into individual
views to get the refined footprints or recover the missing

detections. This involves the operators: ◦ and �. In this
work, we assume all persons are standing and thus share
the roughly same height in 3D space. Note that we might
use more cubic models to handle other gestures, e.g. sitting,
crawling, etc.

Experiments

We apply the proposed 3D tracking method over crowded
scenes and compare to other popular methods.

Dataset We use two datasets. Dataset-1 is collected by
ourself, including three scenes: parking lot, garden, and of-
fice areas. There are 8, 6, and 10 cameras mounted on top
of building or wall, respectively. For each scene, there are
two groups of cameras and each group shares the same FOV.
For each camera, there is one video sequence of 8-10 min-
utes long. we annotate human boxes using the toolkit de-
veloped by Carl et al. Vondrick, Patterson, and Ramanan
(2012). There is a total of 254 moving subjects in these
videos. tDataset-2 is collected by Berclaz et al. Berclaz
et al. (2011), known as EPFL dataset, which includes five
scenes. For each scene, there are 3-5 cameras and each video
is about 3-5 minutes long.

We implement Algorithm 1 as follows. We assign two
boxes in different views to the same subject if they locate
within 0.5 meter in 3D space. To apply the operator �,
we approximate a human body with a 3D cubic with 0.6
meter length/width and 1.8 meters tall. For each view, we
train a linear regression modelR from the simulated bound-
ing boxes. We set the tuning parameters (i.e. λs) empiri-
cally for each scene and fix them throughout the evalua-
tions. For spline fitting, we fix the number of knot points
to be 15, and the random noises level be 2σ = 0.6 me-
ters. To handle the streaming videos, we run Alg. 1 over a
window of 200 frames and slide it forward at the step of
20 frames. To estimate the appearance likelihood or the qe,
we utilize the same features as Hoiem, Efros, and Hebert
(2005), including color, texture and gradients. For each win-
dow, we utilize the results from the previous window as
initial solution. Alg. 1 usually converges within 1000 iter-
ations. On an DELL workstation (with 64GB memory, i7
CPU @2.80GHz, and NVIDIA Tesla K40 GPU), our algo-
rithm can process on average 15 frames per second.

Baseline We compare our method to two recent multi-
view trackers: i) the K-shortest Path (KSP) method by
Fleuret et al. Berclaz et al. (2011); ii) the multi-view SVM
method (mvSVM) by Zhang et al. Zhang et al.. We also
implemented several single-view based human trackers for
comparisons, including: iii) The local sensitive histogram
based tracker (LSH) He et al. (2013). iv) the discrete-
continuous tracking (DCT) method proposed by Andriyenko
et al. Andriyenko and Schindler (2011); v) the occlusion
geodesic (Geodesic) based tracker Possegger et al. (2014).
We use the default parameter configuration in their source
codes. We also report the initial 3D tracking results of our
method, i.e. that by the step 3.2 in Alg. 1, denoted as mvKL.

Metric We evaluate the proposed method from two as-
pects, tracking and 3D human localization. For tracking,
we project the obtained 3D trajectories into each view and
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Figure 3: Results of 3D human tracking. Column 1: initial
detections; Column 2: refined boxes; Columns 3-5: scene
maps overlaid with the estimated 3D points, recovered 3D
trajectories, and groundtruth 3D trajectories, respectively.

Table 1: Quantitative tracking results on the newly built
Dataset-1.

Metrics R P FAF↓ MT ML↓ MOTP IDS↓
DCT Andriyenko and Schindler (2011) 52.4% 54.3% 2.1 69.4% 18.8% 63.5% 85

AVT Yang, Yuan, and Wu (2007) 63.5% 64.1% 1.5 78.8% 17.2% 72.1% 71
LSHT He et al. (2013) 62.1% 60.7% 1.3 70.6% 15.3% 71.8% 79

GeodesicPossegger et al. (2014) 64.2% 66.1% 1.2 74.2% 14.5% 70.4% 73
KSP Berclaz et al. (2011) 71.6 % 73.4% 1.1 74.3% 14.1% 71.6% 59

mvSVM Zhang et al. 68.5 % 71.8% 1.3 72.7% 15.9% 76.8% 82
mvKL 72.5 % 78.3% 0.8 76.7% 13.1% 82.6% 67
Ours 81.4% 85.0% 0.3 81.2% 10.2% 87.1% 21

Table 2: Quantitative tracking results on the Dataset-2:
EPFL Berclaz et al. (2011).

Metrics R P FAF↓ MT IML↓ MOTP IDS↓
DCT Andriyenko and Schindler (2011) 62.4% 69.6% 1.4 68.1% 16.2% 67.8% 61

AVT Yang, Yuan, and Wu (2007) 73.3% 72.8% 1.6 70.4% 14.1% 72.6% 53
LSHT He et al. (2013) 69.4% 67.2% 2.1 68.3% 15.4% 71.3% 48

GeodesicPossegger et al. (2014) 73.2% 72.1% 1.1 69.2% 15.2% 70.1% 41
KSP Berclaz et al. (2011) 78.6% 76.1% 1.2 75.3% 14.3% 72.1% 25

mvSVM Zhang et al. 79.5% 75.3% 1.1 76.3% 12.9% 78.8% 34
mvKL 80.2% 82.3% 0.7 78.3% 12.3% 85.2% 25
Ours 84.7% 87.2% 0.4 84.5% 8.3% 88.4% 16

compare with ground-truth trajectories. We adopt the met-
rics in Yang and Nevatia (2012), including: R , recall rate,
number of correctly matched detections over total number
of ground-truth detections; P, precision rate, number of cor-
rectly matched detections over total number of output de-
tections; FAF↓, average false alarms per image; MT, mostly
tracked, percentage of ground truth trajectories which are
covered by tracker output for more than 80% in length;
ML↓, mostly lost, percentage of ground-truth trajectories
which are covered by tracker output for less than 20% in
length; IDS↓, ID Switch, the number of times that an ob-
ject trajectory changes its matched id. MOTP, multi object
tracking precision, the average ratio of the spatial intersec-
tion divided by the union of an estimated object bounding
box and the ground-truth bounding box. ↓ indicates that a
metric is better if smaller. For 3D localization, we report the
box-wise localization errors (in meters).

Fig. 3 visualizes a few results by Algorithm 1. We can
observe the following. i) Although human detectors usually
generate truncated boxes or even false alarm detections, our
algorithm can successfully predict 3D locations and other
attributes (e.g. 2D box) for the detected human box. ii)

Table 3: Average 3D localization errors (meter) on Dataset-
1.

Parking-lot Garden Office
DCT Andriyenko and Schindler (2011) 2.13 2.54 N/A

AVT Yang, Yuan, and Wu (2007) 2.12 1.89 N/A
LSHT He et al. (2013) 2.11 2.13 N/A

Geodesic Possegger et al. (2014) 2.40 1.45 N/A
KSP Berclaz et al. (2011) 1.42 1.16 N/A

mvSVM Zhang et al. 1.21 1.22 N/A
mvKL 0.83 0.72 0.64
Ours 0.61 0.52 0.33

The proposed perturb-and-fitting method is capable of sam-
pling points from the true trajectories, as shown in Fig. 3
(c). iii) The recovered 3D trajectories are fairly close to the
groundtruth trajectories. Note that the white or black points
in Column 3 belong to τ0, i.e. false alarm 3D points.

Tables 1 and 2 report numeric results of all meth-
ods on two datasets, respectively. Among these baselines,
mvSVM Zhang et al. and KSP Berclaz et al. (2011) are
two widely used multi-view tracking methods, while other
four trackers are working on individual cameras. From the
results, we have following two observations. i) The pro-
posed method clearly outperforms these baselines. In partic-
ular, our method generated much less false alarms than other
methods: our method achieves FAF of 0.3 in the Dataset-1,
while the best score among the baselines is 1.1. ii) mvKL
can achieve reasonably good results with the help of multi-
view setting and 3D localization module, and the iterative
procedure in Alg. 1 can further boost performance.

Table 3 reports the numerical 3D Localization results over
the Dataset-1. For the baselines, we takes the bottom-central
points of human boxes as footprints and smooth them by
averaging over consecutive frames. Then we apply the op-
erator ◦ to get the 3D locations. Our method can achieve
sub-meter level 3D Localization for both outdoor and indoor
scenarios. In particular, for parking-lot and garden, the av-
erage 3D localization errors are 0.61 meter and 0.52 meter
respectively, which are much lower than the best baselines
(1.21m and 1.16m, respectively). For the indoor offices, all
baseline methods can not work because most of the subjects
are partially occluded by furniture. In contrast, the proposed
method can exploit binary constraints to predict footprints.
For the office areas, the average localization error of our
method is 0.33 meter . These high-quality localization re-
sults are the key to the success of our 3D human tracker.

Conclusions

This paper presents a probabilistic method for accurate 3D
localization and cross-view tracking in crowded scenes. We
introduce a set of simply yet effective binary constraints for
localizing truncated human boxes in 3D scene map and sep-
arating moving subjects. These constraints are directly ex-
ploited in the proposed Bayesian formula in order to ad-
dress occlusions, frequent intersections, missing detections
and other challenges that might fail 3D tracking. We eval-
uated our method on both public benchmarks and a newly
built video dataset. Results with comparisons to other pop-
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ular methods showed that our method can achieve state-of-
the-art 3D tracking performance.
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