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Abstract

Feature selection is essential for effective visual recog-
nition. We propose an efficient joint classifier learn-
ing and feature selection method that discovers sparse,
compact representations of input features from a vast
sea of candidates, with an almost unsupervised formu-
lation. Our method requires only the following knowl-
edge, which we call the feature sign—whether or not
a particular feature has on average stronger values over
positive samples than over negatives. We show how this
can be estimated using as few as a single labeled train-
ing sample per class. Then, using these feature signs,
we extend an initial supervised learning problem into an
(almost) unsupervised clustering formulation that can
incorporate new data without requiring ground truth
labels. Our method works both as a feature selection
mechanism and as a fully competitive classifier. It has
important properties, low computational cost and excel-
lent accuracy, especially in difficult cases of very lim-
ited training data. We experiment on large-scale recog-
nition in video and show superior speed and perfor-
mance to established feature selection approaches such
as AdaBoost, Lasso, greedy forward-backward selec-
tion, and powerful classifiers such as SVM.

Introduction

Classifier ensembles and feature selection have proved enor-
mously useful over decades of computer vision and ma-
chine learning research (Vasconcelos 2003; Dietterich 2000;
Hansen and Salamon 1990; Breiman 1996; Freund and
Schapire 1995; Kwok and Carter 1990; Criminisi, Shot-
ton, and Konukoglu 2012). Every year, new visual features
and classifiers are proposed or automatically learned. As
the vast pool of features continues to grow, efficient fea-
ture selection mechanisms must be devised since classes are
often triggered by only a few key input features (Fig. 1).
As feature selection is NP-hard (Guyon and Elisseeff 2003;
Ng 1998), previous work focused on greedy methods, such
as sequential search (Pudil, Novovičová, and Kittler 1994)
and boosting (Freund and Schapire 1995), relaxed formu-
lations with l1- or l2-norm regularization, such as ridge re-
gression (Vogel 2002) and the Lasso (Tibshirani 1996; Zhao
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Figure 1: What classes can trigger the idea of a “train”?
Many classes have similar appearance but are semantically
less related (blue box); others are semantically closer but vi-
sually less similar (green box). There is a continuum that
relates appearance, context and semantics. Can we find a
group of classifiers, which are together robust to outliers,
over-fitting and missing features? Here, we show classifiers
that are consistently selected by our method from limited
training data as giving valuable input to the class “train”.

and Yu 2006), or heuristic genetic algorithms (Siedlecki and
Sklansky 1989).

We approach feature selection from the task of discrim-
inant linear classification (Duda and Hart 1973) with novel
constraints on the solution and the features. We put an upper
bound on the solution weights and require it to be an affine
combination of soft-categorical features, which should have
on average stronger outputs on the positive class vs. the neg-
ative. We term these signed features. We present both a su-
pervised and an almost unsupervised approach. Our super-
vised method is a convex constrained minimization problem,
which we extend to the case of almost unsupervised learn-
ing, with a concave minimization formulation, in which the
only bits of supervised information required are the feature

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

3530



signs. Both formulations have important sparsity and opti-
mality properties as well as strong generalization capabil-
ities in practice. The proposed schemes also serve as fea-
ture selection mechanisms, such that the majority of features
with zero weights can be safely ignored while the remaining
ones form a powerful classifier ensemble. Consider Fig. 1:
here we use image-level CNN classifiers (Jia et al. 2014),
pre-trained on ImageNet, to recognize trains in video frames
from the YouTube-Objects dataset (Prest et al. 2012). Our
method rapidly finds relevant features in a large pool.

Our main contributions are: 1) An efficient method for
joint linear classifier learning and feature selection. We show
that, both in theory and practice, our solutions are sparse.
The number of features selected can be set to k and the
non-zero weights are equal to 1/k. The simple solution en-
ables good generalization and learning in an almost unsuper-
vised setting, with minimal supervision. This is very differ-
ent from classical regularized approaches such as the Lasso.
2) Our formulation requires minimal supervision: namely
only the signs of features with respect to the target class.
These signs can be estimated from a small set of labeled
samples, and once determined, our method can handle large
quantities of unlabeled data with excellent accuracy and gen-
eralization in practice. Our method is also robust to large er-
rors in feature sign estimation. 3) Our method demonstrates
superior performance in terms of learning time and accu-
racy when compared to established approaches such as Ad-
aBoost, Lasso, Elastic Net and SVM, especially in the case
of limited supervision.

Problem Formulation

We address the case of binary classification, and apply the
one vs. all strategy to the multi-class scenario. Consider a set
of N samples, with each i-th sample expressed as a column
vector fi of n features with values in [0, 1]; such features
could themselves be outputs of classifiers. We want to find
vector w, with elements in [0, 1/k] and unit l1-norm, such
that wT fi ≈ μP when the i-th sample is from the positive
class and wT fi ≈ μN otherwise, with 0 ≤ μN < μP ≤ 1.
For a labeled training sample i, we fix the ground truth tar-
get ti = μP = 1 if positive and ti = μN = 0 otherwise.
Our novel constraints on w limit the impact of each indi-
vidual feature fj , encouraging the selection of features that
are powerful in combination, with no single one strongly
dominating. This produces solutions with good generaliza-
tion power. In a later section we show that k is equal to
the number of selected features, all with weights = 1/k.
The solution we look for is a weighted feature average with
an ensemble response that is stronger on positives than on
negatives. For that, we want any feature fj to have ex-
pected value EP (fj) over positive samples greater than its
expected value EN (fj) over negatives. We estimate its sign
sign(fj) = EP (fj) − EN (fj) from labeled samples and if
it is negative we simply flip the feature: fj ← 1 − fj . Ex-
pected values are estimated as the empirical average feature
responses the the labeled training data available.

Supervised Learning: We begin with the supervised
learning task, which we formulate as a least-squares con-
strained minimization problem. Given the N × n feature
matrix F with f�i on its i-th row and the ground truth
vector t, we look for w∗ that minimizes ‖Fw − t‖2 =

w�(F�F)w − 2(F�t)�w + t�t, and obeys the required
constraints. We drop the last constant term t�t and obtain
the following convex minimization problem:

w∗ = argmin
w

J(w) (1)

= argmin
w

w�(F�F)w − 2(F�t)
�
w

s.t.
∑
j

wj = 1 , wj ∈ [0, 1/k].

The least squares formulation is related to Lasso, Elastic Net
and other regularized approaches, with the distinction that in
our case individual elements of w are restricted to [0, 1/k].
This leads to important properties regarding sparsity and di-
rectly impacts generalization power, as presented later.

Labeling the features not the samples: Consider a pool
of signed features correctly flipped according to their signs,
which could be known a priori, or estimated from a small
set of labeled data. We make the simplifying assumption
that the signed features’ expected values (that is, the means
of the feature responses distributions), for positive and neg-
ative samples, respectively, are close to the ground truth
target values (μP , μN ). Note that having expected values
close to the ground truth does not say anything about the
distribution variance, as individual responses could some-
times be wrong. For a given sample i, and any w obeying
the constraints, the expected value of the weighted average
w�fi is also close to the ground truth target ti: E(w�fi) =∑

j wjE(fi(j)) ≈ (
∑

j wj)ti = ti. Then, for all samples
we have the expectation E(Fw) ≈ t, such that any feasible
solution will produce, on average, approximately correct an-
swers. Thus, we can regard the supervised learning scheme
as attempting to reduce the variance of the feature ensemble
output, as their expected value is close to the ground truth
target. If we approximate E(Fw) ≈ t into the objective
J(w), we get a new ground-truth-free objective Ju(w) with
the following learning scheme, which is unsupervised once
the feature signs have been estimated. Here M = F�F:

w∗ = argmin
w

Ju(w) (2)

= argmin
w

w�(F�F)w − 2(F�(Fw))
�
w

= argmin
w

(−w�(F�Fw)) = argmax
w

w�Mw

s.t.
∑
j

wj = 1 , wj ∈ [0, 1/k].

Interestingly, while the supervised case is a convex mini-
mization problem, the semi-supervised learning scheme is
a concave minimization problem, which is NP-hard. This is
due to the change in sign of the matrix M. Since M in the
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almost unsupervised case could be created from larger quan-
tities of unlabeled data, Ju(w) could in fact be less noisy
than J(w) and produce significantly better local optimal so-
lutions — a fact confirmed by experiments. Note the differ-
ence between our formulation and other, much more costly
semi-supervised or transductive learning approaches based
on label propagation with quadratic criterion (Bengio, De-
lalleau, and Roux 2006) (where the quadratic term is very
large, being computed from pairs of data samples, not fea-
tures) or on transductive support vector machines (Joachims
1999). There are also methods for unsupervised feature se-
lection, such as the regularization scheme of (Yang et al.
2011), but they do not simultaneously learn a discriminative
classifier, as it is the case here.

Intuition: Let us consider two terms involved in our ob-
jectives, the quadratic term: w�Mw = w�(F�F)w and
the linear term: (F�t)�w. Assuming that feature outputs
have similar expected values, then minimizing the linear
term in the supervised case will give more weight to fea-
tures that are strongly correlated with the ground truth and
are good for classification, even independently. Things be-
come more interesting when looking at the role played by
the quadratic term in the two cases of learning. The posi-
tive definite matrix F�F contains the dot-products between
pairs of feature responses over the samples. In the supervised
case, minimizing w�(F�F)w should find groups of fea-
tures that are as uncorrelated as possible. Thus, they should
be individually relevant due to the linear term, but not redun-
dant with respect to each other due to the quadratic term.
They should be conditionally independent given the class,
an observation that is consistent with earlier research (e.g.,
(Dietterich 2000; Rolls and Deco 2010)). In the almost unsu-
pervised case, the task seems reversed: maximize the same
quadratic term w�Mw, with no linear term involved. We
could interpret this as transforming the learning problem
into a special case of clustering with pairwise constraints,
related to methods such as spectral clustering with l2-norm
constraints (Sarkar and Boyer 1998) and robust hypergraph
clustering with l1-norm constraints (Bulo and Pellilo 2009;
Liu, Latecki, and Yan 2010). The problem is addressed by
finding the group of features with strongest intra-cluster
score — the largest amount of covariance. In the absence
of ground truth labels, if we assume that features in the pool
are, in general, correctly signed and not redundant, then the
maximum covariance is attained by those whose collective
average varies the most as the hidden class labels also vary.

Algorithm

We first need to estimate the sign for each feature, using its
average response over positives and negatives, respectively.
Then we can set up the optimization problems to find w. In
Algorithm 1, we present the almost unsupervised method,
with the supervised variant being constructed by modify-
ing the objective appropriately. There are many possible fast
methods for approximate optimization. Here we adapted the
integer projected fixed point (IPFP) approach (Leordeanu
and Sminchisescu 2012; Leordeanu, Hebert, and Sukthankar

Figure 2: Optimization and sensitivity analysis: a) Sensitiv-
ity to k. Performance improves as features are added, is sta-
ble around the peak k = 60 and falls for k > 100 as useful
features are exhausted. b) Features ordered by weight for
k = 50 confirming that our method selects equal weights up
to the chosen k. c) Our method almost converges in 10–20
iterations. d) Runtime of interior point method divided by
ours, both in Matlab and with 100 max iterations. All results
are averages over 100 random runs.

2009), which is efficient in practice (Fig. 2c) and is appli-
cable to both supervised and semi-supervised cases. The
method converges to a stationary point — the global opti-
mum in the supervised case. At each iteration IPFP approx-
imates the original objective with a linear, first-order Tay-
lor approximation that can be optimized immediately in the
feasible domain. That step is followed by a line search with
rapid closed-form solution, and the process is repeated until
convergence. In practice, 10–20 iterations bring us close to
the stationary point; nonetheless, for thoroughness, we use
100 iterations in all tests. See, for example, comparisons to
Matlab’s quadprog run-time for the convex supervised learn-
ing case in Fig. 2 and to other learning methods in Fig. 5.
Note that once the linear and quadratic terms are set up, the
learning problems are independent of the number of samples
and only dependent on the number n of features considered,
since M is n× n and F�t is n× 1.

Algorithm 1 Learning with minimal supervision.
Learn feature signs from a small set of labeled samples.
Create F with flipped features from unlabeled data.
Set M← F�F.
Find w∗ = argmaxw w�Mw

s.t.
∑

j wj = 1 , wj ∈ [0, 1/k].
return w∗
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Figure 3: Sensitivity analysis for Lasso: Left: sensitivity to
number of features with non-zero weights in the solution.
Note the higher sensitivity when compared to ours. Lasso’s
best performance is achieved for fewer features, but the ac-
curacy is worse than in our case. Right: sensitivity to lambda
λ, which controls the L1-regularization penalty.

Theoretical Analysis: First we show that the solutions are
sparse with equal non-zero weights (P1), also observed in
practice (Fig. 2b). This property makes our classifier learn-
ing also an excellent feature selection mechanism. Next, we
show that simple equal weight solutions are likely to mini-
mize the output variance over samples of a given class (P2)
and minimize the error rate. This explains the good gener-
alization power. Then we show how the error rate is ex-
pected to go towards zero when the number of considered
non-redundant features increases (P3), which explains why
a large diverse pool of features is beneficial. Let J(w) be the
objective for either the supervised or semi-supervised case:
Proposition 1: Let d(w) be the gradient of J(w). The par-
tial derivatives d(w)i corresponding to those elements w∗

i of
the stationary points with non-sparse, real values in (0, 1/k)
must be equal to each other.
Proof: The stationary points for the Lagrangian satisfy the
Karush-Kuhn-Tucker (KKT) necessary optimality condi-
tions. The Lagrangian is L(w, λ, μ, β) = J(w)−λ(

∑
wi−

1) +
∑

μiwi +
∑

βi(1/k−wi). From the KKT conditions
at a point w∗ we have:

d(w∗)− λ+ μi − βi = 0,∑n
i=1 μiw

∗
i = 0,∑n

i=1 βi(1/k − w∗
i ) = 0.

Here w∗ and the Lagrange multipliers have non-negative el-
ements, so if wi > 0 ⇒ μi = 0 and wi < 1/k ⇒ βi = 0.
Then there must exist a constant λ such that:

d(w∗)i =

{ ≤ λ, w∗
i = 0,

= λ, w∗
i ∈ (0, 1/k),

≥ λ, w∗
i = 1/k.

This implies that all w∗
i that are different from 0 or 1/k cor-

respond to partial derivatives d(w)i that are equal to some
constant λ, therefore those d(w)i must be equal to each
other, which concludes our proof.

From Proposition 1 it follows that in the general case,
when the partial derivatives of the objective error function
at the Lagrangian stationary point are unique, the elements
of the solution w∗ are either 0 or 1/k. Since

∑
j w

∗
j = 1 it

follows that the number of nonzero weights is exactly k, in

the general case. Thus, our solution is not just a simple lin-
ear separator (hyperplane), but also a sparse representation
and a feature selection procedure that effectively averages
the selected k (or close to k) features. The method is robust
to the choice of k (Fig. 2.a) and seems to be less sensitive to
the number of features selected than the Lasso (see Fig. 3).
In terms of memory cost, compared to the solution with
real weights for all features, whose storage requires 32n bits
in floating point representation, our averaging of k selected
features needs only k log2 n bits — select k features out of
n possible and automatically set their weights to 1/k. Next,
for a better statistical interpretation we assume the somewhat
idealized case when all features have equal means (μP , μN )
and equal standard deviations (σP , σN ) over positive (P) and
negative (N) training sets, respectively.
Proposition 2: If we assume that the input soft classifiers
are independent and better than random chance, the error
rate converges towards 0 as their number n goes to infinity.
Proof: Given a classification threshold θ for wT fi, such that
μN < θ < μP , then, as n goes to infinity, the probability
that a negative sample will have an average response greater
than θ (a false positive) goes to 0. This follows from Cheby-
shev’s inequality. By a similar argument, the chance of a
false negative also goes to 0 as n goes to infinity.
Proposition 3: The weighted average wT fi with smallest
variance over positives (and negatives) has equal weights.
Proof: We consider the case when fi’s are from posi-
tive samples, the same being true for the negatives. Then
Var(

∑
j wjfi(j)/

∑
j wj) =

∑
w2

j/(
∑

wj)
2σ2

P . We mini-
mize

∑
w2

j/(
∑

wj)
2 by setting its partial derivatives to zero

and get wq(
∑

wj) =
∑

w2
j , ∀q. Then wq = wj , ∀q, j.

Experimental Analysis

We evaluate our method’s ability to generalize and learn
quickly from limited data, in both the supervised and the un-
supervised cases. We also explore the possibility of transfer-
ring and combining knowledge from different datasets, con-
taining video or low and medium-resolution images of many
potentially unrelated classes, by working with three different
types of features, as explained shortly. We focus on video
classification and compare to established methods for selec-
tion and classification and report accuracies per frame. We
test on the large-scale YouTube-Objects video dataset (Prest
et al. 2012), with difficult sequences from ten categories
(aeroplane, bird, boat, car, cat, cow, dog, horse, motorbike,
train) taken in the wild. The training set contains about 4200
video shots, for a total of 436970 frames, and the test set
has 1284 video shots for a total of over 134119 frames.
The videos have significant clutter, with objects coming in
and out of foreground focus, undergoing occlusions, exten-
sive changes in scale and viewpoint. This set is difficult be-
cause the intra-class variation is large and sudden between
video shots. Given the very large number of frames and va-
riety of shots, their complex appearance and variation in
length, presence of background clutter with many distract-
ing objects, changes in scale, viewpoint and drastic intra-
class variation, the task of learning the main category from
only a few frames presents a significant challenge. We used
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Figure 4: We encourage feature diversity by taking classi-
fiers trained on 3 datasets and by looking at different parts
of the input space (Type I) or different locations within the
image (Types II and III).

the same training/testing split as prescribed in (Prest et al.
2012). In all our tests, we present results averaged over 30
randomized trials, for each method. We generate a large pool
of over 6000 different features (see Fig. 4), computed and
learned from three different datasets: CIFAR10 (Krizhevsky
and Hinton 2009), ImageNet (Deng et al. 2009) and a hold-
out part of the YouTube-Objects training set:

CIFAR10 features (Type I): This dataset contains 60000
32×32 color images in 10 classes (airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, truck), with 6000 im-
ages per class. There are 50000 training and 10000 test im-
ages. We randomly chose 2500 images per class to create
features. They are HOG+SVM classifiers trained on data ob-
tained by clustering images from each class into 5 groups
using k-means applied to their HOG descriptors. Each clas-
sifier was trained to separate its own cluster from the oth-
ers. We hoped to obtain, for each class, diverse and rela-
tively independent classifiers that respond to different, nat-
urally clustered, parts of the input space. Note that CI-
FAR10 classes coincide only partially (7 out of 10) with the
YouTube-Objects classes. Each of the 5 × 10 = 50 such
classifiers becomes a different feature.

YouTube-parts features (Type II): We formed a separate
dataset with 25000 images from video, randomly selected
from a subset of YouTube-Objects training videos, not used
in subsequent recognition experiments. Features are outputs
of linear SVM classifiers using HOG applied to the different

parts of each image. Each classifier is trained and applied to
its own dedicated sub-window as shown in Fig. 4.

We also applied PCA to the resulted HOG, and obtained
descriptors of 46 dimensions, before passing them to SVM.
For each of the 10 classes, we have 11 classifiers, one for
each sub-window, and get a total of 110 type II features.

ImageNet features (Type III): We considered the soft
feature outputs (before soft max) of the pre-trained Ima-
geNet CNN features using Caffe (Jia et al. 2014), each of
them over six different sub-windows: whole, center, top-left,
top-right, bottom-left, bottom-right, as presented in Fig. 4.
There are 1000 such outputs, one for each ImageNet cat-
egory, for each sub-window, for a total of 6000 features.
In some of our experiments, when specified, we used only
2000 ImageNet features, restricted to the whole and center
windows.

Results

We evaluated eight methods: ours, SVM on all input fea-
tures, Lasso, Elastic Net (L1+L2 regularization) (Zou and
Hastie 2005), AdaBoost on all input features, ours with
SVM (applying SVM only to features selected by our
method, idea related to (Nguyen and De la Torre 2010;
Weston et al. 2000; Kira and Rendell 1992)), forward-
backward selection (FoBa) (Zhang 2009) and simple aver-
aging of all signed features, with values in [0, 1] and flipped
as discussed before. While most methods work directly with
the signed features provided, AdaBoost further transforms
each feature into a weak binary classifier by choosing the
threshold that minimizes the expected exponential loss at
each iteration (this explains why AdaBoost is much slower).
For SVM we used the LIBSVM (Chang and Lin 2011) im-
plementation version 3.17, with kernel and parameter C
validated separately for each type of experiment. For the
Lasso we used the latest Matlab library and validated the
L1-regularization parameter λ for each experiment. For the
Elastic Net we also validated parameter alpha that combines
the L1 and L2 regularizers. The results (Fig. 5) show that
our method has a constant optimization time (after creating
F, and then computing F�F). It is significantly faster than
SVM, AdaBoost (time too large to show in the plot), FoBa
and even the latest Matlab’s Lasso. Elastic Net, not shown in
the plots to avoid clutter, was consistently slower than Lasso
by at least 35% and, at best, 2% superior in performance to
Lasso for certain parameters alpha. As seen, we outperform
most other methods, especially in the case of limited labeled
training data, when our selected feature averages generalize
well and are even stronger than in combination with SVM.
In the case of the almost unsupervised learning, we outper-
formed all other methods by a very large margin, up to over
20% (Fig. 6 and Table 1). Of particular note is when only a
single labeled image per class was used to estimate the fea-
ture signs, with all the other data being unlabeled (Fig. 6).

Estimating feature signs from limited data: The perfor-
mance of our almost unsupervised learning approach with
signed features depends on the ability to estimate the signs
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Figure 5: Accuracy and training time (in sec.) on YouTube-
Objects, with varying training video shots (10 frames per
shot and results averaged over 30 runs). Input feature pool,
row 1: 50 type I features on CIFAR10; row 2: 110 type II fea-
tures on YouTube-Parts + 50 CIFAR10; row 3: 2000 type III
features in ImageNet; row 4: 2160 all features. Ours outper-
forms SVM, Lasso, AdaBoost and FoBa.

of features. We evaluate the accuracy of the estimated signs
with respect to the available labeled data (Fig. 7). Our exper-
iments show that feature signs are often wrongly estimated
and thus confirm that our method is robust to such errors,
with a relatively stable accuracy as the quantity of labeled
samples varies (Fig. 6). Note that we have compared the es-
timated feature signs with the ones estimated from the entire
unlabeled test set of the database and present estimation ac-
curacies, where the signs estimated from the test set were
considered the empirical ground truth. The relatively large
sign estimation errors reflect the large relative difference
in quantity between the total amount of test data available
and the small number of samples used for sign estimation.
It also indicates our methods ability to learn effective fea-
ture groups in the presence of many others that have been

Table 1: Improvement in recognition of unsupervised vs.
the supervised method. Experiments with adding unlabeled
training data to (1,3,8,16) labeled shots (used for estimat-
ing feature signs) reveals significant improvement over the
supervised learning scheme, across all trials. The first col-
umn presents the one-shot learning case, when the almost
unsupervised method uses a single labeled image per class
to estimate the feature signs. Results are averages (in per-
cent) over 30 random runs.

Training # shots 1 3 8 16

Feature I +15.1 +16.9 +13.9 +14.0
Feature I+II +16.7 +10.2 +6.2 +6.1
Feature III +23.6 +11.2 +4.9 +3.3
Feature I+II+III +24.4 +13.4 +6.7 +5.4

Figure 6: Comparison of our almost unsupervised approach
to the supervised case for different methods. In our case, un-
sup1 uses training data in Ju(w) only from the shots used by
all supervised methods; unsup2 also includes frames from
testing shots, with unknown test labels; oneshot is unsup2
with a single labeled image per class used only for feature
sign estimation. This truly demonstrates the ability of our
approach to efficiently learn with minimal supervision.

wrongly signed.
An interesting direction for future work is to explore the

possibility of borrowing feature signs from classes that are
related in meaning, shape or context. We have performed
some experiments and compared the estimated feature signs
between classes (see Figure 8). Does the plane share more
feature signs with the bird, or with another man-made class,
such as the train? The possibility of sharing or borrowing
feature signs from other classes could pave the way for a
more unsupervised type of learning, where we would not
need to estimate the signs from labeled data of the specific
class. The results in Figure 8 indicate that, indeed, classes
that are closer in meaning share more signs than classes that
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Figure 7: For a feature sign estimation accuracy (agreement
with sign estimation from the test set) of roughly 70% our
method manages to significantly outperform the supervised
case, demonstrating its robustness and solid practical value.
The first value corresponds to 1-shot-1-frame case.

Figure 8: Youtube-Objects classes similarity based on their
estimated signs of features. For each pair of features we
present the percent of signs of features that coincide. Note
that classes that are more similar in meaning, shape or con-
text have, on average more signs that coincide. These signs
were estimated from all training data.

mean very different things. For example, the class aeroplane
shares most signs with boat, motorbike, bird, train, bird with
cat, dog, motorbike, aeroplane, cow, boat with train, car
aeroplane, and car with train, boat, motorbike. We also have
cat: dog, bird, cow, horse, cow: horse, dog, cat, bird, dog:

cow, horse, cat, bird, horse: cow, dog, cat, motorbike: aero-
plane, bird, car, and train: car, boat, aeroplane, for the re-
maining classes. We notice that indeed classes that are sim-
ilar in meaning, appearance or context, such as animals, or
man-made categories, share more signs among themselves
than classes that are very different. These experiments indi-
cate the deeper conceptual difference between labeling fea-
tures and not samples. As our method can be effective even
in case of sign estimation errors, it could relay on some sort
of smart sign guessing and then learn from completely unsu-
pervised data - this would reduce the amount of supervision
to a minimum, and get closer to the natural limits of learning
in strongly unsupervised environments.

Intuition regarding the selected features: Another inter-
esting finding (see Fig. 9) is the consistent selection of di-
verse input Type III features that are related to the target
class in surprising ways: 1) similar w.r.t. global visual ap-
pearance, but not semantic meaning — banister :: train, tiger
shark :: plane, Polaroid camera :: car, scorpion :: motorbike,
remote control :: cat’s face, space heater :: cat’s head; 2) re-
lated in co-occurrence and context, but not in global appear-
ance — helmet vs. motorbike; 3) connected through part-to-
whole relationships — {grille, mirror and wheel} :: car; or
combinations of the above — dock :: boat, steel bridge ::
train, albatross :: plane. The relationships between the target
class and the selected features could also hide combinations
of many other factors. Meaningful relationships could ul-
timately join together correlations along many dimensions,
from appearance to geometric, temporal and interaction-like
relations. Since categories share shapes, parts and designs,
it is perhaps unsurprising that classifiers trained on seman-
tically distant classes that are visually similar can help im-
prove learning and generalization from limited data. Another
interesting aspect is that the classes found are not necessar-
ily central to the main category, but often peripheral, acting
as guardians that separate the main class from the rest. This
is where feature diversity plays an important role, ensuring
both separation from nearby classes as well as robustness
to missing values. This aspect is also related to the idea of
borrowing features from related, previously learned classes.
Thus, in cases where there is insufficient supervised data for
a particular new class, sparse averages of reliable, old classi-
fiers and features can be an excellent way to combine previ-
ous knowledge. Consider the class cow in Fig. 9. Although
“cow” is not present in the 1000 label set, our method is able
to learn the concept by combining existing classifiers.

Discussion and Conclusions

We present a fast feature selection and learning method with
minimal supervision, and we apply it to video classification.
It has strong theoretical properties and excellent generaliza-
tion and accuracy in practice. The crux of our approach is its
ability to learn from large quantities of unlabeled data once
the feature signs are determined, while being very robust
to feature sign estimation errors. A key difference between
our features signs and the weak features used by boosting
approaches such as AdaBoost, is that in our case the sign
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Figure 9: Visualization of classifiers selected by our method for each target concept (not samples of images retrieved for a given
concept). Each row corresponds to a class from the YouTube-Objects dataset and the images in a given row show an image
from the most frequently selected ImageNet classifiers (input features) that contribute to that class—specifically the classes
that were always selected over 30 independent experiments (k = 50, 10 frames per shot and 10 random shots for training).
The far right graph in each row shows the probability of selecting these 50 features for the given class. Note the stability of
the selection process. Also note the connection between the selected ImageNet classifier and the target YouTube object class
in terms of appearance, context or geometric part-whole relationships. We find two aspects particularly interesting: 1) the
consistent selection of the same classes, even for small random training sets and 2) the fact that semantically unrelated classes
contribute to classification, based on their shape and appearance similarity.
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estimation requires minimal labeling and that the sign is
the only bit of supervision needed. Adaboost requires large
amounts of training data to carefully select and weigh new
features. This aspect reveals a key insight: being able to ap-
proximately label the features and not the data, is sufficient
for learning. With a formulation that permits very fast op-
timization and effective learning from large heterogeneous
feature pools, our approach provides a useful tool for many
other recognition tasks, and it is suited for real-time, dy-
namic environments. Thus it could open doors for new and
exciting research in machine learning, with both practical
and theoretical impact.
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