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Abstract

Modeling complex crowd behaviour for tasks such as rare
event detection has received increasing interest. However, ex-
isting methods are limited because (1) they are sensitive to
noise often resulting in a large number of false alarms; and
(2) they rely on elaborate models leading to high computa-
tional cost thus unsuitable for processing a large number of
video inputs in real-time. In this paper, we overcome these
limitations by introducing a novel complex behaviour model-
ing framework, which consists of a Binarized Cumulative Di-
rectional (BCD) feature as representation, novel spatial and
temporal context modeling via an iterative correlation maxi-
mization, and a set of behaviour models, each being a simple
Bernoulli distribution. Despite its simplicity, our experiments
on three benchmark datasets show that it significantly outper-
forms the state-of-the-art for both temporal video segmenta-
tion and rare event detection. Importantly, it is extremely effi-
cient — reaches 90Hz on a normal PC platform using MAT-
LAB.

Introduction

The past two decades have witnessed an accelerated ex-
pansion of closed-circuit television (CCTV) surveillance
for public safety and security applications. This coincides
with a growing interest in automatic visual analysis of ob-
ject behaviours captured by surveillance videos in public
spaces, with a particular focus on crowd behaviour model-
ing for rare/abnormal event detection. Existing approaches
fall into two categories depending on what crowd events
are of interest. The first category of approaches (Li, Ma-
hadevan, and Vasconcelos 2014; Cong, Yuan, and Liu 2011;
Lu, Shi, and Jia 2013; Zhao, Fei-Fei, and Xing 2011; Antic
and Ommer 2011; Cui et al. 2011; Kratz and Nishino 2009;
Kwon and Lee 2012; Mahadevan et al. 2010; Mehran,
Oyama, and Shah 2009; Roshtkhari and Levine 2013;
Saligrama and Chen 2012) seek to detect well-defined be-
haviour patterns that stand out in terms of both appearance
and motion. For example, Fig. 1(a) shows that a person rid-
ing a bicycle is detected as an anomaly due to his distinctive
appearance and motion (speed) among the normal walking
pedestrians in the scene. In contrast, the second category of
approaches (Li, Gong, and Xiang 2012; Hospedales et al.
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(a) (b)

Figure 1: Examples of simple and salient crowd events (a)
vs. complex and subtle events (b).

2011; Hospedales, Gong, and Xiang 2012; Song et al. 2014;
Wang and Mori 2009; Wang, Ma, and Grimson 2009;
Zhou, Wang, and Tang 2012; Ricci et al. 2013) focus on
more subtle and complex behavioural anomalies. An exam-
ple is shown in Fig. 1(b) where a fire engine interrupts the
normal traffic flow at a junction. This type of events are more
difficult to detect, yet they are more common in reality. They
are thus the focus of this paper.

Modeling complex crowd behaviour for detecting sub-
tle events is challenging because both individual object be-
haviour and their behavioural context need to be modeled.
In particular, the behaviour of an object involved in a com-
plex and subtle event may look perfectly normal. It is ab-
normal only when put in context – it occurs in the wrong
place and/or wrong time in relation to other objects in the
scene. For example, when the fire engine in Fig. 1(b) moves
horizontally, there are also vertical traffic which should not
co-occur for obvious reasons. Therefore to detect such sub-
tle events, one must model both object behaviour and their
spatial, temporal and correlation behavioural context.

With dozens of objects to model at any given time as
well as their behavioural context, existing approaches to
complex crowd behaviour modeling rely on complex mod-
els with the hierarchical probabilistic topic models (PTMs)
or other forms of graphical models being the most popu-
lar choice (Li, Gong, and Xiang 2012; Hospedales et al.
2011; Hospedales, Gong, and Xiang 2012; Wang and Mori
2009; Wang, Ma, and Grimson 2009; Zhou, Wang, and
Tang 2012). Other non-parametric Bayesian models such
as Dirichlet Process Mixture models (Emonet, Varadarajan,
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and Odobez 2014) are also considered. Most of these mod-
els are generative models; in contrast, (Ricci et al. 2013) pre-
sented a prototype learning framework with Earth Mover’s
Distance (EMD), and (Cheng, Chen, and Fang 2015) pro-
posed to use hierarchical 3D features and Gaussian Process
Regression (GPR). The main limitations of these models are:
(1) When a rare event occurs, it often only involves one or
two objects with many more other objects in the scene be-
having normally. Modeling all objects in a single model thus
makes the model insensitive to these rare events, resulting in
miss detections (Hospedales, Gong, and Xiang 2012). (2) A
complex model with too many parameters can be sensitive
to feature noise causing false alarms. (3) Existing models
are typically computationally expensive. These limitations
make them unsuitable for a practical application scenario
whereby multiple video channels need to be processed si-
multaneously in real time with high detection accuracy and
few false alarms.

In this paper, we propose a novel approach to complex
crowd behaviour modeling, consisting of a set of particu-
larly simple models which is sensitive to anomalies, robust
against noise, and can be computed extremely fast. The ap-
proach is designed based on two principles: (1) Instead of
using a single elaborate model, a set of simple models is
preferred which are more flexible and efficient to compute.
(2) Both object behaviour, and spatio-temporal behavioural
context are quantized to further reduce model complexity
and gain robustness against feature noise. More specifically,
a complex dynamic scene is first decomposed into functional
regions where spatial context is defined. The temporal be-
havioural context of the scene are also quantized into dis-
crete states. Each region’s behaviour is then represented as
a Binarized Cumulative Directional (BCD) feature vector,
which is much simpler than the representations used by pre-
vious works. Furthermore, we propose to learn spatial and
temporal context with a novel joint iterative refinement pro-
cess by maximizing the motion correlation across the func-
tional regions at each temporal state. Finally each element
of the indicator vector (a binary variable) is modeled as
a simple Bernoulli distribution (much simpler than even a
Gaussian) whose single parameter is dependent on the re-
gion (spatial context) and temporal state (temporal context).
Extensive experiments are carried out on three benchmark
datasets. The results suggest that our approach not only sig-
nificantly outperforms the state-of-the-arts in terms of ac-
curacy and robustness on rare event detection and temporal
segmentation, it is also extremely efficient – it runs at about
90Hz on average on an ordinary PC using MATLAB.

Methodology

Binarized Cumulative Directional (BCD) Feature

An input video sequence is first divided into a sequence
of NT video clips, each of which consists of T frames.
Each clip is further divided into a spatial-temporal grid (see
Fig. 2), yielding Nc grid cells in each clip. We compute op-
tical flows using the method in (Liu 2009), then quantize all
the pixels’ optical flow vectors into No directions. In each
spatial-temporal grid cell, we first compute a Histogram of

Figure 2: The proposed BCD feature representation

Optical Flow (HOF) descriptor of the cell by distributing all
the pixels into Nb bins according to their No motion direc-
tions plus one bin to accommodate pixels with the motion
magnitude being less than a predefined threshold (i.e. mo-
tionless pixels). An example of a 9-bin HOF descriptor is
shown in Fig. 2. Instead of directly using the continuous
HOF descriptor as features, we further quantize the HOF
descriptor into a binary motion direction indicator vector by
thresholding each bin of the HOF by a threshold Tb, which
gives the final Binarized Cumulative Directional (BCD) de-
scriptor (see Fig. 2). By cumulating the quantized optical
flows into a histogram representation both spatially and tem-
porally, and further binarize it, the resulting BCD descriptor
is extremely simple, which enables the subsequent develop-
ment of simple and robust behaviour models. Note that our
representation is also flexible for extension. For example, if
speed is deemed critical for the definition of rare events, ad-
ditional bins corresponding to flow vector magnitude can be
readily augmented to the BCD descriptor.

Initialization of Spatial and Temporal Context

Spatial context initialization The spatial context is
learned as semantic regions segmented from the scene (Li,
Gong, and Xiang 2012). This dynamic scene decomposition
is obtained using the spectral clustering method in (Zelnik-
Manor and Perona 2004). More specifically, given Nc cells
in each clip, a Nc × Nc affinity/similarity matrix A is con-
structed for all the clips in a training dataset with the simi-
larity measure Ai,j computed as:

Aij =

{
exp(−d(xi,xj)

2

σiσj
− d(ci,cj)

2

σx
2 ), if ‖ci − cj‖ ≤ R;

0, otherwise.
(1)

where ci, and cj are the image coordinates of the i-th cell
and the j-th cell respectively; xi, and xj are obtained by
concatenating the NT BCD descriptors over the NT clips in
the training set; they are thus Nb ×NT dimensional feature
vectors; d() represents the cosine distance; σi and σj are the
scaling factors of the feature vectors representing the i-th
cell and the j-th cell; σx is the spatial scaling factor; R is the
radius of a circle on the image plane within which similarity
is computed. The objective of this model is to encourages
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cells that share similar motion representation and are close
spatially to be grouped into the same semantic region. The
affinity matrix A is then used as input for spectral cluster-
ing to obtain a semantic region segmentation. Note that the
number of clusters/regions NR is determined automatically
by the clustering algorithm.
Temporal Context Initialization Temporal context is
also initialized by clustering. For that, the Affinity Prop-
agation algorithm proposed in (Frey and Dueck 2007) is
adopted. Specifically, we concatenate the Nc BCD descrip-
tors of all the cells from one frame together as the represen-
tation for this frame and then re-quantize it into a Nb dimen-
sional BCD representation with the same threshold Tb.

Context Refinement via Correlation Analysis

Given an initial temporal phase segmentation, in each itera-
tion of the joint iterative refinement process, a greedy search
is performed to find an optimal set of phase boundaries
within a fixed-size temporal window near each initial phase
boundary. Formally, given an initial temporal phase bound-
ary (frame index) B, the refined boundary B̂ is obtained by
searching through a temporal window of 2W frames centred
at B, and finding the new boundary as:

B̂ = argmax
b

Corr(b) (2)

where B − W ≤ b ≤ B + W and Corr(b) measures
the correlation strength among the behaviours of different
semantic regions given a candidate phase boundary b. The
correlation strength is computed using Multi-view Canoni-
cal Correlation Analysis (MCCA) (Gong et al. 2014). First,
for each frame and each region, a regional behaviour fea-
ture vector xr is computed for the r-th region by averag-
ing all the cells’ BCD features, normalize it and binarize
it again into another Nb dimensional BCD vector using the
same threshold Tb. Then for each frame, the MCCA model
projects xr from different regions in to a single embedding
space. Finally the average cosine similarity among different
regions in the embedding space is computed as the measure
of correlation strength between regional behaviours. For ro-
bustness, we consider all frames within a window of 2W
frames centred at b, and take the maximum as the final value
of Corr(b):

Corr(b) = max
b−W≤i≤b+W

corr(i) (3)

where

corr(i) = 2/(NR(NR − 1))

NR∑
r1=1

NR∑
r2=1

simc(xr1, xr2) (4)

where NR is the number of semantic regions, and simc is
a function that computes cosine similarity of two regional
behaviour vectors xr1 and xr2 in the multi-view CCA space.

After the initial temporal context is refined, with a set of
updated temporal phase boundaries, a new scene decomposi-
tion is obtained with the same clustering method as in initial-
ization.Now with the new spatial context, temporal context
refinement is performed following the same greedy search

algorithm but with different values of Corr(b). This itera-
tive process terminates given no changes in both spatial and
temporal context. In our experiments, we found that the re-
finement process converges after 2 ∼ 3 iterations.

Behaviour Modeling

After spatial and temporal context modeling, we obtain a
set of semantic regions and an assignment of each frame
to a temporal phase. Each region is now represented as a
BCD vector xr and each dimension of this vector is a binary
variable. For behaviour modeling, instead of using a single
model for all regional behaviours over different temporal
phases, we model each element of each regional behaviour
vector under each temporal phase as a simple Bernoulli dis-
tribution. Each distribution thus represents how likely the
corresponding motion pattern in that direction takes place in
each region, under each phase.

Let the e-th element of the BCD descriptor of the r-th
region under the p-th phase be Qe,r,p, we assume that its
value follows a Bernoulli distribution with a parameter of
μe,r,p:

Qe,r,p ∼ Bern(μe,r,p) (5)
Then for a specific dynamic scene, the complex behaviours
are modeled as an ensemble of Bernoulli distributions
{Qe,r,p}, e = 1 . . . Nb, r = 1 . . . Nr, p = 1 . . . Np, where
Np is the number of temporal clusters/phases, Nr is the
number of semantic regions, Nb is the number of elements in
the BCD representation. There is thus a total of Nr×Np×Nb

models, which are typically in the order of hundreds.
Learning Learning each model involves estimating each
Bernoulli distribution’s parameter {μe,r,p}, which can be es-
timated with maximum likelihood estimator (MLE)

μe,r,p =
1

N

N∑
n=1

Qe,r,p,n (6)

where n is the frame index and N is the total number of
training frames. It is thus N summations followed by a divi-
sion and can be computed very efficiently.
Temporal segmentation and rare event detection Once
trained, the model can be used to infer the temporal phases
for temporal segmentation. Specifically, for the test frames,
the spatial context is fixed and the temporal phase is sim-
ply assigned to the nearest temporal cluster. For rare event
detection, given an input BCD descriptor of region r under
phase p, a natural measure of abnormality Sa for that region
can be computed as:

Sa = min
r=1...Nr

Nb∏
e=1

μ̃e,r,p (7)

where

μ̃e,r,p =

{
μe,r,p if Qe,r,p = 1;

1− μe,r,p otherwise .
(8)

The frame/clip is detected as containing rare events if Sa <
Ta where Ta is a threshold. It is also very easy to iden-
tify which region caused the rare event: all regions with
Nb∏
e=1

μ̃e,r,p < Ta are the regions involved in the rare event.

3518



(a) Phase 1 (b) Phase 2 (c) Phase 3

Figure 3: Temporal phases for the QMUL dataset

(a) Phase 1 (b) Phase 2

Figure 4: Temporal phases for the MIT dataset

Experiments

Datasets and Settings

QMUL Junction Dataset (Hospedales, Gong, and Xiang
2012) This dataset consists of a video sequence recorded
at 25Hz for 1h at a busy urban intersection including verti-
cal, horizontal and turning traffic flows. The frame size in
this dataset are 360 × 288. The traffic flows are well reg-
ulated by traffic lights (temporal context). There are three
temporal phases learnt in this video, of which the dominant
motion patterns are respectively vertical traffic flow, right-
to-left flow and left-to-right flow. Examples of the three tem-
poral phases are shown in Fig. 3.
MIT Traffic Dataset (Wang, Ma, and Grimson 2007) It
contains 1.5h of surveillance videos with a frame size of
720×480 and a frame rate of 30Hz. Similar to QMUL Junc-
tion, this benchmark was also recorded at a traffic junction,
although the cars were driven on different sides of the roads
being in the US rather than the UK. However, since the traf-
fic flow is much less busy, the regulation of traffic light for
this dataset is much weaker than that of QMUL Junction.
Two temporal phases are learnt in this video, which are ver-
tical flow and horizontal flow (see Fig. 4).
Subway Dataset (Hospedales, Gong, and Xiang 2012)
This dataset contains a 17-minute sequence selected from
the UK Home Office i-LIDS dataset. The frame size is
720 × 576. Although there is no temporal phases of fixed
length as in the two traffic scenes, the object behaviours in
this scene are still weakly governed by the train arrival and
departure events. In particular, this complex scene has two
temporal phases: passengers boarding when train arrives and
stay on the track, and train departing with passengers enter-
ing/leaving the platform or sitting down (see Fig. 5).
Settings Following the setting in (Hospedales, Gong, and
Xiang 2012)For the QMUL and MIT datasets, the training
set consists of normal clips from the first 40 minutes of the
video, and the test set contains the remaining clips for rare
event detection. For the Subway dataset, we used the first
5 minutes for training and the rest frames of the video for

(a) Phase 1 (b) Phase 2

Figure 5: Temporal phases for the Subway dataset

(a) MIT (b) QMUL (c) Subway

Figure 6: Scene decomposition before (top row) and after
(bottom row) refinement

Ours Ours EMD-L1 Cas-pLSA MCTM DDP-HMM(refined) (initial) linear

95.00 % 92.50% 92.31% 89.74% 51.79% 87.18%

Table 1: Temporal segmentation result on QMUL Junction

testing. The grid cell size was set to 5 × 5 for QMUL and
MIT, and 15×15 for Subway since the object sizes are larger
in Subway. As the motion patterns of QMUL and MIT are
more complex, the optical flow was quantized into No = 8
directions resulting in a Nb = 9 dimensional BCD descrip-
tor. For the simpler motion patterns in Subway, we used a
5 dimensional BCD descriptor. The threshold Tb was set to
0.2 for all three datasets and its effect is analysed later. For
computing the affinity matrix for scene decomposition, the
radius R (see Eq. (1)) was set to 15 for QMUL and 8 for
MIT, and 10 for Subway reflecting the scales of objects in
each scene.

Spatial Segmentation

Scene decomposition was performed for learning the spatial
context resulting in 17, 10, and 6 semantic functional regions
for the MIT, QMUL, and Subway scenes respectively. Fig. 6
compare the scene decomposition results obtained by initial
clustering and after joint refinement. It can be seen that the
initial segmentation semantic regions are less accurate (e.g.
the boundary between Region 7 and 1 in the QMUL scene,
and 4 and 6 in the Subway scene). After refinement, the se-
mantic regions are clearly improved with finer and more ac-
curate boundaries.
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(a) QMUL (b) MIT (c) Subway

Figure 7: Comparing rare event detection performance of different methods on all three datasets

QMUL Ours Ours
MCTM

Lu’s
HMM Total

Junction (refined) (init) Method

Brk Red Light 13 12 4 0 3 13
Illegal U-Turn 14 10 5 0 1 15
Jaywalking 1 1 1 0 0 1
Wrong Way 15 15 12 0 12 15
Unusual Turns 6 6 6 0 4 10
Uninteresting 6 11 27 55 35 2663

Overall TPR 89% 81% 52% 0% 37%
Overall FPR 0.2% 0.4% 1.0% 2.1% 1.4%

Table 2: The top 2% rarest clip types discovered by each
model for the QMUL Junction dataset.

MIT Traffic
Ours Ours

MCTM
Lu’s

HMM Total
(refined) (init) Method

Jay-walking 7 7 4 1 4 20
Out of Lane 1 1 1 0 0 1
Near Collision 3 2 3 0 2 8
Uninteresting 0 1 3 10 5 510

Overall TPR 38% 34% 27% 27% 21%
Overall FPR 0% 0.2% 0.6% 0.6% 0.9%

Table 3: The top 2% rarest clip discovered by each model
for the MIT Traffic dataset.

Subway
Ours Ours

MCTM
Lu’s

HMM Total
(refined) (init) Method

Contraflow 2 2 2 0 0 2
Uninteresting 36 36 36 38 38 1155

Overall TPR 100% 100% 100% 0% 0%
Overall FPR 3.1% 3.1% 3.1% 3.3% 3.3%

Table 4: The top 2% rarest clips discovered by each model
for the Subway Platform dataset.

Temporal Segmentation

In this experiment, we evaluate the accuracy of the learned
temporal context by evaluating the temporal segmentation

accuracy. Following the same setting as in (Ricci et al.
2013), temporal segmentation was evaluated on the first
1200 frames of the QMUL Junction dataset with manually
labelled ground truth. The result is reported at the clip level,
that is, we take the dominant phase label of each clip as the
clip’s phase label.

Table 1 gives a comparison between our temporal context
model (with and without refinement) and a number of exist-
ing methods. Among the compared models, Cas-pLSA (Li,
Gong, and Xiang 2012), DDP-HMM (Kuettel et al. 2010),
and MCTM (Hospedales, Gong, and Xiang 2012) are two-
layer hierarchical generative models, which have shown to
give better temporal segmentation results than conventional
one-layer models such as HMM, LDA and pLSA (Li, Gong,
and Xiang 2012); in contrast, the EMD-L1linear model
(Ricci et al. 2013) is a discriminative model. Note that,
among the compared methods, only Cas-LDA uses spatial
segmentation information as we do, but has a much higher
computational cost. It can be seen from Table 1 that, com-
pared with the previous methods, (i) even our simple initial
segmentation achieves a better accuracy, which justifies the
robustness of the proposed BCD descriptor and the adopted
clustering method. (ii) The performance is significantly bet-
ter than a number of complex hierarchical generative models
including MCTM and DDP-HMM. (iii) The joint refinement
process does improve the accuracy of temporal segmentation
(92.50% increased to 95.00%).

Online Detection of Rare Events

For rare event detection, we followed exactly the same set-
ting as in (Hospedales, Gong, and Xiang 2012) and also used
the ground truth provided by the authors. For evaluation met-
rics, we set different threshold values to the rare event detec-
tion score Ta and plot ROC curves. We also plot ROC curves
for those compared methods that we have codes. For oth-
ers, in particular (Hospedales, Gong, and Xiang 2012), we
follow their setting and report the rare event detection accu-
racy, measured by TPR (true positive rate) and FPR (false
positive rate), by examining the top 2% most rare clips. This
thus corresponds to a single point on the ROC curve.

The comparative results in TPR and FPR are shown in Ta-
bles 2, 3 and 4 for the three datasets respectively, which also
show the different types of rare events defined in the three
datasets (provided by (Hospedales, Gong, and Xiang 2012)).
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The ROC curves are shown in Fig. 7. The compared meth-
ods include MCTM (Hospedales, Gong, and Xiang 2012),
the sparse coding model in (Lu, Shi, and Jia 2013) (referred
to as ”Lu’s method” in Tables 2-4 and Fig. 7)and HMM.
Note that among them, (Lu, Shi, and Jia 2013) was designed
for detecting simple and salient events (e.g. Fig. 1(a)) rather
than those complex and subtle ones in the three datasets.
The HMM results are from (Hospedales, Gong, and Xiang
2012).

From the results, we can see clearly that our method sig-
nificantly outperforms all other compared methods on accu-
racy and robustness. For example, compared to the strongest
competitor MCTM, we have a quarter of the FPR (0.2%
vs. 1.0%) whilst almost double the detection rate (89%
vs. 52%) on the QMUL dataset. On the MIT dataset, the
improvement is also large: with 0 false alarm, we obtain a
38% TPR, whilst MCTM can only manage 27% TPR with
0.6% FPR (3 false alarms). On the Subway data, the number
of rare events is very small, so both our model and MCTM
achieved 100% detection. However, it is noted that these two
true positive rare clips are ranked as the top 2 rarest by our
model. In other words, our model achieves a perfect rare
event detection on this dataset, as shown by the ROC curve
of our method in Fig. 7(c). The result also show that with
simple one-layer models such as HMM, the performance is
even worse. Furthermore, Fig. 7 shows that the result of (Lu,
Shi, and Jia 2013) is close to random guess (which will give
a diagonal straight line as its ROC curve), indicating that it is
unable of modeling challenging complex crowd behaviours.
Tables 2-4 and Fig. 7 also show that, with the joint context
refinement (Ours(Refined)), the rare event detection perfor-
mance is clearly better that of our model without the refine-
ment (Ours(Initial)), demonstrating the effectiveness of con-
text refinement via correlation analysis. Some qualitative re-
sults of our model are shown in Fig. 8.

Table 5 shows some other recently reported results on the
QMUL Junction dataset. Note that these results are not di-
rectly comparable to those in Table 2, because they were
obtained under different settings. In particular, for reasons
not explicitly detailed, all three compared works, Hierarchi-
cal Dirichlet Process Hidden Markov Model (HDP-HMM)
(Jouneau and Carincotte 2011), Integrated Probabilistic La-
tent Sequential Motifs (IPLSM) (Chockalingam, Emonet,
and Odobez 2013), and Gaussian Process Regression (GPR)
(Cheng, Chen, and Fang 2015) chose to detect only a subset
of the rare events listed in Table 2. Nevertheless, it is obvi-
ous that, even when evaluated on detecting a larger variety of
rare events, our model yields better performance. In partic-
ular, the TPRs of HDP-HMM (58%) and IPLSM (69%) are
much lower than ours (89%). Compared with GPR (Cheng,
Chen, and Fang 2015) which reported an AUROC (area un-
der ROC) of 80.90%, our method achieves an AUROC of
95.07% (Fig. 7(a)) on all types of events and 94.71% on the
two types in (Cheng, Chen, and Fang 2015).
Sensitivity Analysis of Parameter Tb In our experi-
ments, the binarization threshold Tb was set empirically to
0.2 for all datasets. Here we evaluate the effects of differ-
ent values of Tb on the rare event detection performance of
our model. Fig. 9 shows that our model is insensitive to the

(a) MIT (b) QMUL (c) Subway

Figure 8: Examples of rare event detection by our model
with the semantic regions contributed to the detection of the
event highlighted. From top to bottom: (a) Near Collision
and Jay-walking; (b) Illegal U-Turn and Break Red Light;
(c) The two contraflow events.

Abnormality
HDP-HMM IPLSM

GPR
GT Detected GT Detected

U-turn 11 3 10 7 -

Drive Wrong Way 16 11 - - -

Jaywalking 13 9 - - �
Disruption∗ - - 6 4 �

Uninteresting - 8 - - -

AUROC - - - - 80.90%
TPR - 58% - 69% -

Table 5: Performance of other related works on the QMUL
Junction dataset. *The disruption event is equivalent to the
“Break Red Light” event in Table 2
.

choice of Tb when its value is between 0.1 and 0.4.

Figure 9: The rare event detection performance given differ-
ent BCD binarization threshold Tb

Running Cost Besides detection accuracy, we also eval-
uated the computational efficiency. The speed of online de-
tection of our method can reach 91.47Hz while the MCTM
model (Hospedales, Gong, and Xiang 2012) gives 9.18Hz
and (Lu, Shi, and Jia 2013) reaches 227.37Hz, when they
were run on the same/similar platform. Our model is also
more than 100 times faster than that of (Cheng, Chen, and
Fang 2015). Note that the model in (Lu, Shi, and Jia 2013)
is indeed faster; however its detection performance on com-
plex and subtle event detection is too poor to be useful (see
Tables 2-4).
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Conclusion

We have proposed a novel approach to complex behaviour
modeling based on simple features, joint and iterative spa-
tial, temporal and correlation context modeling, and a set
of extremely simple Bernoulli-distribution-based behaviour
models. Despite its simplicity, our experiments on three
benchmark datasets show that it significantly outperforms
the state-of-the-arts for both temporal video segmentation
and rare event detection.
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