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Abstract

Speaker identification refers to the task of localizing the
face of a person who has the same identity as the on-
going voice in a video. This task not only requires col-
lective perception over both visual and auditory signals,
the robustness to handle severe quality degradations and
unconstrained content variations are also indispensable.
In this paper, we describe a novel multimodal Long
Short-Term Memory (LSTM) architecture which seam-
lessly unifies both visual and auditory modalities from
the beginning of each sequence input. The key idea
is to extend the conventional LSTM by not only shar-
ing weights across time steps, but also sharing weights
across modalities. We show that modeling the temporal
dependency across face and voice can significantly im-
prove the robustness to content quality degradations and
variations. We also found that our multimodal LSTM is
robustness to distractors, namely the non-speaking iden-
tities. We applied our multimodal LSTM to The Big
Bang Theory dataset and showed that our system out-
performs the state-of-the-art systems in speaker identi-
fication with lower false alarm rate and higher recogni-
tion accuracy.

Speaker identification is one of the most important building
blocks in many intelligent video processing systems such as
video conferencing, video summarization and video surveil-
lance, etc. It aims to localize the face of the speaker asso-
ciated with the ongoing voices. To achieve this task, col-
lective perception over both visual and auditory signals is
indispensable.

In the past few years, we observe the rapid advances
in face recognition and speech recognition respectively
by using Convolutional Neural Networks (CNN) (Schroff,
Kalenichenko, and Philbin 2015; Sun et al. 2014a) and Re-
current Neural Networks (RNN) (Graves, Mohamed, and
Hinton 2013; Hannun et al. 2014). Notwithstanding the re-
cent ground breaking results in processing facial and au-
ditory data, speaker identification (figure 1b) remains chal-
lenging for the following reasons. First, severe quality degra-
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dations (e.g. blur and occlusion) and unconstrained con-
tent variations (e.g. illumination and expression) in real-
life videos are not uncommon. These effects significantly
degrade the performance of many existing CNN based
methods. Second, the state-of-the-art convolutional network
based face model is trained with still images. Its applica-
tion in sequential data as well as its connection to recurrent
networks is less explored and it is not straightforward to ex-
tend CNN based methods to the multimodal learning setting.
Third, a practical system should be robust enough to reject
distractors, the faces of non-speaking persons indicated by
the red bounding boxes in figure 1b, which adds additional
challenges to the task.

Despite the rich potential of both CNN and RNN for facial
and auditory data, it is still unclear if these two networks can
be simultaneously and effectively adopted in the context of
multimodal learning. In this paper, we proposed a novel mul-
timodal Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber 1997), a specialized type of Recurrent Neu-
ral Network, to address this problem. We show that model-
ing temporal dependency for facial sequences by LSTM per-
forms much better than CNN based methods in terms of ro-
bustness to image degradations. More importantly, by shar-
ing weights not only across time steps but also across differ-
ent modalities, we can seamlessly unify both visual and au-
ditory modalities from the beginning of each sequence input,
which significantly improves the robustness to distractors.
This is because the cross-modal shared weights can learn
to capture temporal correlation between face and voice se-
quences. Note that our multimodal LSTM did not assume
the the random variables from different modal are correlated.
Instead, our multimodal LSTM is capable to learn such cor-
relation if there is any temporal correlation across different
modal in their sequences. In the speaker identification task,
we believe such temporal correlation exists in the respective
face and voice sequences. In this work, we assume the face
of the speaker appears in a video when they speak, and there
is only one speaker at the same time during the voice over.
Multiple speakers in the same video clip can be identified as
far as their speaks do not overlap.
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Figure 1: (a) Face sequence with different kinds of degrada-
tions and variations. Using the previous CNN methods can-
not recognize the speakers correctly. In contrast, the speak-
ers can be successfully recognized by our LSTM in both
single-modal and multimodal settings. (b) Our multimodal
LSTM is robust to both image degradation and distrac-
tors. Yellow bounding boxes are the speakers. Red bounding
boxes are the non-speakers, the distractors.

To our knowledge, our paper is the first attempt in model-
ing long-term dependencies over multimodal high-level fea-
tures which demonstrates robustness to both distractors and
image degradation. We applied our model to The Big Bang
Theory dataset and showed that our system outperformed
the state-of-the-art systems in recognition accuracy and with
lower false alarm rate.

The contributions of this paper are as follows.

• We proposed a novel LSTM architecture which enables
multimodal learning of sequence data in a unified model.
Both temporal dependency within each modality and tem-
poral correlation across modalities can be automatically
learned from data.

• We empirically showed that cross-modality weight shar-
ing in LSTM simultaneously improves the precision of
classification and the robustness to distractors.

• We successfully applied our method in a real-world mul-
timodal classification task and the resulting system out-
performed the state-of-the-art. The dataset and our imple-
mentations are both publicly available.

Related Work

Many recent studies have reported the success of using
deep CNN in face related tasks. The pioneering work by
(Taigman et al. 2014) proposed a very deep CNN architec-
ture together with an alignment technique to perform face
verification which achieved near human-level performance.
Inspired by GoogLeNet (Szegedy et al. 2015), Sun et al.
2014b used a very deep CNN network with multiple levels

of supervision, which surpassed human-level face verifica-
tion performance in the LFW dataset (Huang and Learned-
Miller 2013). The recent advance in this field (Schroff,
Kalenichenko, and Philbin 2015) pushed the performance
even further. In face detection, the state-of-the-art results
were also achieved by CNN based models (Yang et al. 2015;
Li et al. 2015). For other face related tasks such as face
landmark detection and face attribute recognition (Zhang
et al. 2015a; 2015b), CNN based models were also widely
adopted.

The revived interest on RNN is mainly attributed to its re-
cent success in many practical applications such as language
modeling (Kiros et al. 2015), speech recognition (Chorowski
et al. 2015; Graves, Mohamed, and Hinton 2013), machine
translation (Sutskever, Vinyals, and Le 2014; Jean et al.
2015), conversation modeling (Shang, Lu, and Li 2015) to
name a few. Among many variants of RNNs, LSTM is ar-
guably one of the most widely used model. LSTM is a
type of RNN in which the memory cells are carefully de-
signed to store useful information to model long term de-
pendency in sequential data (Hochreiter and Schmidhuber
1997). Other than supervised learning, LSTM is also used
in recent work in image generation (Theis and Bethge 2015;
Gregor et al. 2015), demonstrating its capability of modeling
statistical dependencies of imagery data.

In terms of the sequence learning problem across multiple
modalities, LSTM based models were actively used in re-
cent image caption generation studies (Donahue et al. 2015;
Karpathy and Li 2015; Xu et al. 2015). One common charac-
teristic of these techniques is that CNN was used to extract
the feature sequences in an image and LSTM was used to
generate the corresponding text sequences. Our paper is re-
lated to this group of studies in a way that more than one
modalities are involved in the learning process. However,
our goal is not to generate sequences in an alternative do-
main but to collectively learn useful knowledge from se-
quence data of multiple domains. Perhaps the most closely
related previous studies to our work are from (Srivastava and
Salakhutdinov 2012) and (Ngiam et al. 2011). Unlike these
papers, we focused on high-level multimodal learning which
explicitly models the temporal correlation of high-level fea-
tures rather than raw inputs between different modalities.
This not only provided a channel to effectively transfer the
recent success of deep CNN to the multimodal learning con-
text, the resulting efficient implementation can be directly
adopted in video processing as well. We also investigated the
robustness to distractors and input quality which is not con-
sidered in the previous studies. The closely related papers in
multimedia speaker identification are (Bauml, Tapaswi, and
Stiefelhagen 2013; Hu et al. 2015), and (Tapaswi, Bäuml,
and Stiefelhagen 2012). However, they did not explicitly
model face sequences and the interplay between face and
voice sequences.

LSTM - Single VS. Multi-Modal
Single Modal LSTM A regular LSTM network contains
a number of memory cells within which the multiplicative
gate units and the self-recurrent units are the two fundamen-
tal building blocks (Hochreiter and Schmidhuber 1997). For
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Figure 2: Memory Cell of Single-modal LSTM.

a brief revision, equations (1), (3) and (5) formally describe
the memory input, the forget gate and the recurrent units of a
regular LSTM in the forward pass. The input gate it and the
output gate ot in a regular LSTM resemble the forget gate in
the forward pass. Figure 2 shows a pictorial illustration of a
regular LSTM model.

gt = ϕ(Wxg ∗Xt +Whg ∗ ht−1 + bg), (1)
it = σ(Wxi ∗Xt +Whi ∗ ht−1 + bi), (2)
ft = σ(Wxf ∗Xt +Whf ∗ ht−1 + bf ), (3)
ot = σ(Wxo ∗Xt +Who ∗ ht−1 + bo), (4)
Ct = ft � Ct−1 + it � gt, (5)
yt = softmax(Wy ∗ ht). (6)

In (1) and (3), X is an input sequence where Xt is an el-
ement of the sequence at time t, ht−1 is the output of the
memory cell at time t− 1. Wxg,Wxf ,Whg,Whf are dis-
tinct weight matrices, and bg and bf are bias terms respec-
tively. ϕ and σ are nonlinear functions where ϕ denotes a
tanh function and σ denotes a sigmoid function. In (5), �
denotes an element-wise multiplication, it is the input gate
at the time step t, and Ct−1 is the memory unit at the time
step t−1. The memory unit at time step t is therefore gener-
ated by the collective gating of the input gate and the forget
gate. In equation (6), the memory cell output of the current
time step is multiplied by Wy and then transformed by the
softmax function to compute the model output yt at time t.

Generally speaking, the reason that LSTM is able to
model long-term dependencies in sequential data is because
Ct at each time step can selectively “remember” (store) or
“forget” (erase) past information which is modelled by the
multiplicative gating operation. More importantly, the strat-
egy to open or to close the gates is data driven which is au-
tomatically learned from training data. This information is
captured by the trainable weights W, including Whf ,Wxf

and so on, rather than hand-crafted. Because W are shared
across time steps, this endows LSTM the power to explicitly
model temporal relationships over the entire sequence.

Simple extensions of Single Modal LSTM In order to
deal with data from different domains, perhaps the most
straightforward method is to incorporate them into a sin-
gle network by concatenating the data directly to produce
a bigger X . However, this approach is problematic because
the multimodal property of the inputs are completely ig-
nored and the model does not have any explicit mechanism
to model the correlation across modalites. Though some cor-
relations may be weakly captured by the trained weights, a
critical weakness is that it is incapable to handle distractors.
In particular, when the face of a person A is combined with
the voice of a person B, the model is confused and would fail
to generate a meaningful label. Although it may be possible
to put all the distractors to a single class and let the model
to distinguish the speaker and the distractors automatically,
this method performs much worse than our solution in prac-
tice. The major difficulty is that distractors share too many
features with regular examples when organize the inputs in
this way.

Another solution is to treat data from different do-
mains completely independent. Namely, we can use multi-
ple LSTMs in parallel and then merge the output labels at
the highest layer using a voting mechanism. The advantage
of this approach is that the two separate memory units can
be trained to store useful information explicitly for each do-
main. But the weakness is that the interaction across modal-
ities only happens at the highest level during the labelling
process. The cross-model correlation is therefore very dif-
ficult, if not entirely impossible, to be encoded into the
weights through the learning process. Thus, the robustness
to distractors relies heavily on the voting stage where some
of the temporal correlations may have already been washed
out in the independent forward pass.

Multimodal LSTM Compared with the straightforward
solutions, we want to develop a new multimodal LSTM
which can explicitly model the long-term dependencies both
within the same modality and across modalities in a single
multimodal LSTM. Instead of merging input data at pre-
processing stage, or merging labels at post-processing stage,
our key idea is to selectively share weights across different
modalities during the forward pass. This is similar to the
weight sharing in time domain in regular LSTM, but we do
not share memory units for each modality within the mem-
ory cell. The modifications are illustrated in figure 3 and for-
mally expressed in the following equations.

gst = ϕ(Ws
xg ∗Xs

t +Whg ∗ hs
t−1 + bsg), s = 1 to n, (7)

ist = σ(Ws
xi ∗Xs

t +Whi ∗ hs
t−1 + bsi ), s = 1 to n, (8)

fs
t = σ(Ws

xf ∗Xs
t +Whf ∗ hs

t−1 + bsf ), s = 1 to n, (9)

ost = σ(Ws
xo ∗Xs

t +Who ∗ hs
t−1 + bso), s = 1 to n, (10)

Cs
t = fs

t � Cs
t−1 + ist � gst , s = 1 to n, (11)

hs
t = ost � ϕ(Cs

t ), s = 1 to n, (12)
yst = softmax(Wy ∗ hs

t ), s = 1 to n. (13)

Keeping the gating mechanism the same as the regular
LSTM, the equations from (7) to (13) describe a new cross-
modal weight sharing scheme in the memory cell. The super-
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Figure 3: Memory Cell of Multimodal LSTM.

script s indexes each modality in the input sequences. n is
the total number of modalities in input data, where n = 2 in
the speaker identification task. The model is general enough
to deal with the tasks with n > 2. Xs

t is the input sequence
at time t for modality s. Therefore, the weights with super-
script s (e.g. Ws

xg) are NOT shared across modalities but
only across time steps, the other weights without the super-
script (e.g. Whg) are shared across both modalities and time
steps. Specifically, the weights associated with the inputs
Xs

t are not shared across modalities. The reasons are two-
fold. First, we would like to learn a specialized mapping,
separately for each modality, from its input space to a new
space, where multimodal learning is ensured by the shared
weights. Second, specialized weights are preferred to recon-
cile the dimension difference between different modalities,
which avoids a complex implementation.

Along with the transform associated with Xs
t , the out-

put of the memory cell from the previous time step hs
t−1

also need to go through a transform in producing gst as well
as all other gates. The weights to perform this transform,
Whg,Whi,Whf and Who are shared across the modali-
ties. With these new weight definitions, the separately trans-
formed data by the four Ws is essentially interconnected
from gst all the way to the memory cell output hs

t .
The key insight is that while it is preferable for each

modality to have its own information flow because it enables
a more focused learning objective with which it is easier to
learn the long-term temporal dependency within the modal-
ity, we also make such objective correlated and essentially
constrained by what happens in the rest of the modalities.
More specifically, in forming the forget gate fs

t for s = 1,
it not only relates to hs=1

t−1 but also constrained by hs=2
t−1 , ... ,

hs=n
t−1 because Whf is shared among them. Provided that the

weights Whg,Whi,Whf and Who are also shared across
time steps, they play the vital role of capturing the temporal
correlation across different modalities.

Another important property of the proposed model is that
the memory unit C is NOT shared among modalities. The ra-
tionale is that the weights have the job to capture intramodal
as well as intermodal relationships, therefore placing them

in a single memory unit provides much less flexibility on
what can be stored or forgotten. Given all the gates are
formed in a multimodal fashion, the insight of such design
is that we should not hand-craft the decision on what in-
tramodal/intermodal relationships should be stored or for-
gotten but to give the model enough flexibility to learn it
from data. The bias terms are not shared across modalities
neither to increase this flexibility.

Likewise, the network output at each time step yst does
not relate to its own modality. Whether we should use Wy

or Ws
y to transform hs

t before sending the outputs to the
softmax function is not a straightforward decision. We resort
to our experiment to address this issue.

High-Level Feature VS. Raw Inputs One of the most im-
portant reasons why CNN is attractive is because it is an
end to end feature learning process. Previous studies (Raza-
vian et al. 2014; Oquab et al. 2014) have discovered that a
successful CNN for a classification task also produces high-
level features which are general enough to be used in a va-
riety of tasks. This finding inspired a few recent work on
image captioning (Xu et al. 2015; Karpathy and Li 2015)
where the high-level CNN features over an image sequence
were extracted, and a RNN is learned on top of the extracted
CNN features to perform more sophisticated tasks. Such ap-
proach is very effective to bridge the effort and success in
CNN to the field of sequence modeling. We would like to
extend this type of attempt to multimodal sequence learn-
ing.

Implementation In order to maximize the flexibility of
our investigation and efficiently work with different vari-
ants of network architecture and working environments (e.g.
Linux and Windows), we did not implement the multimodal
LSTM using any third-party deep learning packages. In-
stead, we used MATLAB and its GPU functions in the paral-
lel computing toolbox to build our own LSTM from scratch.
Our implementation is vectorized (Ren and Xu 2015) and
very efficient in training both single-modal and multimodal
LSTM described in this paper.

Experiments

Three experiments were carefully designed to test the ro-
bustness and the applicability of our proposed model.

Dataset overview We chose the TV-series The Big Bang
Theory (BBT) as our data source. It has been shown that the
speaker identification task over BBT is a very challenging
multimodal learning problem due to various kinds of image
degradation and the high variations on faces in the videos
(Bauml, Tapaswi, and Stiefelhagen 2013; Hu et al. 2015;
Tapaswi, Bäuml, and Stiefelhagen 2012). During data col-
lection, we ran face detection and extracted all the faces
in six episodes in the first season and another six episodes
in the second season of BBT. We manually annotated the
faces for the five leading characters, i.e. Sheldon, Leonard,
Howard, Raj and Penny. In total, we have more than 310,000
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consecutively annotated face images for the five charac-
ters. For audio data, we utilized the pre-annotated subti-
tles and only extracted the audio segments corresponding to
speeches. Data from the second season was used in training
and data from the first season was used in testing for all the
experiments reported below.

Feature extraction To ensure the usability of the result-
ing system, we adopted 0.5 second as the time window of
all the sequence data including both face and audio. For
feature extraction for faces, we adopted a CNN architec-
ture resembles the one in (Krizhevsky, Sutskever, and Hin-
ton 2012) and trained a classifier using the data reported in
the next section. The activations of the last fully connected
layer was used as the high-level feature for face. We also
run principle component analysis (PCA) on all the extracted
face features to reduce the dimensionality to the level com-
parable to audio features. By keeping 85% of the principle
components, we obtained a 53-dimension feature vector for
each face in the video. The video is 24 frames per second,
therefore there are 12 consecutive faces within each face se-
quence. For audio, we used the mel-frequency cepstral coef-
ficients (MFCC) features (Sahidullah and Saha 2012). Fol-
lowing (Hu et al. 2015) we extracted the 25d MFCC features
in a sliding window of 20 milliseconds with stride of 10 mil-
liseconds, thus gives us 25×49 MFCC features.

LSTM for Face Sequences

Our first task is to investigate the extend to which modeling
temporal dependency of high-level CNN features improves
the robustness to quality degradation and face variation. The
reasons that we would like to investigate this manner is two-
fold. First, though it was showed that RNN can be success-
fully used in speech recognition to improve the robustness
to noise (Graves, Mohamed, and Hinton 2013), it was not
clear from the literature whether similar principle applies for
high-level image features. On the other hand, we would like
to clearly measure the extend to which this approach works
for faces because this is an important cornerstone for the rest
of the experiments.

Data Only face data in the aforementioned data set was
used in the experiment. We randomly sampled 40,000 face
sequences from the training face images and another 40,000
face sequences in the test face images. Note that each se-
quence was extracted according to the temporal order in the
data, however, we did not guarantee the sequence are strictly
from one subtitle segment. This injected more variations in
the sequence.

Procedure and Results Three methods were compared in
this experiment. The first method was to use a CNN to di-
rectly classify each frame in the sequence. This CNN is the
same one as used in the feature extraction for our LSTM. In
our setting, the CNN will output 12 labels (12 probability
distributions) for each face sequence. Then the output prob-
abilities were averaged to compute the final label for this

Table 1: Face sequence classification accuracy of different
algorithms.

ALGORITHMS ACCURACY (%)
CNN 92.33
CNN+SVM 92.42
LSTM 95.61

sequence. The second method used the same CNN to ex-
tract features for each frame and reduced the dimensionality
using PCA as described in the last section. Then we used
a SVM with RBF kernel to classify each feature followed
by the same averaging processing before outputting the la-
bel. We used the single-modal LSTM (see figure 2) with one
hidden memory cell layer to train a sequential classifier. The
dimensionality of the hidden layer activation is 512. In our
setting, this LSTM contains 12 time steps with 12 identical
supervision signals (labels). During the testing, we only look
at the last output in the whole output sequence.

The results were reported in table 1. We can see that the
two CNN alone approaches delivered very similar results,
acknowledging the high representative powerful of the CNN
features reported in the previous studies. The accuracy of the
CNN+SVM approach slightly outperformed the CNN alone
approach. This is reasonable because SVM with RBF kernel
may classify the data better than the last layer of CNN. The
performance of LSTM is significantly higher than the other
two. By looking at the correctly classified face sequences
which were failed in the other two methods, we can see that
the LSTM is more robust to a number of image degradations
and variations. This is illustrated in figure 1a.

Comparison among Multimodal LSTMs

By the results from the first experiment, there is a reason to
believe that performing multimodal learning of face and au-
dio in temporal domain, if do it correctly, has the potential
to perform better in speaker identification task. Therefore,
the aim of the second experiment was to examine the extend
to which the multimodal LSTM benefits the speaker identi-
fication performance. Multiple aforementioned multimodal
LSTM solutions were tested and compared in this experi-
ment. See the result session for details.

Data In the training process, the face data from the pre-
vious experiment was used. One problem is that each face
sequence has only 12 time steps which is inconsistent with
the 49 time steps in audio sequences. To circumvent this in-
consistency, we simply duplicated faces evenly within the
49 time steps. The combinations of face sequences and au-
dio sequences for each identity were randomly paired by the
training program during the runtime to maximize the diver-
sity of the training set. For test set of this task, the combina-
tions were however pre-generated. We randomly generated
250,000 correctly paired combinations and 250,000 distrac-
tors (ill-paired combinations).
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Figure 4: Multimodal Long Short-Term Memory.

Procedure and Results During the comparison, one base-
line method and three alternative multimodal LSTM meth-
ods were used. In the baseline method, we separately trained
a single-modal LSTM only for audio using the same au-
dio data in this experiment. We carefully tuned many hy-
per parameters, making sure it performed as well as we can
achieve. We used it to classify the audio sequence. For face
sequence, we used the CNN+SVM approach from the last
experiment. Therefore, we shall have 49 proposals for au-
dio labels and another 49 labels for face label proposals. We
then looked at the number of labels agreed within these two
groups of labels. A threshold m is set to distinguish the sam-
ple between distractors and normal samples. For instance, if
m = 10 then the whole multimodal sequence will be clas-
sified to distractors if there are more than 10 label proposals
temporally disagreed with each other. Otherwise, the multi-
modal sequence will be classified by averaging the propos-
als. Note that this distractor rejection procedure was used in
all the compared methods in this experiment. The threshold
m is tuned to generate various dots in the ROC curve.

The first multimodal solution does not share any weights
across the two modality resulting in two separate single-
modal LSTMs. We called it “no cross-modal weight shar-
ing”. The second solution used the weight sharing scheme
introduced previously, but did not share Wy across the
modality. Formally, equation (13) should be re-written as

yst = softmax(Ws
y ∗ hs

t ), s = 1 to n. (14)

We called this solution “half cross-modal weight shar-
ing”. The third solution completely followed the equation
(7) to (13), named “full cross-modal weight sharing”.

As shown in figure 4, the performance difference is
clear. It was expected that the baseline method performed
less competitive. However, having isolated Wy for each
modality performed worse than the naive combination of
two single-model LSTMs. On the other hand, with the
full weight sharing, multimodal LSTM significantly outper-
forms all other methods.

Discussion The false alarm rate was largely increased by
not sharing Wy across modalities. The role of Wy is to
transform the memory cell outputs at each time step to the
desirable labels. By sharing this transform across the modal-
ity, we can generate more consistent labels for normally
paired samples and increased the robustness to distractors.
Our experiments showed that this behavior can be automat-
ically captured by the shared Wy .

Speaker Identification in The Big Bang Theory

The last experiment is to apply our method in real-life videos
and compare the performance with previous studies.

Data To compare with other speaker identification meth-
ods, we evaluated the winning multimodal LSTM from the
previous experiment in The Big Bang Theory S01E03, as in
(Bauml, Tapaswi, and Stiefelhagen 2013; Tapaswi, Bäuml,
and Stiefelhagen 2012; Hu et al. 2015).

Procedure and Results We applied our model to video
with the time window of 0.5 second and stride of 0.25 sec-
ond (e.g. 0s-0.5s, 0.25s-0.75s...). Unlike the controlled set-
ting in the second experiment, the number of distractors in
videos varies for each scene. In some cases, there are only
distractors in a scene. The evaluation criteria should be more
sophisticated. We followed (Hu et al. 2015) to calculate the
accuracy of speaker identification to ensure a fair compar-
ison. Specifically, speaker identification is considered suc-
cessful if a) the speaker is in the scene and the system cor-
rectly recognized him/her and correctly rejected all the dis-
tractors, or b) the speaker is not in the scene and the system
correctly rejected all the distractors in the scene.

Time window more than 0.5 second was also tested to en-
able a more systematic comparison. We achieved this by fur-
ther voting within this larger time window. For instance, by
having 50% overlapping of 0.5 second windows in the larger
window of 2.0 seconds, we will have seven 0.5 second-sized
small windows to vote for the final labels.

Our speaker identification results are reported in table 2.
We compared our method against the state-of-the-art sys-
tems. Note that, in (Bauml, Tapaswi, and Stiefelhagen 2013;
Tapaswi, Bäuml, and Stiefelhagen 2012), as both of them
examined the face tracks within the time window specified
by the subtitle/transcript segments, they can be viewed as
voting on the range of subtitle/transcript segments. As the
average time of subtitle/transcript segments in the evaluation
video is 2.5s, they are equivalent to our method when evalu-
ated in the voting window of such size. We applied the same
voting strategy as in (Hu et al. 2015) under different time
window setup. As can be seen from the results, our method
outperformed the previous works by a significant margin.

Conclusion

In this paper, we have introduced a new multimodal LSTM
and have applied it to the speaker identification task. The key
idea is to utilize the cross-modality weight sharing to capture
correlation of two or more temporally coherent modalities.
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Table 2: Speaker naming accuracy of different algorithms
(%) in terms of different voting time window (s).

Time window (s) 0.5 1.0 1.5 2.0 2.5 3.0
Bauml et al. 2013 - - - - 77.81 -
Tapaswi et al. 2012 - - - - 80.80 -
Hu et al. 2015 74.93 77.24 79.35 82.12 82.81 83.42
Ours 86.59 89.00 90.45 90.84 91.17 91.38

As demonstrated in our experiments, our proposed multi-
modal LSTM is robust against image degradation and dis-
tractors, and has outperformed state-of-the-art techniques in
speaker identification. To our knowledge, this is the first at-
tempt in modeling long-term dependencies over multimodal
high-level features. We believe our multimodal LSTM is
also useful to other applications not limited to the speaker
identification task.
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