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Abstract

Data classification and tag recommendation are both impor-
tant and challenging tasks in social media. These two tasks
are often considered independently and most efforts have
been made to tackle them separately. However, labels in data
classification and tags in tag recommendation are inherently
related. For example, a Youtube video annotated with NCAA,
stadium, pac12 is likely to be labeled as football, while a
video/image with the class label of coast is likely to be tagged
with beach, sea, water and sand. The existence of relations
between labels and tags motivates us to jointly perform clas-
sification and tag recommendation for social media data in
this paper. In particular, we provide a principled way to cap-
ture the relations between labels and tags, and propose a novel
framework CLARE, which fuses data CLAssification and tag
REcommendation into a coherent model. With experiments
on three social media datasets, we demonstrate that the pro-
posed framework CLARE achieves superior performance on
both tasks compared to the state-of-the-art methods.

Introduction

The increasing popularity of social media generates mas-
sive data at an unprecedented rate. For example, on av-
erage for every minute, 300 hours of video are uploaded
to YouTube 1, 54.9 million posts are shared on Reddit2
and 30 billion photos are posted on Instagram 3. Therefore
many techniques (or tasks) have been proposed to help or-
ganize and access social media data, among which classifi-
cation and tag recommendation are two popular ones. For
social media posts4, classification is to assign them class
labels (Kaplan and Haenlein 2010; Agichtein et al. 2008;
Li and Zaiane 2015), while tag recommendation aims to sug-
gest tags to annotate them automatically (Wang et al. 2016;
Sigurbjörnsson and Van Zwol 2008).

For each task of classification and tag recommendation,
we have witnessed a large body of literature in recent
years (Chen, Zheng, and Weinberger 2013; Sigurbjörnsson
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1https://www.youtube.com/yt/press/statistics.html
2www.redditblog.com/2014 12 01 archive.html
3https://instagram.com/press/
4In this paper, we use posts in a loose sense to cover blogs,

microblogs, images and videos.

and Van Zwol 2008; Wang et al. 2015a; Zhang et al. 2014;
Wang et al. 2015b; Lian et al. 2015). For social media posts,
labels in classification often capture their high-level con-
tent, while tags in tag recommendation are likely to de-
scribe their attributes such as objects in images, actions in
videos and keywords in blogs. Therefore classification and
tag recommendation are generally considered as two inde-
pendent tasks and the majority of efforts are made to study
them separately. However, these two tasks should be con-
nected since labels and tags of social media posts are of-
ten related(Wang, Blei, and Li 2009). For example, posts
annotated with NCAA, stadium, pac12 are likely to be la-
beled as football, while posts with the class label of presi-
dent campaign are likely to be tagged with election, polling,
democratic and republic. In other words, tags could pro-
vide evidence for class labels, which could in turn serve as
useful contextual information for tags. However, in (Wang,
Blei, and Li 2009), there is no explicit relations between
tags and labels, which results a relative poor performance on
each task. Aforementioned intuitions motivate us to develop
a more robust joint classification and tag recommendation
framework for social media posts.

In this paper, we investigate the problem of predicting
class labels and tags simultaneously for social media posts
by exploiting the relations between labels and tags. The
differences between traditional methods and the proposed
method are illustrated in Figure 1. As shown in Figure 1(a),
traditional methods treat these two problems separately –
classification uses data and its labels to learn a classifier (or
a label predictor), while tag recommendation uses data and
its tags to learn a tag predictor. In contrast, the proposed
framework performs classification and tag recommendation
jointly by leveraging data, labels, tags and relations between
labels and tags as demonstrated in Figure 1(b). Since the
current methods cannot take advantage of relations between
labels and tags, we proceed to study two fundamental prob-
lems: (1) how to capture relations between labels and tags
mathematically; and (2) how to make use of it for joint clas-
sification and tag recommendation. These two problems are
tackled by the proposed framework CLARE and our contri-
butions are summarized as follows:

• We provide a principled approach to model relations be-
tween labels and tags, which bridges the tasks of classifi-
cation and recommendation;
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(a) Traditional Methods (b) The Proposed Method

Figure 1: Differences between existing methods and the proposed method.

• We propose a novel joint framework CLARE, which can
predict class labels and tags for social media posts simul-
taneously and achieve better performance than the current
state-of-the-art methods on both tasks. It is worth noting
that the proposed algorithm explores the joint relations
between labels and tags, however, it do NOT require a test
example come with labels or tags to annotate one another;

• We conduct experiments on various social media datasets
to analyze and understand the inter-working of the pro-
posed framework CLARE.

The framework CLARE

Before detailing the proposed framework, we first introduce
notations we used in this paper. We use X ∈ R

n×d to denote
a set of social media posts where n is the number of posts
and d is the number of features. Note that there are various
ways to extract features to represent social media posts such
as raw features and features learned via deep learning tech-
niques (Jia et al. 2014). Let Yt ∈ R

n×c1 be the post-tag
matrix where c1 is the number of tags. Yt(i, j) = 1 if the
i-th post is annotated the j-th tag and Yt(i, j) = 0 other-
wise. Similarly we use Yc ∈ R

n×c2 to represent the class
label affiliation matrix where c2 is the number of class la-
bels. Yc(i, j) = 1 if the i-th post is labeled as the j-th class
and Yc(i, j) = 0 otherwise. In the following subsections,
we first introduce basic models for classification and tag rec-
ommendation, then detail the model component to capture
relations between labels and tags and finally discuss the pro-
posed framework.

Basic Models

For classification, we assume that there is a linear classifier
Wc ∈ R

d×c2 to map X to Yc as Yc = XWc. Wc can be
obtained by solving the following optimization problem:

min
Wc

Ω(Wc) + L(XWc,Yc) (1)

where L() is a loss function and Ω is a regularization penalty
to avoid overfitting. Popular choices of L include square,
logistic and hinge loss functions.

For tag recommendation, we also assume that there is a
linear function Wt ∈ R

d×c1 which captures the relation be-
tween X and Yt as Yt = XWt. Similarly the optimization
problem to learn Wt is:

min
Wt

Ω(Wt) + L(XWt,Yt) (2)

Combining Eq. (1) and Eq. (2), we can obtain a unified
basic model for classification and tag recommendation as:

min
W

Ω(W) + L(XW,Y) (3)

where Y = [Yt,Yc] ∈ R
n×(c1+c2) and W = [Wt,Wc] ∈

R
d×(c1+c2). Note that though we rewrite the basic models of

classification and tag recommendation into a unified formu-
lation, we still consider them as two independent tasks since
we do not capture any relations between these two tasks.

Capturing Relations between Labels and Tags

In the previous subsection, we defined a unified formulation
for classification and tag recommendation. Capturing rela-
tions between labels and tags can further pave a way for us
to develop a joint framework that enables simultaneous clas-
sification and tag recommendation.

The relations between labels and tags can be denoted as
a bipartite graph as shown in Figure 1(b). We assume that
B ∈ R

c2×c1 is the adjacency matrix of the graph where
B(i, j) = 1 if both the i-th label and the j-th tag co-occur
in the same posts and B(i, j) = 0 otherwise. Note that in
this paper, we do not consider the concurrence frequencies
of tags and labels and we would like to leave it as one future
work. From the bipartite graph, we can identify groups of
labels and tags that share similar properties such as seman-
tical meanings. A feature X(:, j) should be either relevant
or irrelevant to labels and tags in the same group. In W,
Wc(i, j) indicates the effect of the i-th feature on predict-
ing the j-th label; while Wt(i, k) denotes the impact of the
i-th feature on the k-th tag. Therefore we can impose con-
straints on W, which are derived from group information on
the bipartite graph, to capture relations between labels and
tags.
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In this paper, we use overlapped group lasso to extract
groups from the bipartite graph – for the i-th label, we con-
sider the label and tags that connect to that label in the bipar-
tite graph as a group, i.e., B(i, j) = 1. Note that a tag may
connect to several labels thus groups formed via the afore-
mentioned process have overlaps. Assume that G is the set
of groups we detect from the label-tag bipartite graph and we
propose to minimize the following term to capture relations
between labels and tags as:

d∑
i=1

∑
g∈G

αg

∥∥wi
g

∥∥
2

(4)

where αg is the confidence of the group g and wi
g is a vector

concatenating {W(i, j)}j∈g. For example, if g = {1, 5, 9},
wi

g = [W(i, 1),W(i, 5),W(i, 9)].
Next we discuss the inner workings of Eq. (4). Let us

check the terms in Eq. (4) related to a specific group g,∑d
i=1

∥∥wi
g

∥∥
2
, which is equal to adding a �1 norm on the vec-

tor g = [w1
g,w

2
g, . . . ,w

d
g ], i.e., ‖g‖1. That ensures a sparse

solution of g; in other words, some elements of g could be
zeros. If gi = 0 or ‖wi

g‖2 = 0, the effects of the i-th fea-
ture on both the label and tags in the group g are eliminated
simultaneously.

The Proposed Framework

Incorporating the component to capture relations between
labels and tags leads us to the following joint framework for
classification and tag recommendation:

min
W

Ω(W) + L(XW,Y) + α

d∑
i=1

∑
g∈G

αg

∥∥wi
g

∥∥
2

(5)

where the first and second terms are the basic models for
classification and tag recommendation; and the third term
captures the relations of these two tasks. The parameter α
controls the contribution of the third term.

In this paper, we choose square loss as the loss function
L and the ridge regularization as the regularization penalty
Ω. With these choices, the optimization problem for the pro-
posed framework CLARE can be rewritten as:

min
W

‖XW −Y‖2F + α

d∑
i=1

∑
g∈G

αg

∥∥wi
g

∥∥
2
+ β ‖W‖2F

(6)

An Optimization Algorithm for CLARE

Since the group structures are overlapped, directly optimiz-
ing the objective function is difficult. We propose to use al-
ternating directions method of multipliers (ADMM)(Boyd
et al. 2011; Yogatama and Smith 2014) to optimize it. The
central idea in ADMM is to break the optimization prob-
lem down into subproblems, each depending on a subset of
the dimensions of W. Specially, we introduce an auxiliary
variable V ∈ R

d×c2(c1+c2), and for each subproblem i, we
encode the group constrains to Vi which has the same di-
mension of the group size. Therefore the objective function
to be minimized by ADMM is:

min
W,V

‖XW −Y‖2F + β ‖W‖2F +

d∑

i=1

c2∑

j=1

αj ‖V(i, (c1 + c2) · (j − 1) + 1 : (c1 + c2) · j)‖2

s.t.V = WM
(7)

where αj means the confidence of the j-th group and M ∈
{0, 1}(c1+c2)×c2(c1+c2) is defined as: if the i-th tag connects
to the j-th label, then M(i, (c1 + c2)(j− 1)+ i) = 1, other-
wise it is zero. Here we do not assume any prior knowledge
available on the group weight. In the following, for simplic-
ity and without loss of generality, we assume αj = α, ∀j.

For brevity, we denote L(X,Y,W) = ‖XW −Y‖2F ,
Ωgroup(V) to be the group regularizer, and Ωreg to be the
F-norm regularizer. To apply ADMM, we use augmented
Lagrangian of Equation 7:

Ωgroup(V)+Ωreg(W) + L(X,Y,W)+

Tr(μT (V −WM)) +
ρ

2
‖V −WM‖2F

(8)
where μ is the Lagrange variables, and ρ > 0 is the parame-
ter that controls the quadratic penalty.

Updating W
If V and μ are fixed, the objective function is decoupled and
the constraints are independent of W. Thus we can optimize
W separately and ignore the terms without W, leading to
the following:

min
W

J(W) = Ωreg(W)− Tr(μTWM) + L(X,Y,W)+

ρ

2
‖V −WM‖2F

∼= min
W

Ωreg(W) + L(X,Y,W) +
ρ

2

∥∥∥∥WM− (V +
μ

ρ
)

∥∥∥∥
2

F

= Tr((XW −Y)T (XW −Y)) + βTr(WTW)+
ρ

2
Tr([WM− (V +

μ

ρ
)]T [WM− (V +

μ

ρ
)])

(9)
Taking the derivation of J(W) and setting it to zero, we

obtain the following form:

(
1

2
βI+XTX)W −XTY +W(

ρ

2
MMT +

1

2
βI)

− ρ

2
(V +

μ

ρ
)MT = 0

(10)

In Equation 10, solving W is intractable. On the other hand,
XTX+ 1

2βI and ρ
2MMT + 1

2βI are symmetric and positive
definite. Thus we employ eigen decomposition for each of
them:

1

2
βI+XTX = U1Λ1U

T
1

ρ

2
MMT +

1

2
βI = U2Λ2U

T
2

(11)

where U1, U2 are eigen vectors and Λ1, Λ2 are diago-
nal matrices with eigen values on the diagonal. Substituting
XTX+ 1

2βI and ρ
2MMT + 1

2βI in Eq 10:
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U1Λ1U
T
1 W −XTY +WU2Λ2U

T
2 − ρ

2
(V +

μ

ρ
)MT = 0

(12)
Multiplying UT

1 and U2 from left to right on both sides,
and letting W̃ = UT

1 WU2 and Q = UT
1 [X

TY + ρ
2 (V +

μ
ρ )M

T ]U2, Eq 12 becomes:

Λ1W̃ + W̃Λ2 = Q (13)

Then, we can obtain W̃ and W as:

W̃(s, l) =
Q(s, l)

λs
1 + λl

2 (14)

W = U1W̃UT
2 (15)

where λs
1 is the s-th eigen value of XTX + 1

2βI and λl
2 is

l-th eigen value of ρ
2MMT + 1

2βI.

Updating for V

If W and μ are fixed, the V can be obtained by the following
optimization problem:

min
V

Ωgroup(V) + Tr(μTV) +
ρ

2
‖V −WM‖2F

∼= min
V

Ωgroup(V) +
ρ

2

∥∥∥∥V − (WM− μ

ρ
)

∥∥∥∥2
F

+ const

(16)
When applied to the collection of groups for the parame-

ters, V,Ωgroup(V) no longer have overlapping groups. We
denote the j-th group in i-th row as Vi,j = V(i, (c1 + c2) ·
(j − 1) + 1 : (c1 + c2) · j), similarly for Mi,j , which is
defined as the columns of M corresponding to the groups.
Hence we can solve the problem separately for each row of
V within one group:

min
Vi,j

α ‖Vi,j‖2 +
ρ

2

∥∥∥∥Vi,j − ((WM)i,j − μi,j

ρ
)

∥∥∥∥F
2

(17)

Note that Eq 17 is the proximal operator (Yuan, Liu, and Ye
2011) of 1

ρ (V)i,j applied to (WM)i,j − μi,j

ρ . Let Zi,j =

(WM)i,j − μi,j

ρ . The solution by applying the proximal
operator used in non-overlapping group lasso to each sub-
vector is:

Vi,j = proxΩgroup,(Zi,j)

=

{
0 if ‖Zi,j‖2 � α

ρ
‖Zi,j‖2−α

ρ

‖Zi,j‖2
Zi,j otherwise.

(18)

Updating for μ

Updating μ is simple and is defined as μ = μ+ρ(V−WM).
With the updating rules, the proposed algorithm for

CLARE is summarized in Algorithm 1.

Algorithm 1 An Optimization Algorithm for CLARE

1: Input: {X,Y,M}α, β, μ
2: Output: c1 tags label and c2 data labels for each data

instance.
3: Initialization: W = 0
4: Precompute Eigen vectors U1,U2 eigen values

Λ1,Λ2

5: while Not Converge do
6: Calculate Q = UT

1 [X
TY + ρ

2 (V + μ
ρ )M

T ]U2

7: Compute W̃ use Eq 14 and update W = U1W̃UT
2

8: parfor i ← 1, d do (computed in parallel)
9: for j ← 1, c2 do

10: Vi,j = proxΩgroup,(Zi,j)
11: end for
12: end parfor
13: Update μ = μ+ ρ(V −WM)
14: end whileEnd
15: Using max-pooling for XW to predict tags and labels.

Convergence Analysis

Since the sub-problems are convex for W and V, respec-
tively, Algorithm 1 is guaranteed to converge because they
satisfy the two assumptions required by ADMM. The proof
of the convergence can be found in (Boyd et al. 2011).
Specially, Algorithm 1 has dual variable convergence. Our
empirical results show that our algorithm often converges
within 100 iterations for all the datasets we used for evalua-
tion.

Time Complexity Analysis

The main computation cost for W involves the eigen de-
composition on XTX+ 1

2βI and 1
2ρMMT + 1

2βI; and the
computation of Q = UT

1 [X
TY + ρ

2 (V + μ
ρ )M

T ]U2. The
time complexity for Eigen decomposition is O(d3). How-
ever, in Algorithm 1 the Eigen decomposition is only com-
puted once before the loop. The computation cost for Q is
O(nd2) due to the sparsity of M. The computation of V
depends on the proximal method within each group. Since
there are c2 groups which have the group size c1 + c2 for
each feature dimension, the total computation cost for V is
O(dc2(c1 + c2)). It is worth noting that V can be computed
in parallel for each feature dimension. Similarly, the com-
putational cost of μ depends on the computation of WM,
which is O(dc21).

Experimental Analysis

In this section, we conduct experiments to evaluate the effec-
tiveness of CLARE. After introducing datasets and experi-
mental settings, we compare CLARE with the state-of-the
art methods of tag recommendation and classification. Fur-
ther experiments are conducted to investigate the effects of
important parameters in CLARE.

Experiments Settings

The experiments are conducted on 3 publicly available so-
cial media datasets.
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USAA-YouTube dataset (Fu et al. 2014): All 1500
videos in the dataset are unstructured and unedited which
are either taken by digital camera or mobile phones and they
are originally uploaded on the social media website Youtube.
It has 8 class labels with totally 69 manually annotated tags.
These eight classes are birthday party, graduation party, mu-
sic performance, non-music performance, parade, wedding
ceremony, wedding dance and wedding reception. The size
of tag vocabulary is 69 and example tags are: dancing, eat-
ing, fast-moving, garden, living room, conversation, presen-
tation, bride, flag, and candles. We use three types of features
including: scale invariant feature transform (SIFT), Mel-
frequency cepstral coefficients (MFCC), and spatial tempo-
ral interest points (STIP).

NUS-Flickr dataset (Chua et al. 2009): It contains
269,648 images crawled from Flickr. The images are linked
to 5,000 different user tags, which are annotated by users
registered on Flickr. Beyond these images and user tags, the
images are labeled with 81 concepts. We use the most com-
mon 1k tags in our experiment. We also filter out those im-
ages with less than 7 tags, resulting in 110k images. 500-
dimensional visual features are extracted using a bag-of
visual-word model with local SIFT descriptor.

Shoe-Zappo dataset (Yu and Grauman 2014): It is a large
shoe dataset consisting of 50,025 catalog images collected
from Zappos.com. The images are divided into 4 major cate-
gories: shoes, sandals, slippers, and boots. The tags are func-
tional types and individual brands such as high-heel, oxford,
leather, lace up, and pointed toe. The number of tags is 147
and we extract LAB color features and GIST features (Oliva
and Torralba ) as (Yu and Grauman 2014).

We use accuracy as the metric to assess classification per-
formance since all datasets are relatively balanced. To eval-
uate the performance of tag recommendation, we rank all
tags based on their relevant scores and return the top K
ranked tags. We use the average precision AP@K as the
evaluation metric which has been widely used in the liter-
ature (Chen, Zheng, and Weinberger 2013; Lin et al. 2013;
Wang, Blei, and Li 2009). Although, the proposed model
can incorporate any advanced features, e.g., CNN feature,
we use the features provided by (Fu et al. 2014),(Chua et
al. 2009), and (Yu and Grauman 2014), respectively, for fair
comparison. 5.

Performance Comparison

We compare CLARE with the following representative al-
gorithms:

• SVM (Chang and Lin 2011): It uses the state of the art
classifier SVM for classification with linear kernel; We
also apply it to tag prediction by considering tags as a
kind of labels;

• GLasso (Yuan and Lin 2006): The original framework is
to handle high-dimensional and multi-class data. To ex-
tend it for joint classification and tag recommendation, we

5If we use advanced features, it would be hard to tell whether
the performance gain comes from the feature or the model we pro-
posed.

also consider tags as a kind of labels and apply GLasso to
learn the mapping of features to labels and tags. Note that
it does not make use of the label-tag bipartite graph. We
use the implementation in (Liu et al. 2009);

• sLDA (Wang, Blei, and Li 2009): It is a joint framework
based on topic models, which learns both class labels and
annotations given latent topics;

• LS (Ji et al. 2008): A multi label classification method that
exploits the label correlation information. To apply LS for
joint classification and tag recommendation, we consider
tags as a kind of labels and use tag and label relations to
replace the label correlation in the original model; and

• FT (Chen, Zheng, and Weinberger 2013): It is one of the
state-of-the art annotation method which is based on lin-
ear mapping and co-regularized joint optimization. To ap-
ply it for classification, we consider labels as tags to an-
notate; and

• RD: It predicts labels and tags by randomly guessing.
For all baseline methods with parameters, we use cross-

validation to determine their values. Each time we choose
60% of a dataset as training data and the remaining as test-
ing. Since only sLDA and GLasso are the baselines for joint
label prediction, we present the result separately for demon-
stration.

From the tables, we make the following observations:
• The proposed method considers classification and tag

recommendation jointly in a bipartite graph structure
tends to outperform the methods which treat them sepa-
rately. These results support that (1) tags can provide evi-
dence for the classification; especially for the NUS-Flickr
dataset that contains 81 label classes, those methods uti-
lize information from tags significantly improve the clas-
sification performance. (2) The performance of tag rec-
ommendation AP@K indicates that the class label con-
tains important information for tag recommendation;

• The proposed method with model components to cap-
ture relations between labels and tags outperform those
without. For example, compared to GLasso and sLDA,
the proposed framework, modeling the label-tag bipar-
tite graph, gain remarkable performance improvement for
both classification and tag recommendation; and

• Most of the time, the proposed framework CLARE per-
forms the best among all the baselines, which demon-
strates the effectiveness of the proposed algorithm. There
are two major reasons. First, CLARE jointly performs
classification and recommendation. Second, CLARE cap-
tures relations between labels and tags by extracting
group information from the label-tag bipartite group,
which works as the bridge between classification and tag
recommendation. More details about the effect of the re-
lations between labels and tags on CLARE will be dis-
cussed in the following subsection.

Parameter Analysis

There are two important parameters for the proposed frame-
work CLARE – α controlling the contribution from the
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Table 1: Performance comparison in terms of classification.

Method USAA-YouTube(8 class) NUS-Flickr (81 class) Shoe-Zappo (4 class)
SVM 36.15% 18.92% 75.57 %

GLasso 38.25% 27.51% 76.31%
sLDA 32.28% 26.12% 74.32%

LS 39.39% 34.39% 86.03%
FT 39.26% 35.67% 85.39%
RD 12.49% 1.23 % 25.01%

CLARE 53.07% 40.32% 89.39%

Table 2: Performance comparison in terms of tag recommendation.

Method USAA-YouTube (69 tags) NUS-Flikr (1k tags) Shoe-Zappo (147 tags)
AP@3 AP@5 AP@10 AP@3 AP@5 AP@10 AP@3 AP@5 AP@10

SVM 58.45% 53.53% 48.95% 18.71% 13.12% 10.92% 52.29% 46.17% 38.07%
GLasso 59.32% 55.12% 47.31% 17.50% 13.43% 10.11% 58.32% 49.22% 42.31%
sLDA 37.32% 31.12% 17.31% 18.95% 14.26% 11.78% 61.32% 57.12% 49.31%

LS 61.96% 57.77 % 50.94% 22.69% % 17.21% 13.35% 73.56% 66.42% 61.49%
FT 62.42% 57.52% 51.78% 21.35% 16.77% 13.43% 69.01% 60.77% 57.85%
RD 1.44% 1.43% 1.44% 0.10% 0.11% 0.11% 0.67% 0.67% 0.68%

CLARE 77.10% 71.08% 62.95% 21.22% 16.18% 13.94% 76.74% 69.47% 63.71%

model component of capturing relations between labels and
tags and β controlling the regularization penalty. In this sub-
section, we investigate the impact of these parameters on the
performance of the proposed framework.

To study the impact of α, we fix
β = 0.1 and vary the value of α as
{10−6, 0.01, 0.1, 0.2, 0.3, 0.5, 0.7, 1.5, 2, 10, 100}. The
performance variance w.r.t α is shown in Figure 2. Due to
the page limitation, we only show results from Shoe-Zappo
since we have similar observations on other datasets. In
general, with the increase of α, the CLARE performance
increases significantly first, reaches its peak and then drops
with larger values. Especially, when α increases from 10−6

to 0.01, the CLARE performance increases almost 8%,
which suggests the importance of the model component
to capture relations between labels and tags. When α is
in [0.3, 1], the performance is relatively stable. When α
increases from 10 to 100, the performance decreases dra-
matically. Indicating the model component will dominate
the learning process and the learned parameters could
overfit.

Figure 2: Performance variance w.r.t. α. Note that the Y axis
is the performance and X axis is the value of α.

To study the impact of β, we vary the values of β as

Figure 3: Performance variance w.r.t. β. Note that the Y axis
denotes the performance and X axis is the value of β.

{10−6, 10−4, 10−2, 10−1, 10, 102, 104, 106, } and fix α =
0.3. The performance of CLARE with the changes of β is
demonstrated in Figure 3. When β is small, CLAER may
overfit, which leads to poor performance. When β becomes
larger, the learned W will have larger amount of shrinkage
and values in W become more robust to collinearity. How-
ever, if the β becomes extremely large, the regularization
penalty dominates the learning process and elements of W
tend to be zeros, which results in poor performance as well.

Conclusion and Future Work

Due to the relations between labels and tags, we study
the problem of joint classification and tag recommenda-
tion in this paper. We extract group information from the
label-tag bipartite graph as constraints to bridge classifica-
tion and tag recommendation and propose a novel frame-
work CLARE that performs classification and tag recom-
mendation simultaneously. Experiments on three social me-
dia datasets demonstrate that: (1) joint classification and rec-
ommendation can improve performance for each task; and
(2) the importance to consider relations between tags and
labels. In the future, we will include robust community de-
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tection to extract the group in order to avoid noise tags.
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