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Abstract

In real world social networks, there are multiple cascades
which are rarely independent. They usually compete or co-
operate with each other. Motivated by the reinforcement the-
ory in sociology we leverage the fact that adoption of a user
to any behavior is modeled by the aggregation of behaviors
of its neighbors. We use a multidimensional marked Hawkes
process to model users product adoption and consequently
spread of cascades in social networks. The resulting inference
problem is proved to be convex and is solved in parallel by us-
ing the barrier method. The advantage of the proposed model
is twofold; it models correlated cascades and also learns the
latent diffusion network. Experimental results on synthetic
and two real datasets gathered from Twitter, URL shortening
and music streaming services, illustrate the superior perfor-
mance of the proposed model over the alternatives.

Introduction

Social networks and virtual communities play a key role in
today’s life. People share their thoughts, beliefs, opinions,
news, and even their locations in social networks and engage
in social interactions by commenting, liking, mentioning
and following each other. This virtual world is an ideal place
for studying social behaviors and spread of cultural norms
(Vespignani 2012), contagion of diseases (Barabasi 2015),
advertising and marketing (Valera and Rodriguez 2015) and
estimating the culprit in malicious diffusions (Farajtabar et
al. 2015a). Among them, the study of information diffusion
or more generally dynamics on the network is of crucial im-
portance and can be used in many applications. The trace of
information diffusion, virus or infection spread, rumor prop-
agation, and product adoption is usually called cascades.

In conventional studies of diffusion networks, individual
cascades are mostly considered in isolation, i.e., independent
of each other (Rodriguez et al. 2015). However in realistic
situations, they are rarely independent and can be compet-
itive, when a URL shortening service become popular the
others receive less attention; or cooperative, when usage of
Google Play Music correlates with that of Youtube due to,
for example, simultaneous arrival of new albums (Fig. 1).

Modeling multiple cascades which are correlated to each
other is a challenging problem. Considerable work have
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Figure 1: Visualization of correlated cascading behavior in
real data. (left) Tweets with terms google and youtube
are synchronized most of the time. (right) different URL
shortening services; tiny.ly and tinyurl are cooperat-
ing while migre.me andj.mp are competing.

done to extend basic diffusion models to competitive case
(He et al. 2012; Pathak, Banerjee, and Srivastava 2010;
Lu, Chen, and Lakshmanan 2015). Meyer et al. proposed
a probabilistic model for diffusion of competitive or cooper-
ative contagions (Myers and Leskovec 2012). They estimate
the probability of a user being infected given a sequence
of previously observed contagions. But the main drawback
of these models is that they are all discrete time, which
limits the flexibility of model. Valera in (Valera and Ro-
driguez 2015) proposed a continuous time method for mod-
eling competing products but incapable of learning the latent
diffusion network and prone to overfitting.

Inspired by the sociological evidence in social science
about users’ behavior, and the success of the recurrent point
processes in modeling temporal event histories, we propose
a data-driven continuous time method, which can jointly
model the spread of multiple correlated behaviors (informa-
tion, ideas, memes), and learn the latent diffusion network.
Intuitively, the rate (or intensity) that a user adopts a be-
havior is considered as the weighted sum of those of her
neighbors. The more your friends adopt a behavior the more
you are excited to adopt it. This users’ behavior adoption
intensity is modeled by a special stochastic point process,
called Hawkes process (Hawkes 1971). It is well suited for
modeling temporal events with self-exciting property (Zhou,
Zha, and Song 2013; Blundell, Beck, and Heller 2012;
Farajtabar et al. 2014; Xu, Farajtabar, and Zha 2016).

Finally, we validate the proposed method on synthetic and
two real datasets. First, using synthetic data generated ran-
domly we’ve studied how effectively we can recover the la-
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tent diffusion network parameters. We have also highlighted
the correlated behavior versus the independent and the com-
petitive versus cooperative cascades using synthetic data.
Next, we move forward to real data and show the correlated
behavior in the real dataset. Furthermore, with parameters
learned from training data, we generate future events and
compare it with real held-out test data and show that our
framework can model the activities in social network better
than the alternatives. Our contributions are as follows:
• Modeling the users’ behavior adoption by using a multidi-

mensional marked Hawkes process and consequently, the
spread of multiple correlated cascades in social networks.

• Proposing a convex optimization formulation to learn the
latent diffusion network and model parameters which is
solved in parallel by using the barrier method.

• Curating a compelling dataset on streaming music ser-
vices using Twitter API, from tweets of 30,000 active
users during one month in 2015 year.

Prior Works

The spread of information is often modeled as a dynami-
cal process over networks (Vespignani 2012) and its analy-
sis has attracted significant attention in recent years. These
studies can be categorized into three groups.

Early methods studied the information diffusion in contin-
uous time and without any network structure. They are used
mainly to analyze biological contagions (Barabasi 2015).
The dynamical process is described by a differential equa-
tion which models the number of population in different
stages of a disease (Porter and Gleeson 2014). Heteroge-
neous mean-field and particle-network frameworks are pro-
posed to remove the homogeneous population assumption
and incorporate the network structure (Vespignani 2012).

Another line of work which is discrete time and considers
the network structure, stemmed from sociological theories
about influence spread. Typically they assumed that nodes
have two states (active, inactive), and are progressive (active
nodes can’t become inactive). Linear Threshold and Inde-
pendent Cascade are two simple and widely studied mod-
els of social contagion (Hodas and Lerman 2014). In Linear
Threshold, a node becomes active when the weighted sum of
its active neighbors is higher than a prespecified threshold.
In Independent Cascade, each infected node has an indepen-
dent probability to activate its neighbors.

The third category is continuous time and considers
the network structure. Rodriguez et al. proposed a model
in (Rodriguez, Balduzzi, and Schölkopf 2011; Rodriguez,
Leskovec, and Schölkopf 2013a) for information diffusion
and latent influence network inference using survival the-
ory. They extended it to dynamic networks in (Rodriguez,
Leskovec, and Schölkopf 2013b). The problem of network
inference from a set of cascades is theoretically investi-
gated in (Daneshmand et al. 2014). In (Iwata, Shah, and
Ghahramani 2013), the superposition property of the Pois-
son process is used to model the effect of users’ shar-
ing activities on others in online communities, and conse-
quently learning latent influence network. Also in (Linder-
man and Adams 2014), the superposition property is used in

a fully Bayesian method with parallel inference. The scal-
able influence estimation is addressed in (Du et al. 2013)
by proposing a nearly linear randomized algorithm. The
problem of activity shaping, driving population toward spe-
cific target state is investigated in (Farajtabar et al. 2014;
2016). However, in all of the above models, cascades of
adoption/propagation are independent which is usually not
true in the real world.

Closely related to the our work, authors in (Farajtabar et
al. 2015b) proposed a probabilistic framework to model the
evolution of information diffusion and network evolution.
However, in their work cascades are still evolving indepen-
dently. Only recently (Valera and Rodriguez 2015) proposed
an algorithm for multiple correlated cascades which mod-
els the intensity of user-products by a Hawkes process. To
model both competition and cooperation it allows the pa-
rameters of the intensity function to be negative, and it may
results in negative intensity in some cases. Also, it can’t
learn the latent diffusion network. But we propose a nonlin-
ear user-product intensity using a marked Hawkes process,
which has better performance.

Proposed Method

Hawkes Process Background

A point process is a stochastic process with realizations that
are discrete points in time, {t1, t2, . . . , tn}. According to
the Kolmogorov extension theorem (Daley and Vere-Jones
2002), a stochastic process, can be defined using its finite-
dimensional distributions. To describe the finite-dimensional
distributions f(t1, t2, . . . , tn), we use the chain rule of prob-
ability: f(t1, t2, · · · , tn) =

∏
i f(ti|t1:i−1). Therefore, it

suffices to describe only the conditionals, which are abbre-
viated to f(tn|Hn) or simply f∗(t). Here, Hn is the history
of events before the nth one. A closely related notion is con-
ditional intensity or rate λ∗(t) defined as:

λ∗(t) = f∗(t)/[1− F ∗(t)], (1)

where F (·) is the cdf of f(·). The relation of λ∗(t) and f∗(t)
can be expressed in the other direction as in (Aalen, Borgan,
and Gjessing 2008):

f∗(t) = λ∗(t) exp
(
−
∫ t

tn

λ∗(s)ds
)
.

Another basic concept is the survival function, S∗(t) =
1− F ∗(t), the probability that no event occurs after the last
event in tn till t. To understand the intensity more intuitively
we incorporate the alternative way of describing a point pro-
cess, the counting process N associated to λ∗(t). Let N(t, s]
denotes the number of events in interval (t, s]. Multiplying
both sides of (1) by dt results in:

λ∗(t)dt =
Pr {N(tn, t] = 0, N(t, t+ dt] = 1|Hn}

Pr {N(tn, t) = 0|Hn}
= Pr {N(t, t+ dt] = 1|Hn, N(tn, t] = 0}
= Pr {N(dt) = 1|Ht−} ≈ E [N(dt)|Ht− ]

where N(dt) := N(t, t + dt] and Ht− is the history of all
events up to t. Different point processes can be constructed
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by specifying f∗(t) or equivalently λ∗(t). In the Hawkes
process the intensity is dependent on the history:

λ∗(t) = μ+

∫ t

−∞
g(t− s)N(ds) = μ+

|Ht− |∑
i=1

g(t− ti)

where μ is the base intensity and g(t) is the kernel which is
usually exponentially decaying to diminish the effect of past
events. Generally, in multidimensional Hawkes process:

λ∗(t) = μ+

∫ t

−∞
Ag(t− s)N(ds),

where λ,μ,N are vectors and A = [αij ] is a matrix of
mutual-excitation kernels. αij parameterizes the influence
of user j to user i. The intensity function can be also gener-
alized to the marked case (Hawkes 1971), which a mark p,
often a subset of N or R, is associated with each event.

λ∗(t, p) = λ∗(t)f∗(p|t),
where f∗(p|t) is the conditional mark density function. In
the sequel, we omit the star superscript of intensity for no-
tational simplicity. The mutually-exciting property of the
Haweks process makes it a common modeling tool in appli-
cations like seismology, epidemiology, reliability, and social
network analysis (Farajtabar et al. 2015a).

Correlated Cascades Model

Suppose we are given a directed network G = (V, E), with
|V| = N nodes and M behaviors (cascades). Nodes of the
network can adopt at most one of them in any time. We de-
note the user behavior adoption by D = {(ti, ui, pi)}Ki=1,
where each triple (ti, ui, pi) means that user ui has adopted
behavior pi at time ti. We can also define the observations
related to user v and behavior (product) q up to time s, as
Dq

v(s) = {(ti, ui, pi) ∈ D|ti < s, ui = v, pi = q}, and de-
fine Dv(s), Dq(s) and D(s) in a similar way.

Now the question is, how users in a network decide to
adopt a behavior? This is an important question in sociology
which has been investigated for decades (Granovetter 1973).
According to social reinforcement theory, the behavior of
a user is influenced by her friends (McAdam and Paulsen
1993). Moreover, each user has behavioral biases (Farajtabar
et al. 2014; 2016). These two mechanisms can be well mod-
eled by the Hawkes process. The mutually-exciting property
of the Hawkes process can model the social reinforcement
and the base rate can model the bias. Also, the time decay-
ing kernel reflects the diminishing effect of past events. So,
we model the behavior adoption intensity of the user u by:

λu(t) = μu︸︷︷︸
bias

+

|D(t)|∑
i=1

αuiu e−(t−ti)

︸ ︷︷ ︸
social reinforcement

(2)

where μu is the base intensity of user u or bias, αji, an
element of the latent diffusion network, is the influence of
user j on i, and the summation is over the elements of
the set D(t). The type of adopted behavior can be seen as

the mark of the Hawkes process. Therefore, the intensity
of user u to adopt product or behavior p is modeled by:
λu(t, p) = λu(t)fu(p|t), where fu(p|t) is the probability
that user u adopts behavior p at time t given history D(t).
To model the mark probability we define the tendency of
user u to adopt behavior p as:

gpu(t) = μp
u +

|Dp(t)|∑
i=1

αuiu e−(t−ti). (3)

Intuitively when a user decides to select a behavior she picks
the one with maximum tendency among the different behav-
iors, argmaxp g

p
u(t). The probabilistic version of the max

function is the soft-max function, so we propose

fu(p|t) = exp(βgpu(t))∑
q exp(βg

q
u(t))

, (4)

as the nonlinear mark function, where, hyperparameter β
tunes the mark function. In the fully competitive case where
β → ∞, it converges to deterministic max function, and in
the fully cooperative where β → 0, it converges to the uni-
form density function. In the case of linear mark function:

fu(p|t) = gpu(t)∑
q g

q
u(t)

(5)

the user behavior intensity simplifies to λu(t, p) = gpu(t). By
decomposing the model likelihood to the product of cascade
likelihoods, we can show that it reduces to the independent
cascade model (Rodriguez, Balduzzi, and Schölkopf 2011).
To find the observation likelihood of the proposed model we
use the following proposition.
Proposition 1. For u = 1, 2, . . . , N , let Nu be a multi-
dimensional marked point process on [0, T ] with associ-
ated intensity λu(t), and mark density fu(p|t). Let D =
{(ti, ui, pi)}Ki=1 be a time, user and mark realization of
the process over [0, T ]. Then the likelihood of D the mul-
tidimensional Hawkes process model with mutually-exciting
parameter A = [αij ] and baseline parameter μ = [μp

i ],
(i, j = 1, 2, · · · , N, p = 1, 2, · · · ,M) is:

L(θ|D) =

[
K∏
i=1

λui(ti)fui(pi|ti)
]
exp

(
−
∫ T

0

N∑
u=1

λu(s)ds

)

where θ = (μ,A) represents the model parameters.
Proof. Using chain rule, the probability of observation is:

L(θ|D) := f(D|θ) =
K∏
i=1

f ((ti, ui, pi)|D(ti))

N∏
u=1

S(T, u)

where t0 = 0 and S(T, u) is the probability that the process
λu(t) survive after its last event:

S(T, u) = exp

(
−
∫ T

t|Du|
λu(s)ds

)

by decomposing the probability of observation we have:

f(D|θ) =
N∏

u=1

|Du|∏
i=1

f ((ti, ui, pi)|D(ti))

N∏
u=1

S(T, u)
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=

N∏
u=1

|Du|∏
i=1

λu(ti) exp

(
−
∫ ti

ti−1

λu(s)ds

)
fu(pi|ti)

N∏
u=1

S(T, u)

=

N∏
u=1

exp

(
−
∫ t|Du|

0

λu(s)ds

) |Du|∏
i=1

fu(pi|ti)λu(ti)

N∏
u=1

S(T, u)

=

N∏
u=1

exp

(
−
∫ t|Du|

0

λu(s)ds

)
S(T, u)

|Du|∏
i=1

fu(pi|ti)λu(ti)

=

N∏
u=1

exp

(
−
∫ T

0

λu(s)ds

) |Du|∏
i=1

fu(pi|ti)λu(ti)

=

N∏
u=1

exp

(
−
∫ T

0

λu(s)ds

) N∏
u=1

|Du|∏
i=1

fu(pi|ti)λu(ti) �

According to this proposition and relations (2)-(4), the log-
likelihood of the model can be written as:

logL(θ|D) =

|D|∑
i=1

log λui
(ti)−

N∑
u=1

∫ T

0

λu(s)ds

+

|D|∑
i=1

βgpi
ui
(ti)−

|D|∑
i=1

log

(
M∑
q=1

exp
(
βgqui

(ti)
))

where β is the hyper-parameter. We can decompose the sum-
mation over ti ∈ D into the summation over u and ti ∈ Du,
which shows that the log-likelihood can be decomposed to
sum of users log-likelihood:

logL(θ|D) =

N∑
u=1

logL(θu|Du)

where the parameters of user u, θu is composed of Au =
[αu·] and μu = [μ·u]. Moreover the user’s log-likelihood is:

logL(θu|Du) =

|Du|∑
i=1

log λu(ti)−
∫ T

0

λu(s)ds

+

|Du|∑
i=1

βgpi
u (ti)−

|Du|∑
i=1

log

(
M∑
q=1

exp (βgqu(ti))

)
.

Lemma 1. Function f : R
n → R with domf = R

n is
convex.

f(x) = log
∑
i

exp(aTi x+ bi)

Proof. Let A = [a1, a2, · · · , an]T , b = [b1, b2, · · · , bn]T
and zi = exp(aTi x+ bi), using chain rule we have:

∇2f(x) = AT

(
1

1T z
diag(z)− 1

(1T z)2
zzT

)
A

Now we must show that for all u we have uT∇2f(x)u ≥
0, or equivalently for all v, where v = Au we have:

vT
(

1

1T z
diag(z)− 1

(1T z)2
zzT

)
v ≥ 0∑

i v
2
i zi∑

i zi
−
(∑

i vizi∑
i zi

)2

≥ 0

which holds according to Cauchy-Schwarz inequality.
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Figure 2: Performance of the parameter learning on syn-
thetic data.

We continue with the following proposition which estab-
lishes the tractability of parameter learning and allows us to
identify the model efficiently.

Proposition 2. The negative of the log-likelihood function,
− logL(θu|Du) is convex.

Proof. The first term is the negative log of a linear function
which is convex, according to composition rules. The sec-
ond and third term are linear, and the fourth term is convex
according to lemma 1.

Now to find the model parameters we can use the maxi-
mum likelihood estimation:

minimize
θ

− logL(θu|Du) subject to θ ≥ 0

on each user, which has unique solution according to propo-
sition 2 and can be solved in parallel for different users.

Experiments1

Synthetic Data

We first explain how to generate the synthetic data, then in-
troduce the evaluation criteria. Afterward, we describe the
setting for learning the model parameters. Finally, the per-
formance of the algorithm and an experiment that is de-
signed to show the prosperity of the correlated model with
respect to its independent version is investigated.

Dataset Preparation. We generated a random network
with N = 50 and M = 5. The parameters of the mod-
els were drawn randomly from uniform distribution μi,p ∼
U(0, 0.1) and αi,j ∼ U(0, 0.01). Also, we set β = 1.
Then we sampled 20,000 train events and 2000 test events
from the proposed model using the thinning method (Ogata
1981). The convex optimization is solved in parallel using
the Barrier method which transforms a constrained convex
optimization to an unconstrained one.

Evaluation Criteria. We evaluated the accuracy of learn-
ing the model parameters using MSE, the average squared er-
ror between the estimated and true parameters; MAE, the av-
eraged relative error between the estimated and true param-
eters; and AvgPredLogLik, the negative log-likelihood
over unseen test events, divided by the number of test events.

Parameter Learning. We trained 10 models, on 10% to
100% of the synthetic training data. In Fig 2, we have eval-
uated the parameter learning and reported three accuracy
measures . To be compatible with the real dataset, we have

1Implementation codes and datasets can be found at https:
//github.com/alikhodadadi/C4.
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Figure 3: Intensity and market share for independent and different correlated models. In correlated models, after incentivization
in time 100, the product usage of the other products also change, whereas in independent models they remain intact.

plotted the measures with respect to the average number of
events per user. As expected, with the increase in number
of training events the accuracy of recovering the parameters
improves.

Correlated Cascades. We also designed an experiment
to compare correlated cascade with independent cascade
model. We form the independent cascade model using the
linear mark (Eq. 5), instead of the exponential mark (Eq. 4).
Then randomly generate 4 similar models with the same μi,p

and αi,j , where αi,j ∼ U(0, 0.1), and μi,p for all users were
generated with small noise around 0.2, 0.5 and 0.3 for prod-
uct p = 1, 2 and 3, respectively. The number of nodes and
products are also set to N = 50, and M = 3, respectively.
In the correlated models, we set β = 0.1, 1, 100 to see the
effect of mark function on the competitive or cooperative
behavior of the proposed model. To show the success of our
method in generating the correlated cascades, we design a
simple incentivization scenario. For all models, the history
of events before time 100 is generated by the independent
model. Then the parameters μp

u of product p = 3 for all
users is doubled, which can be regarded as an incentiviza-
tion of users by the third service provider. Afterward, each
model generates its events separately. In Fig. 3 the overall
intensity of all users for each product, λp(t) and the cumu-
lative market share of each product, Np(0, t]/

∑
q N

q(0, t]
is illustrated. From the intensity diagram we can see that, af-
ter the incentivization, the intensity of users in the correlated
model with β = 0.1, becomes approximately the same. But
in highly competitive model with β = 100, the third prod-
uct is dominated shortly after the incentivization which can
be seen also from the market share diagrams of Fig 3. To
better understand differences between the independent and
correlated model, note the intensity of independent model,
row and column one of Fig 3. In independent model, by in-
centivizing product p = 3, its intensity increases but the

other two product are not influenced by this change. Also
the adoption of incentivized product is increased, but the in-
tensity diagram clearly shows that the other two product are
not affected by this change. On the contrary in the correlated
models, this change affects on the usage of all other prod-
ucts, which validates the correlated nature of our model.

Real Data

In this section, we introduce the real datasets, then explain
the evaluation criteria and the settings for parameter learn-
ing. Finally, we present the results and the comparisons.

Datasets Preparation. We use the data crawled from
Twitter (Hodas and Lerman 2014). This dataset is com-
posed of 213K tweets which contain URLs that shortened
by URL shoehorning services. The data was collected over
three weeks in Fall of 2010 and is comprised of almost 2K
distinct URLs. We post-process this dataset by first find-
ing the six most popular ULR shortening services, which
are bit.ly, migre.me, tinyurl.com, tiny.ly, j.mp,
and is.gd. Then, we select a collection of tweets of about
1000 users with at least 100 tweets which contain any of
the mentioned URLs. We refer to this dataset by “Twitter
URL dataset”. We have also gathered our own dataset from
Twitter. To select a set of active users, we query the Twitter
search API, during one week in 2015, with some keywords
about recent top music and singers. We select 30,000 users,
that were actively tweeting about music and new albums.
Then all tweets of these users were crawled using Twitter
API, during one month of 2015. To prune this dataset, the
tweets containing the URLs of two popular media stream-
ing services, Google Play Music and YouTube are retained.
Then, we selected active users with more than 50 tweets. We
refer to this dataset by “Twitter music dataset”. The intensity
(number of tweets per hour) of URL and music datasets are
plotted in Fig. 1 in which competition and cooperation be-
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Figure 4: Performance of parameter learning reported via av-
erage negative log likelihoods on real datasets, for different
size of training set, in Twitter (left) URL and (right) music
datasets. CP is overfitted and the generalization power of the
proposed method is more than IC.
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Figure 5: Intensity of generated test events by three methods,
compared with real test events in two exemplar products.

tween different cascades is apparent.
Evaluation criteria. We evaluate our model in compar-

ison with two other multiple cascade models. The names
are abbreviated by CC, IC, and CP, respectively for Corre-
lated Cascade, Independent Cascade and Competing Prod-
ucts (Valera and Rodriguez 2015) models. In contrast to
synthetic data, there is no ground-truth available for real
datasets. Hence we use the AvgPredLogLik, Pearson cor-
relation and �1 distance which measure the prediction accu-
racy of the model.

Parameter Learning. We set aside the last 20% of the
data for the test set. The models are trained five times
with 20% to 100% of the train data and β found by cross-
validation. The test likelihood for different models is plotted
versus the training set size in Fig. 4. The proposed method
has the highest likelihood in both datasets and is increas-
ing with respect to the size of the training set. The weak
performance of CP is due to overfitting on the training data
since the number of parameters in CP is proportional to the
square of the number of products. Therefore, the overfit in
music dataset (with 2 products) should be more severe than
the URL dataset (with 6 products), which can be seen from
Fig. 4. The slight decrease in the performance of the pro-
posed method in music dataset is due to mix competitive-
cooperative nature of this dataset. As illustrated in Fig. 1,
there is a broad range of correlation between cascades. But
even in this case, our model has better performance than IC.

Test Events Correlation. To further investigate the pro-
posed method, we also design some experiments on the sim-
ulated test events. Using the parameters of the learned model
on the whole training data, we generate test events for each
model. The model that has higher correlation with real test
event, is more successful to predict future events. We exam-
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Figure 6: Pearson correlation and inverse �1 distance for the
correlation of simulated test events.
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Figure 7: Number of events for the two real exemplar prod-
ucts of Fig 5 .

ined this feature, qualitatively and quantitatively in diagrams
of Figs 5 and 6. We show only the intensity of one exemplar
product for each dataset in Fig 5. Qualitatively it can be seen
that the proposed method better followed the real test inten-
sity curve, except in a few intervals like the times near 2,
and 6 hours in the left of Fig 5, that real test intensity has
large oscillations. Similar to the poor performance of CP in
likelihood on test data, Fig 4, this model has generated more
events, which results in its large distance with the true curve.
Measuring the distance between two curves is a challenging
problem in itself. We use two simple measures, the inverse
of �1 distance, and the well-know Pearson correlation. High
inverse �1 distance and Pearson correlation, indicated a high
correlation between the two curves. In Fig 6 the performance
of different methods on the two datasets is demonstrated.
The result is plotted for two cases; separate products, and all
products. In total, we have a higher correlation with the real
test events. But like before, the performance of the proposed
method in music dataset is slightly better than URL dataset,
which is explained already. The number of test events for the
mentioned exemplar product of Fig. 5 is depicted in Fig. 7.
We use the semi-logarithmic scale in y-axis to better com-
pare different methods. In both cases CC model results are
the closest to the real test data.

243



Conclusion

In this paper, we proposed a social behavior adoption model
in which multiple correlated cascades spread over the net-
work. Multidimensional Hawkes process is utilized for the
behavior or product adoption with its marks capturing the
decision making procedure of the users. We have shown sev-
eral properties of the proposed model on synthetic data. Fur-
thermore, experiments on two real-world datasets establish
the competitive-cooperative modeling capability and the su-
perior performance of our model on predicting future events.
Importantly, the parameter learning algorithm is shown to be
quite efficient in both synthetic and real data.

For future work we would like to learn the hyperparame-
ter and the decaying kernel. Another interesting line of fu-
ture work would be proposing a model to capture multiple
cascades with mixed competing-cooperating behaviors.
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