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Abstract

Many real-world networks have a rich collection of objects.
The semantics of these objects allows us to capture differ-
ent classes of proximities, thus enabling an important task of
semantic proximity search. As the core of semantic proxim-
ity search, we have to measure the proximity on a hetero-
geneous graph, whose nodes are various types of objects.
Most of the existing methods rely on engineering features
about the graph structure between two nodes to measure their
proximity. With recent development on graph embedding, we
see a good chance to avoid feature engineering for seman-
tic proximity search. There is very little work on using graph
embedding for semantic proximity search. We also observe
that graph embedding methods typically focus on embedding
nodes, which is an “indirect” approach to learn the proxim-
ity. Thus, we introduce a new concept of proximity embed-
ding, which directly embeds the network structure between
two possibly distant nodes. We also design our proximity em-
bedding, so as to flexibly support both symmetric and asym-
metric proximities. Based on the proximity embedding, we
can easily estimate the proximity score between two nodes
and enable search on the graph. We evaluate our proximity
embedding method on three real-world public data sets, and
show it outperforms the state-of-the-art baselines. We release
the code for proximity embedding1.

Introduction

Many real-world networks have a rich collection of objects.
For example, in the social networks such as Facebook or
LinkedIn, there are “users”, “locations”, “employers”, “col-
leges”. In the academic networks such as DBLP, there are
“authors”, “papers”, “conferences” and “years”. Such ob-
jects can be linked together to form a heterogeneous graph.
For example, in Fig. 1(a) and Fig. 1(b), we show two object
graphs based on LinkedIn data and DBLP data, respectively.

The rich semantics of objects allows us to capture mul-
tiple classes of proximity on the graph. For example, in
Fig. 1(a) Bob and Alice are schoolmates as they are at-
tending the same college, whereas Glen and Donna are col-
leagues as they are working for the same company. Being
able to differentiate multiple classes of proximity is very
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Figure 1: Examples of semantic proximity search.

useful. For example, we can do circle-based friend sugges-
tion (e.g., who is my schoolmate / colleague?) in the social
network, and author role prediction (e.g., who is my advisor
/ advisee?) in the bibliography network.

In this paper, we study an important task, semantic prox-
imity search on the graph (Sun et al. 2011; Fang et al.
2016b). Specifically, given a proximity class (e.g., school-
mate) and a query node (e.g., Bob) of a particular type (e.g.,
“user”) on the graph, semantic proximity search aims to out-
put a ranking list of other nodes of the same types. It is worth
noting that, the proximity can be either symmetric, such as
schoolmate and colleague in Fig. 1(a), or asymmetric, such
as advisor and advisee in Fig. 1(b).

The core problem of semantic proximity search is how to
measure the proximity on a heterogeneous graph with vari-
ous types of objects. Most existing methods try to measure
the proximity between a query node q and a target node v
by engineering features about the graph structure. For ex-
ample, Metapath (Sun et al. 2011) counts the number of
meta-paths, which match some deliberately designed path
patterns based on the node types (e.g., “author”–“paper”–
“author”), between q and v. Metagraph (Fang et al. 2016b)
counts the number of meta-graphs, which match some de-
liberately designed subgraph patterns based on the node
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types (e.g., “user”–“school” & “major”–“user”). With the
recent advance on graph embedding (Perozzi, Al-Rfou, and
Skiena 2014; Tang et al. 2015; Grover and Leskovec 2016),
we now have the chance to avoid feature engineering in
measuring the proximity between nodes. However, most of
the existing graph embedding methods focus on a single
node, instead of two (possibly distant) nodes. To be pre-
cise, graph embedding typically aims to produce a low-
dimensional vector for each single node. Any further graph
analytics tasks, such as node classification (Yang, Cohen,
and Salakhutdinov 2016), link prediction (Wang, Cui, and
Zhu 2016) and clustering (Yang et al. 2016), are performed
based on the node embedding. Very few works attempt to
learn embedding for more than one node (Luo et al. 2015;
Zheng et al. 2016), and they are not for proximity search.

Embedding nodes is an indirect approach to learn prox-
imity, because it lacks an explicit representation for the net-
work structure between two possibly distant nodes. Typ-
ically, node embedding exploits the network structure by
“neighbors”, such that two nodes as immediate neighbors
(Tang et al. 2015) or sharing common neighbors (Perozzi,
Al-Rfou, and Skiena 2014) have similar embeddings. Thus,
node embedding implicitly includes the network structure.
However, node embedding suffers from two major prob-
lems: 1) difficult to handle heterogeneous graphs. All the
neighbor nodes are of various types, thus trivially treating
them as the same is unlikely to be effective; 2) having a
gap between node embedding and proximity score. There
are many different ways to compute a proximity score based
on two node embedding vectors, e.g., using Euclidean dis-
tance, or applying a weight matrix (Fang et al. 2016a) or
weight vector (Grover and Leskovec 2016) to convert two
vectors into a score. It is not clear what the best way is.

We propose ProxEmbed, a direct proximity embedding
method for semantic proximity search. In ProxEmbed, we
aim to learn a vector as the embedding for the network
structure between two possibly distant nodes; then we can
straightforwardly compute a proximity score by multiply-
ing the embedding with a weight vector. Motivated by the
recent graph embedding methods (Perozzi, Al-Rfou, and
Skiena 2014; Grover and Leskovec 2016), we use random
walk paths between two nodes q and v as their connecting
network structure. ProxEmbed takes these paths as input to
learn the proximity embedding for q and v. We differenti-
ate the paths from q to v and those from v to q, such that
we can generate different proximity embeddings for (q, v)
and (v, q) for asymmetric proximity. Although some recent
work starts to consider asymmetric proximity in embedding
(Ou et al. 2016), it still tries to embed single nodes. To em-
bed multiple paths with various types of nodes and varying
lengths into a vector, we devise a Long Short-Term Memory
(Hochreiter and Schmidhuber 1997) recurrent neural net-
work architecture with discounted path pooling, where we
pool embeddings from all the paths with discounts w.r.t. the
path length. To supervise the proximity embedding, we use
some training tuples of ranking nodes w.r.t. a query node un-
der a semantic class. Then, for each query node, we compute
proximity scores for its target nodes based on their proxim-
ity embeddings, and use them to construct the ranking loss

against the ground truth. Finally, we optimize the ranking
loss together with the proximity embedding.

We summarize our contributions as follows.
• So far as we know, ProxEmbed is the first direct proximity

embedding method for semantic proximity search. It is
flexible for both symmetric and asymmetric proximities.

• We evaluate ProxEmbed on three real-world data sets with
totally six types of proximity. We improve the state-of-
the-art baselines by at least 1.0%–18.9% (NDCG), 5.3%–
82.7% (MAP) on symmetric proximity, and 9.8%–15.6%
(NDCG), 4.7%–14.5% (MAP) on asymmetric proximity,
when using 1,000 training samples.

Related Work

There is little work that uses graph embedding for seman-
tic proximity search. Earlier graph proximity search work
such as Personalized PageRank (Jeh and Widom 2003) and
SimRank (Jeh and Widom 2002) does not differentiate se-
mantic classes. Recent work starts to consider rich network
structure (Backstrom and Leskovec 2011; Sun et al. 2011;
Fang et al. 2016b), but their network structures are engi-
neered, thus often incomprehensive and time consuming.
Graph embedding is an automatic graph feature learning
technique. However, most graph embedding work focuses
on node classification (Perozzi, Al-Rfou, and Skiena 2014;
Yang, Cohen, and Salakhutdinov 2016), link prediction
(Wang, Cui, and Zhu 2016; Grover and Leskovec 2016) and
clustering (Yang et al. 2016), but rarely in proximity search.

There is little work that considers embedding for more
than one node in the graph. Most graph embedding meth-
ods focus on single node embedding; e.g., earlier meth-
ods, such as MDS (Cox and Cox 2000), LLE (Roweis and
Saul 2000), IsoMap (Tenenbaum, de Silva, and Langford
2000) and Laplacian eigenmap (Belkin and Niyogi 2001),
typical rely on eigendecomposition of the graph affinity
matrices to find the leading eigenvectors as each node’s
embedding. Similarly, latent eigenmodel (Hoff 2008) also
looks for a latent vector for each node in network model-
ing. More recent methods use neural networks to learn node
embedding by either shallow architectures (Yang, Cohen,
and Salakhutdinov 2016; Xie et al. 2016; Tang et al. 2015)
or deep architectures (Niepert, Ahmed, and Kutzkov 2016;
Wang, Cui, and Zhu 2016; Chang et al. 2015). There are
some attempts to learn edge embedding (Luo et al. 2015) and
community embedding (Zheng et al. 2016), but they do not
directly encode the network structure between two nodes.

There is little work that handles both symmetric and
asymmetric proximities in graph embedding. Earlier meth-
ods (Tenenbaum, de Silva, and Langford 2000; Belkin and
Niyogi 2001) focus on undirected graphs and do not con-
sider asymmetric proximity. Recent methods consider di-
rected graphs (Perrault-Joncas and Meila 2011; Ou et al.
2016) for asymmetric proximity, but they focus on node em-
bedding and cannot support symmetric proximity together.
We handle asymmetric proximity based on the sequence or-
der modeling power of LSTM (Hochreiter and Schmidhuber
1997). LSTM has shown significant improvement in many
sequence modeling tasks (Sutskever, Vinyals, and Le 2014;
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Figure 2: Overall training framework for ProxEmbed.

Le and Mikolov 2014). We novelly use LSTM in the graph
setting to model the network structure between two nodes,
and we devise an architecture with discounted path pooling
to produce a single vector as proximity embedding.

Problem Formulation

As our semantic proximity task is based on a heterogeneous
graph where nodes are typed, we first define:

Definition 1 (Typed graph) A typed graph is G =
(V,E,C, τ), where V is the set of nodes and E is the set
of edges. C = {c1, ..., cK} is the set of possible node types,
and τ : V → C is a type mapping function for G.

For example, in Fig. 1(a), we have C = {“user”, “college”,
“location”, “employer”}, and τ (Alice) = “user”, τ (UCLA)
= “college”, τ (L.A.) = “location”, τ (Apple) = “employer”.

As inputs for our proximity embedding problem, we are
given a typed graph G and a set of training tuples D =
{(qi, vi, ui) : i = 1, ...,m}, where for each query node qi,
node vi is closer to qi than node ui. Following the same set-
ting with the existing semantic proximity search work (Fang
et al. 2016b), qi’s, vi’s and ui’s are of the same type, e.g., all
are “users” in our experiments. As output, we want to gen-
erate a vector as the proximity embedding for each (qi, vi)
and a vector for each (qi, ui), ∀i = 1, ...,m. Generally, we
denote the proximity embedding for a query node q ∈ V
and a target node v ∈ V as f(q, v) ∈ R

d, where d is the
proximity embedding dimension. Note that, for symmetric
proximity, we have f(q, v) = f(v, q); for asymmetric prox-
imity, we have f(q, v) �= f(v, q). Then we define a proximity
score between q and v based on the proximity embedding as

π(q, v) = θT f(q, v), (1)

where θ ∈ R
d is a parameter vector. Finally, based on the

embeddings f(qi, vi) and f(qi, ui) for each training tuple
(qi, vi, ui), we can evaluate the ranking loss with their cor-
responding proximity scores π(qi, vi) and π(qi, ui).

Proximity Embedding

We summarize the overall training workflow for ProxEmbed
in Fig. 2. Given a typed graph G as input, we first sample
paths for future extraction of the connecting structure be-
tween two nodes. Similar to (Perozzi, Al-Rfou, and Skiena
2014), starting from each node, we randomly sample γ
paths, each of length �. In the end, we have a set of paths,
denoted as P . We are also given a set of training tuples
{(qi, vi, ui) : i = 1, ...,m} as input. For each query node
q ∈ {q1, ..., qm} and a corresponding target node v ∈

{v1, ..., vm, u1, ..., um}, we extract multiple subpaths from
P . We see each path as a sequence with a particular node
order. We denote the subpaths starting from q and ending
at v in P as P(q, v), and those from v to q as P(v, q). The
paths in P(q, v) and P(v, q) have varying lengths and dif-
ferent types of nodes. To model each path, we adopt LSTM
(Sutskever, Vinyals, and Le 2014) to embed the path into
a vector (modeling details to be discussed next). Then, we
do discounted path pooling over P(q, v) and P(v, q) to fi-
nally generate a proximity embedding for each pair (q, v).
For asymmetric proximity, we use max pooling over only
P(q, v) to get the proximity embedding f(q, v); whereas for
symmetric proximity, we use max pooling over both P(q, v)
and P(v, q) to get f(q, v). Because the paths are of varying
length, to emphasize more on the shorter paths, we introduce
a discount for each path’s LSTM output vector based on the
path length during max pooling. As a result, the shorter paths
contribute more to the final proximity embedding for (q, v).
Finally, given the proximity embedding, we compute a prox-
imity score π(q, v), and later use it to evaluate the ranking
loss against the ground truth training tuples.

In the following, we introduce how to model each path by
LSTM and how to enforce discounted path pooling for the
final proximity embedding between two nodes.

Path modeling with LSTM. A LSTM is an architecture
designed for recurrent neural network to address the van-
ishing/exploding gradient issue (Hochreiter and Schmidhu-
ber 1997). In general, LSTM takes as input a sequence
(x1, ...,xT ), where xt ∈ R

n is a feature vector at timestep t.
As intermediate output, LSTM generates a vector yt ∈ R

d

for each timestep. By furthering pooling all the yt’s, we can
output a vector as the embedding for the sequence.

The structure of LSTM is a memory cell, which consists of
an input gate, a neuro with a self-recurrent connection, a for-
get gate and an output gate. Generally, the input gate allows
incoming signal to alter the state of the memory cell or block
it. The self-current connection balance the signals from the
previous timestep and the current timestep. The forget gate
modulates the memory cells self-recurrent connection, al-
lowing the cell to remember or forget its previous state, as
needed. The output gate allows the state of the memory cell
to affect other neurons or prevent it. In the following, we
summarize the modeling details for LSTM.
Input gate: denote W (i) ∈ R

d×n, U (i) ∈ R
d×d as weight

matrices, r(i) ∈ R
d as a bias vector. LSTM computes the

input gate activation vector g(i)
t ∈ R

d as: ∀j = 1, ..., d,

g
(i)
t,j = σ(W

(i)
j,∗ xt + U

(i)
j,∗ yt−1 + r

(i)
j ). (2)
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Forget gate: denote W (f) ∈ R
d×n, U (f) ∈ R

d×d as weight
matrices, r(f) ∈ R

d as a bias vector. LSTM computes the
forget gate activation vector g(f)

t ∈ R
d as: ∀j = 1, ..., d,

g
(f)
t,j = σ(W

(f)
j,∗ xt + U

(f)
j,∗ yt−1 + r

(f)
j ). (3)

Cell state: denote W (c) ∈ R
d×n, U (c) ∈ R

d×d as weight
matrices, r(c) ∈ R

d as a bias vector. LSTM computes the
cell state activation vector g(c)

t ∈ R
d as: ∀j = 1, ..., d,

g
(c)
t,j = g

(i)
t,j · g̃(c)

t,j + g
(f)
t,j · g(c)

t−1,j , (4)

where g̃
(c)
t,j = tanh(W

(c)
j,∗ xt + U

(c)
j,∗ yt−1 + r

(c)
j ).

Output gate: denote W (o) ∈ R
d×n, U (o) ∈ R

d×d as weight
matrices, r(o) ∈ R

d as a bias vector. LSTM computes the
output gate activation vector g(o)

t ∈ R
d as: ∀j = 1, ..., d,

g
(o)
t,j = σ(W

(o)
j,∗ xt + U

(o)
j,∗ yt−1 + r

(o)
j ), (5)

Finally, the output vector yt ∈ R
d at time t is: ∀j = 1, ..., d,

yt,j = g
(o)
t,j · tanh(g(c)

t,j ). (6)

By doing max pooling over all the yt’s, ∀t = 1, ..., T , we
obtain an embedding h ∈ R

d for a sequence:

h = maxPooling({yt : t = 1, ..., T}). (7)

In our path modeling, we consider each path as a sequence
of nodes, and each node v has a feature vector x ∈ R

n.
In this paper, we consider x as a concatenation of the fol-
lowing four types of observations: 1) node type, which is
a K-dimensional vector. In this vector, only the dimension
corresponding to v’s node type is one, and all the others are
zeros.; 2) node degree, which is a scalar; 3) distribution of
neighbors’ types, which is also a K-dimensional vector. In
this vector, each dimension records the number of v’s neigh-
bors having a particular node type. We further take logarithm
over this vector (plus 1 in each dimension to avoid ill defini-
tion for logarithm); 4) entropy of neighbors’ types, which is
a scalar computed from the distribution of neighbors’ types.

Discounted path pooling. There are many paths between
a query node q and a target node v. To alleviate the bias
of some nodes possessing much more paths than the other
nodes, we need to aggregate the paths to uniquely define the
proximity embedding for each (q, v). Moreover, the paths
are of varying length. Generally, the longer a path is, the
smaller proximity it implies. This motivates us to introduce
a discount factor w.r.t. the path length when we aggregate
the paths. Formally, for each path s ∈ P(q, v), we denote
|s| as the length of s. Next we need to aggregate the paths.
For a unified notation, we introduce Q(q, v) as the path
set between q and v. For asymmetric proximity, we have
Q(q, v) = P(q, v) as the paths from q to v. For asymmetric
proximity, we have Q(q, v) = P(q, v)∪P(v, q) as the paths
from q to v and from v to q. Finally, to generate a proximity
embedding for (q, v), we aggregate all the path embeddings
hs’s between q and v in Q(q, v) by max pooling.

f(q, v) = maxPooling({hs · e−α|s| : s ∈ Q(q, v)}), (8)

Algorithm 1 ProxEmbed

Require: typed graph G = (V,E,C, τ), training tuples
D = {(qi, vi, ui)}, number of paths per node γ, walk
length �, embedding dimension d, parameters {α, β, γ}.

Ensure: proximity embedding model parameters Θ.
1: Initialize a path set P = ∅;
2: for all v ∈ V do
3: for i = 1 : γ do
4: P ← P ∪ SamplePath(G, v, �);
5: end for
6: end for
7: B ← GenerateBatches(D);
8: for all batch b ∈ B do
9: Initialize loss for batch b as Lb = 0;

10: for all each (q, v, u) ∈ b do
11: f(q, v) ← GetProxEmbedding(P, q, v, d, α);
12: f(q, u) ← GetProxEmbedding(P, q, u, d, α);
13: Lb = Lb + �(π(q, v), π(q, u)), based on Eq.9;
14: end for
15: Lb = Lb + μΩ(Θ);
16: Update Θ based on Lb by gradient descent.
17: end for

where α > 0 is a parameter controlling the path discount.
The bigger α is, the more we favor shorter paths.

After getting the proximity embedding for (q, v), we then
compute its proximity score π(q, v) by Eq. 1. In training,
for each tuple (qi, vi, ui), ∀i = 1, ...,m, we define a ranking
loss based on the proximity scores π(qi, vi) and π(qi, ui).
There are different forms of ranking loss; in this paper, we
can define it as the logarithm of a logistic function
�(π(qi, vi), π(qi, ui)) = − log σβ(π(qi, vi)− π(qi, ui)),

(9)
where σβ(x) = 1/(1 + e−βx) and β > 0 is a parameter.
The bigger β is, the more �(π(qi, vi), π(qi, ui)) contributes
to the proximity embedding.

Denote our parameters as Θ = {θ,W (i), U (i), r(i),W (f),
U (f), r(f),W (c), U (c), r(c),W (o), U (o), r(o)}. Finally, our
ultimate goal becomes minimizing

L(Θ) =
∑m

i=1
�(π(qi, vi), π(qi, ui)) + μ Ω(Θ), (10)

where μ > 0 is a trade-off parameter, Ω(·) is a regularization
function (e.g., the sum of l2-norm for each parameter in Θ).

Algorithm. We summarize ProxEmbed in Alg. 1. In lines 1–
6, we sample paths on the graph. In line 7, we split the train-
ing tuples into batches, and then do batch stochastic gradient
descent. In lines 10–14, we compute the proximity embed-
ding by Alg. 2 for each (q, v) and (q, u), then compute the
ranking loss �(π(q, v), π(q, u)). In lines 15–16, we accumu-
late the loss for batch b and do gradient descent. Note that in
Alg. 2, we overload the function “GetSubpaths” to get dif-
ferent subpaths for symmetric and asymmetric proximities.

Experiments

Data sets. We use three real-world public data sets in our
evaluation. The LinkedIn data set (Li, Wang, and Chang
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Algorithm 2 GetProxEmbedding
Require: a set of paths P , a query node q, a target node v,

embedding dimension d, discount parameter α.
Ensure: proximity embedding f(q, v).

1: Q(q, v) ← GetSubpaths(P, q, v);
2: for all path s ∈ Q(q, v) do
3: hs ← LSTM(s) by Eq. 7;
4: end for
5: f(q, v) ← DiscountedPathPooling({hs}) by Eq. 8.

Table 1: Data sets with symmetric / asymmetric proximities.
|V | |E| |C| #(queries)

LinkedIn 65,925 220,812 4 172 (school.), 173 (collea.)
Facebook 5,025 100,356 10 340 (family), 904 (classmate)

DBLP 165,728 928,513 5 2,439 (advisor), 1,204 (advisee)

2014) contains two symmetric semantic classes: school-
mate and colleague. The Facebook data set (McAuley and
Leskovec 2012) contains two symmetric semantic classes:
family and classmate. The DBLP data set (Wang et al. 2010)
contains two asymmetric semantic classes: advisor and ad-
visee. We summarize the data set statistics in Table 1.

Set up. We follow the set up in (Fang et al. 2016b). Specifi-
cally, we generate the queries and their ground truth ranking
tuples w.r.t. each semantic class. Then we randomly split the
queries in each data for each semantic class into two sub-
sets: 20% for training and the rest 80% for testing. In train-
ing w.r.t. a particular semantic class, for each qi, we con-
struct a training tuple (qi, vi, ui) by randomly choosing two
other nodes vi and ui, such that qi and vi belong to the same
class, whereas qi and ui belong to different classes. In test-
ing w.r.t. the particular semantic class, for each query q′j , we
construct an ideal ranking, such that other nodes that are the
same class with qi are ranked higher than those with a differ-
ent class or unknown label. For evaluation, we thus predict
the ranking for each test query q′j w.r.t. a semantic class, and
compare it against the ideal ranking. We then use NDCG
and MAP to evaluate the algorithmic ranking performance
for the top 10 nodes in each ranking.

In path sampling, we take node type into consideration
to alleviate the possible node type imbalance in the data
sets (e.g., in the DBLP data set, there are more “users”,
but fewer “conferences”). In each step of random walk at
a node v ∈ V , instead of randomly sampling among all
v’s neighbors, we first randomly sample one node type, then
randomly sample one neighbor of that type as the next step.

Parameters and environment. In the LinkedIn data set, we
set γ = 20, � = 20 for both schoolmate and colleague. In the
Facebook data set, as the graph is smaller than the LinkedIn
graph, we try to sample longer length; hence, we set γ =
40, � = 80 for classmate and γ = 20, � = 80 for family.
In the DBLP data set, we set γ = 20, � = 80 for advisor
and γ = 20, � = 40 for advisee. In all the data sets and all
the semantic classes, we set by default α = 0.3, β = 0.5
and μ = 0.0001 (except in family, μ = 0.001). We tune
different d’s for different data sets. We run experiments on

Table 2: Relative improvement of ProxEmbed over the best
baselines when using 1000 labels.

NDCG MAP
LinkedIn-schoolmate 18.9% (p < 0.01) 82.7% (p < 0.01)
LinkedIn-colleague 12.8% (p < 0.01) 51.1% (p < 0.01)

Facebook-family 1.8% (p < 0.05) 5.3% (p < 0.01)
Facebook-classmate 1.0% (p < 0.10) 9.8% (p < 0.01)

DBLP-advisor 15.6% (p < 0.01) 14.5% (p < 0.01)
DBLP-advisee 9.8% (p < 0.01) 4.7% (p < 0.05)

Linux machines with eight 2.27GHz Intel Xeon(R) CPUs
and 32GB memory. We use Theano (Team 2016) for LSTM
implementation and Java jdk-1.8 for path sampling.

Baselines. We compare our ProxEmbed with the following
state-of-the-art semantic proximity search baselines.
• MGP (Fang et al. 2016b): Meta-Graph Proximity uses

meta-graphs as features to measure proximity.
• MPP (Sun et al. 2011): Meta-Path Proximity uses meta-

paths as features to measure proximity. We follow (Fang
et al. 2016b) to generate the metapaths, by restricting the
set of metagraphs to paths only.

• SRW (Backstrom and Leskovec 2011): Supervised Ran-
dom Walk learns the edge weights, so as to make the ran-
dom walk results consistent with the ground truth ranking.
We set edge feature as a 0-or-1 vector indicating the edge
type, which is defined by the types of its two nodes.

• DWR: DeepWalk Ranking first learns the node embedding
by DeepWalk (Perozzi, Al-Rfou, and Skiena 2014), then
it applies Hadamard product on the embeddings of two
nodes as the proximity embedding, finally it optimizes a
ranking loss like our Eq. 9.

As MGP, MPP and DWR are all designed for symmetric
proximity, it is unfair to compare them w.r.t. the asymmetric
proximity, thus we exclude them from comparison when the
semantic classes are asymmetric. In summary, we compare
with all the baselines on the LinkedIn and Facebook data
sets, and only compare with SRW on the DBLP data set.

For MGP and MPP, we use the same metapaths and meta-
graphs as (Fang et al. 2016b); we also set the same parameter
values with them. For SRW, we set its regularization param-
eter λ = 10, random walk teleportation parameter α = 0.2
and loss parameter b = 0.1. We set the dimension of DWR as
128, the same as (Perozzi, Al-Rfou, and Skiena 2014). We
input the same sampled paths for ProxEmbed to DeepWalk.

Comparison with Baselines. We vary the number of train-
ing tuples, and compare ProxEmbed with the baselines
on different data sets under different semantic classes. As
shown in Fig. 3, ProxEmbed is generally better than the
baselines. In Table 2, we summarize our relative improve-
ment over the best baselines under different data sets, dif-
ferent semantic classes and different evaluation metrics. We
also report the student t-test one-tailed p-values.

In the following, we analyze the comparison results.
Firstly, ProxEmbed is better than MGP and MPP, showing
that feature learning is more effective than feature engineer-
ing on the graph for proximity learning. As ProxEmbed is
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Figure 3: Comparison with baselines for semantic proximity search.
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Figure 4: Impact of parameters: number of dimension d, path length discount α, ranking loss discount β.

based on paths, whereas MGP is based on subgraphs, it is in-
teresting to see that ProxEmbed actually outperforms MGP.
This suggests our proximity embedding in some sense cap-
ture the subgraph information. Secondly, ProxEmbed is bet-
ter than SRW most of time, except when the number of train-
ing tuples is small (e.g., 10) at DBLP’s advisor and advisee
semantic classes. This is because ProxEmbed has more pa-
rameters to learn than SRW, and it needs more labels. SRW
is less sensitive to the number of training tuples, as also ob-
served in (Fang et al. 2016b). Thirdly, ProxEmbed is better
than DWR, showing that embedding proximity is more ef-
fective than embedding nodes. As motivated in the introduc-
tion, embedding nodes is likely to suffer from graph hetero-
geneity and the gap to turn node embeddings to a proxim-
ity score. Besides, DWR is also insensitive to the number of
training tuples, as its embedding is unsupervised and only a
proximity weight vector with fixed dimensions is learned.

Impact of Parameters. We also study the impact of sev-
eral parameters that are mostly unique to our model. Here
we set the number of training tuples as 100. As we can see,
d = 64 is mostly the best across different data sets and dif-
ferent semantic classes. α = 0.1 is mostly the best, and it is

better than α = 0 and α = 10. This means the path length
discount is necessary, but the discount cannot be too big ei-
ther, otherwise many paths have very little contribution to
the proximity embedding. Besides, β = 0.1 is also mostly
the best, suggesting a moderate discount on ranking loss.

Conclusion

In this paper, we study the problem of semantic proximity
search on a heterogeneous graph. As most existing methods
rely on feature engineering with different graph structures
to estimate the proximity, we consider using graph embed-
ding to avoid the feature engineering for proximity learn-
ing. We observe that existing node embedding approach is
an “indirect” approach to learn the proximity. Thus we in-
troduce a new concept of proximity embedding, and propose
ProxEmbed to directly embed the network structure between
two nodes. In ProxEmbed, we characterize the proximity be-
tween two nodes with a set of paths, then we try to embed
and aggregate these paths into a vector as the output. We
adopt LSTM and devise an architecture with asymmetric
proximity modeling and discounted path pooling to learn the
proximity embedding. We further incorporate supervision of
some ground truth proximity ranking tuples to enhance the
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proximity embedding. Finally, we evaluate ProxEmbed on
three real-world data sets with both symmetric and asym-
metric proximities. We show that ProxEmbed significantly
outperforms all the state-of-the-art baselines.

In future, we plan to extend our method to the weighted
graph setting and a deeper neural network architecture.
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