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Abstract

Fact checking is an essential part of any investigative work.
For linguistic, psychological and social reasons, it is an in-
herently human task. Yet, modern media make it increasingly
difficult for experts to keep up with the pace at which infor-
mation is produced. Hence, we believe there is value in tools
to assist them in this process. Much of the effort on Web data
research has been focused on coping with incompleteness and
uncertainty. Comparatively, dealing with context has received
less attention, although it is crucial in judging the validity of
a claim. For instance, what holds true in a US state, might not
in its neighbors, e.g., due to obsolete or superseded laws.
In this work, we address the problem of checking the valid-
ity of claims in multiple contexts. We define a language to
represent and query facts across different dimensions. The
approach is non-intrusive and allows relatively easy model-
ing, while capturing incompleteness and uncertainty. We de-
scribe the syntax and semantics of the language. We present
algorithms to demonstrate its feasibility, and we illustrate its
usefulness through examples.

Introduction

Fact checking is the task of assessing the validity of a claim
based on trusted sources. It is a basic component of journal-
ism and to a larger extent any investigative task. The scale
of information available on the Web, its incompleteness, its
inconsistencies and the speed with which it spreads, have
recently brought fact checking to the forefront in the me-
dia. Beyond “technical” limitations, there are external fac-
tors like culture or belief systems, that will likely prevent
automation for a long time. Yet, as already advocated in
the past (McCarthy 1993; Bienvenu, Deutch, and Suchanek
2012), contextual information can play a crucial role in in-
terpreting the data. For instance, one might ask “Is John Doe
eurosceptic?” The answer does not just depend on the per-
son’s reputation, but also on what “eurosceptic” means to
different people, or the sources of information leading to a
conclusion.

A number of probabilistic reasoning tools have been pro-
posed over the years, but compiling uncertainty into a scalar
value is often unsatisfactory. For instance, a knowledge base
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automatically extracted from the Web could contain the fol-
lowing facts, each of which inferred with enough confidence
to be deemed trustworthy:

party(JohnDoe, Labour)
party(JohnDoe, Tories)

Several problems immediately appear in this example.
Firstly, the knowledge base does not contain any explicit
information about the person’s position towards EU inte-
gration. To resolve the incompleteness, one might add more
facts from other sources, in which case exploiting the prove-
nance of those additional facts would be desirable. Another
approach is to use axioms to check if the question is entailed
by those facts. The following rule states that anyone belong-
ing to the Conservative Party is eurosceptic:

σ1 : ∀x (party(x, Tories) → Eurosceptic(x))

However, this is context dependent as not everyone might
agree, or the rule might not have always held in the past.

Secondly, there is also uncertainty in that conflicts exist
within the information source; either fact above might have
been more accurate than the other over different periods of
time, but there is no way to distinguish which one holds to-
day. If one has write access to the data, it is be possible to add
time-related facts to the knowledge base. But this requires a
clear understanding of the underlying ontology, and does not
protect against further redundant or conflicting statements.

Objective and contributions. This simple example high-
lights several issues that are all contextual to some extent:
here time and provenance affect the interpretation of the
question and thus the answer. In this work, we tackle the
problem of answering queries in some predefined contexts,
and exploring the answers as they vary. We aim to answer
questions like: “According to sources A and B, is Mr. Doe
eurosceptic?”, “According to which sources could he be con-
sidered eurosceptic in 2010?”, or “In which context is he
eurosceptic with a confidence above 50%?”

To address this problem, we revisit some prior works on
data management in the presence of incompleteness and
uncertainty, namely probabilistic Datalog± (Gottlob et al.
2013), and contextual knowledge. Our contributions are as
follows: (i) we define the syntax and semantics of a language
to model incomplete, uncertain knowledge in multiple con-
texts, (ii) we describe a query language to assess the validity
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of claims in such contexts, (iii) we provide algorithms for
query answering, study their complexities and introduce op-
timizations for future implementation.

The next section recalls notions from the literature used
in the remainder of the paper.

Preliminaries

We use a number of first-order logic (FOL) terms and nota-
tions, such as constants and variables, atoms and formulas,
with which we assume familiarity. Unless we use conven-
tional notations, capital letters denote sets, Greek lower case
denotes formulas and functions, and Latin lower case de-
notes variables, constants or tuples.

Datalog±

Datalog± (Cali et al. 2010) is a family of Datalog variants
that were devised for efficient ontological querying. It has
gained traction both as a theoretical and practical tool for
the development of the Semantic Web and related problems,
such as data integration, data exchange or query answering
over incomplete data.

We assume a schema R as a set of relations of fixed ari-
ties, and the infinite sets ΔC , ΔN and V , referring respec-
tively to constants, labeled nulls and variables. While con-
stants follow the unique name assumption, labeled nulls can
be seen as unknown constants, and as such behave like vari-
ables (two distinct nulls may refer to the same value). A
term is either a constant, a null or a variable. An atom of
the form φ(�t) is a relation symbol endowed with a tuple of
terms. We may refer to ground atoms —whose terms belong
to {ΔC ∪ ΔN}— as facts. A database instance, or simply
database, D is a set of facts abiding by R.

Datalog± generalizes Datalog by allowing rules known as
tuple generating dependencies (TGDs) of the form

∀�x, �yφ(�x, �y) → ∃�zψ(�x, �z) (1)

where φ and ψ are conjunctions of atoms with terms in
{ΔC ∪ V}, called the body and the head of the rule respec-
tively. We often omit the quantifier for readability. The rule
σ1 given in the introduction is a TGD, so is the following:
Example 1. All Eurosceptics support Brexit.

σ2 : Eurosceptic(x) → supports(x, Brexit)

A conjunctive query (CQ) is a rule of the form

Q(�x) ← ∃�yφ(�x, �y) (2)

where φ is a conjunction of atoms with terms in {ΔC ∪ V}.
A CQ is boolean (BCQ), when �x is empty, and atomic if its
body consists of a single atom.

The Chase. The chase (Abiteboul, Hull, and Vianu 1995)
is a procedure originally introduced to check query contain-
ment, now used in many database problems. It is a forward-
chaining algorithm, proceeding in steps, starting from a
database D0 and dependencies Σ. At chase step i, a TGD
σ ∈ Σ is selected and all homomorphisms μ from body(σ)
to Di−1 are found. For each μ, an extension μ′ is obtained
by adding mappings from each existential head variable to

a fresh labeled null1. The chase step outputs a new database
Di = Di−1 ∪ D′, where D′ contains all the facts obtained
through applications of μ′(head(σ)). Chase steps are ap-
plied exhaustively until a fixpoint is reached.

The output of the chase, called the universal model
and denoted chase(D,Σ), is a data instance in which all
the TGDs hold. The universal model may not be finite,
and checking whether a set of dependencies has a finite
model is undecidable, even when the database instance
is fixed (Deutsch, Nash, and Remmel 2008). In spite of
this, some classes of constraints enjoying terminating chase
have been identified over the years (Fagin et al. 2003;
Meier, Schmidt, and Lausen 2009). Guarded Datalog± re-
quires all TGDs to be guarded, i.e., have a body atom con-
taining all variables in the body. This ensures query answer-
ing has polynomial data-complexity even when the chase
does not terminate. In this work, we assume TGDs belong
to one of those classes.

Example 2. Running the Chase with dependencies σ1, σ2

on the original two facts would add the following to the re-
sulting instance.

Eurosceptic(JohnDoe)

supports(JohnDoe, Brexit)

Datalog± also allows equality-generating dependencies
(EGDs) of the form ∀�x, �yφ(�x, �y) → xi = xj , and negative
constraints (NCs) such as ∀�xφ(�x) → ⊥. These three types
of dependencies capture a broad class of constraints, includ-
ing (but not restricted to) primary keys (EGDs), foreign keys
(TGDs), and other consistency checks, such as disjointness,
with NCs. In this work, we ignore EGDs for simplicity.

Example 3. The following NC (σ3) states that one cannot
support and oppose the same thing.

σ3 : opposes(x, y), supports(x, y) → ⊥
A Datalog± ontology is a pair (D,Σ), where D is a finite

database instance, and Σ is a set of TGDs and NCs.

Query answering. Let (D,Σ) be a Datalog± ontology.
The answer of Q over D ∪ Σ, denoted ans(Q,D,Σ), is
the set of tuples t taking values in {ΔC ∪ ΔN} such that
there is a homomorphism μ : var(φ) → {ΔC ∪ΔN} with
μ(φ(�x, �y)) ⊆ chase(D,Σ) and μ(�x) = t. If the query is
boolean, then the answer is true iff there exists such a ho-
momorphism, in which case we can write D ∪ Σ |= Q.

Chasing with NCs can lead to a contradiction in which
case the chase stops. A BCQ is trivially true if any NC is
violated.

Markov Logic Networks

MLN (Richardson and Domingos 2006) is one of many at-
tempts to marry logical and probabilistic frameworks to rea-
son about the world under uncertainty based on Markov Net-
works (MN). In brief, a program M is a set of pairs (φi, wi),
where φi is a FOL formula and wi is a positive real number
(called a weight).

1We assume the fresh nulls as taken from Skolem functions.
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Intuitively, higher weights account for stronger formulas;
those whose groundings reflect more plausible statements
in the real world. The weights only have importance rela-
tively to one another. They need not be restricted to a spe-
cific range, e.g. endowing all formulas with infinite weights
yields FOL.
Example 4.

(¬support(x, Brexit) ∨ Eurosceptic(x), 3.0)
(¬CollegeGrad(x)∨opposes(x, Brexit), 2.0)

The above sentences state that supporting Brexit implies be-
ing Eurosceptic with a weight of 3.0, and that people with a
college degree oppose Brexit, with a weight of 2.0.

Given a finite domain Δ′
C over which constants range, a

possible world is a subset of the Herbrand Base H. A prob-
ability distribution over all possible worlds is given as fol-
lows. For x a possible world:

P (x) = Z−1exp
[∑

i

wini(x)
]

(3)

where i ranges over the weighted formulas φi, ni is the num-
ber of groundings making φi true in x and Z−1 is a normal-
ization constant. The MN induced by an MLN features one
node per atom in H and edges reflect how terms co-occur in
the formulas. The marginal probability of a fact is the sum
of probabilities of the worlds it belongs to.

Syntax

As usual, we assume a relational schema R, the sets ΔC ,
ΔN , V , and a database D. We can derive a finite set of con-
stants from D, the “active domain” Δ′

C ⊆ ΔC (Abiteboul,
Hull, and Vianu 1995). Let K1, . . . ,Kn be an ordered set of
finite lattices, with ⊕i and ⊗i as join and meet operators re-
spectively, and order relations i, where 1 ≤ i ≤ n. We al-
ways assume unique upper and lower bounds, denoted by �i

and ⊥i, i.e., for lattices with no unique upper (resp. lower)
bound, �i (resp. ⊥i) is a synthetic element added to the do-
main, into which any pair of upper (resp. lower) bounds join
(resp. meet). For readability, we abbreviate the set of lattices
to its product K̇ = K1× · · ·×Kn. The product order is de-
noted by ̇, and the associated meet and join operators by ⊕̇
and ⊗̇ respectively. �̇ and ⊥̇ denote the synthetic upper and
lower bounds of K̇ defined as above. We sometimes refer
to tuples of K̇ as contexts thereafter. We say that a context
is valid if it does not contain any lower bound as component
value. We now define the notion of annotated formula which
is central to our model.
Definition 1 (Annotated formula). An annotated formula is
of the form φA, where φ is a formula, and A = {�a1 . . .�an}
is a set of valid tuples in K̇.

We talk about annotated fact if φ is a ground atom. Intu-
itively, an annotated formula only holds within certain con-
texts captured by A. There is a parallel between annotated
formula and probabilistic dependencies in (Gottlob et al.
2013), where dependencies can be annotated with sets of
ground atoms, used to identify possible worlds in which the
dependencies hold.

Definition 2 (Scenario). Let D and Σ be defined as usual,
M a set of weighted formulas (φi, wi), and K̇ a set of
contexts. A scenario S is a tuple 〈D,Σ,M, K̇, α〉, where
α : {D ∪ Σ} → P(K̇)�⊥ is an annotation function, assign-
ing a set of K̇-tuples to each fact in D and dependency in Σ.
Here, P(K̇)�⊥ refers to all possible sets of valid K̇-tuples

A scenario includes a data instance D, while the depen-
dencies Σ feature “hard” constraints, dealing with incom-
pleteness, inconsistencies and other matters. For instance, if
the data comes from multiple sources, Σ may include data-
exchange type of rules, to “export” all the data into a unique
target schema. The MLN M models “soft” constraints. We
disallow context tuples featuring lower bounds (invalid con-
texts), since it would deem an annotation to be undefined on
some dimension. Finally, α adds “scopes” to facts or depen-
dencies, allowing the context to be treated as orthogonal to
the data. We resort to a function provided as an input along-
side D and Σ , to allow applying our approach to legacy data
and ontologies, while avoiding tampering with them. For
instance, Example 5 could come from Linked Data repos-
itories, with provenance annotations corresponding to the
URL(s) each fact can be found at, and time annotations ob-
tained using techniques such as in (Hoffart et al. 2013).

Example 5.
Let YEARS = {−∞, 2006, . . . , 2016,+∞} be a finite

set, where −∞ and +∞ denote arbitrary years in the far
past and future, and TIME a time interval lattice defined as
{[a, b] | a ≤ b, a, b ∈ YEARS}\{[−∞,−∞]∪[+∞,+∞]}.
The order relation is the inclusion and [−∞,+∞] and [ ]
denote its upper and lower bounds. We also assume a set
of data sources SRC = {A,B,C}. Let S be the scenario
〈D,Σ,M, TIME × P(SRC), α〉 such that applying α on
D ∪ Σ yields the set of annotated formulas: {

party(JohnDoe, Tories)([2013,+∞],{C})

party(JohnDoe, Labour)([−∞,2014],{A})

bachelorFrom(JohnDoe, Imperial)([2010,+∞],{A,B})

opposes(JohnDoe, Brexit)([2012,+∞],{B,C})

Eurosceptic(JohnDoe)([−∞,2011],{B})

bachelorFrom(x, y)→CollegeGrad(x)([−∞,+∞],{A,B})

party(x, Tories)→Eurosceptic(x)([2007,2013],{A,C})

party(x, y)∧opposes(y, z)→opposes(x, z)([−∞,+∞],{A,B})

supports(x, y)∧opposes(x, y)→ ⊥([−∞,+∞],{A,B,C})

}, and the weighted formulas M are the following {
(¬CollegeGrad(x) ∨ opposes(x, Brexit), 6.0)
(¬party(x, Tories)∨support(x, Brexit), 3.0)

}.
The scenario states that John Doe belonged to both the Tory
and Labour parties, respectively from 2013 according to
C, and until 2014 according to A. From A and B, we see
that John holds a Bachelor’s degree from Imperial since
2010, and that irrespective to time, having a Bachelor
implies being a college graduate, and people oppose the
same things as their party. We also know from B and C that
John opposes the Brexit since 2012, but B also reports he
was eurosceptic until 2011. According to A and C, between
2007 and 2013 being member of the Tories implied being
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eurosceptic. All sources agree that one cannot support
and oppose the same things, regardless of time. Finally,
weighted formulas indicate that being a college graduate
implies opposing the Brexit, while to a lesser degree, being
a member of the Tories implies supporting it.

Query language. We now introduce two types of queries,
scope and support queries. Recall that our ultimate goal is
fact checking and as such we need a way to assess the truth-
fulness of claims in context. In our case, claims will take the
form of conjunctive queries. We start by defining queries of
the form “According to some given sources, is Mr. Doe eu-
rosceptic?” and “According to whom was he eurosceptic in
2010?”, described in the introduction.

Definition 3 (Scope Query). A scope query is of the form
Q:b, where Q is a conjunction of atoms, and b is an optional
“restriction” expressed as a conjunction of bindings #i=vi,
where #i refers to one of the components of K̇, and vi is a
value in the domain dom(Ki). A boolean scope query does
not contain any variable.

We also want to answer “reversed” queries, like “In
which context is Mr. Doe eurosceptic with confidence above
50%?”.

Definition 4 (Support Query). A (boolean) support query is
of the form Q/s, where Q is a (boolean) scope query and s
is a real number in [0, 1].

Semantics

To describe the semantics, we first modify the chase proce-
dure to account for contextual annotations. We assume as
usual a scenario S = 〈D,Σ,M, K̇, α〉.

Contextual chase. We call the contextual chase, denoted
chaseK̇(D,Σ, α), the closure of D under Σ, in the con-
text of K̇. Its output is a pair (D′, α′), such that D′ is
defined as the output of the conventional chase, and α′ :
{D′ ∪ Σ} → P(K̇)�⊥ is a new annotation function. α and
α′ coincide for every element in Σ, but may differ for in-
puts from D′. We describe inductively how α′ is obtained.
Before the first chase step, α0 = α. At the ith step, let
σ : φ1 ∧ · · · ∧ φn → ψ1 ∧ · · · ∧ ψm be the TGD under
consideration, μ a homomorphism from body(σ) to Di−1,
and μ′ the extension of μ to head(σ). αi is created as fol-
lows:

(i) ∀ψk ∈ head(σ), αi(μ
′(ψk)) = αi−1(μ

′(ψk)) ∪ A,
with

A={α(σ)⊗̇a1⊗̇ . . . ⊗̇an|a1∈μ(φ1), . . . , an∈μ(φn)}
(ii) for every other input, αi(x) = αi−1(x)

In other words, a chase step propagates sets of annotations
of the facts from which μ originates. For each entry in the
product of these sets, the ⊗̇-operator is used to produce a
new annotation which in turn is added to the function output
for each derived head atom. We note that, strictly speaking,
αi−1 may not be defined on all facts of Di, so we assume

the empty set is returned by default in those cases, i.e., ∀x ∈
Di\Di−1, αi−1(x) = ∅.

Chase steps for negative constraints are handled similarly.
However, we do not stop immediately after a contradiction
is derived, but rather, keep a set of annotations over ⊥. We
claim that this departure from the convention does not affect
the termination of the chase.

Proposition 1. Let D, Σ, K̇, and α be defined as usual. Then
chaseK̇(D,Σ, α) terminates iff chase(D,Σ) terminates.

Proof. In the absence of NCs, the output database D′ coin-
cides for the chase and the contextual chase by definition.
If NCs are present, there exists a chase steps ordering such
that no NC is fired until all TGDs are fired exhaustively. Fi-
nally, the number of annotations on any fact is bounded by
|K̇|.

We also note that at any chase step, the contextual chase
does a polynomial amount of extra work compared to the
conventional chase.

We now define the notion of projection, which restricts a
database and a set of dependencies to a given context.

Definition 5 (Projection). Given an annotation function α
defined as usual, a projection of α over some context tuple
w ∈ K̇, denoted αw, is a restriction on the range of α such
that any annotation set A is replaced with {v | u ∈ A, v =
u⊗̇w}.

Intuitively, a projection narrows the scope of annotation
on fact and dependencies to contexts dominated by the pro-
jection tuple. Tuples in K̇ capture possible worlds, i.e., for
some projection context w ∈ K̇, a fact or dependency is
considered to hold if it has some annotation tuple v such
that v⊗̇w is valid. This is a significant departure from MLNs
and derived frameworks, where a possible world is a subset
of the Herbrand base. Let φ be a ground formula in nega-
tion normal form, with atoms in chase(D,Σ), and w ∈ K̇

some context tuple. We say that a scenario 〈D,Σ,M, K̇, α〉
contextually satisfies φ w.r.t. w, denoted D ∪ Σ |=K̇,αw

φ,
if chaseK̇(D,Σ, α) = (D′, α′), and φ holds in D′ under the
projection α′

w.

Definition 6 (Contextual interpretation).
Let S = 〈D,Σ,M, K̇, α〉 be a scenario. A contextual in-
terpretation is a probability distribution over contexts, such
that ∀x ∈ K̇,

P (x) = Z−1exp
[
π(x)×

∑
i

wini(x)
]

(4)

where ni is the number of groundings of a formula φi ∈ M ,
such that D∪Σ |=K̇,αx

φi, and π(x) is a function returning
a constant in [0, 1] if D ∪ Σ |=K̇,αx

⊥, and 1 otherwise.

The penalty function π is an external parameter that mod-
ulates how strictly contradiction shall be treated. In our run-
ning example, we use a penalty of 0. This means that rather
counter-intuitively, a context may have lower probability
than another one it dominates, e.g. if it entails a contradic-
tion while the other does not. For this reason, we make the
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Figure 1: Contextual function for Eurosceptic(JohnDoe),
with input bindings TIME=[−∞,+∞] (i) and SRC={B,C}
(ii). Cells in (ii) denote intervals, e.g. [2008, 2012] in gold.

assumption that contexts are independent, despite the fact
that projecting on two distinct contexts may yield the same
valid fact and dependencies. Note that when the ontology
is context-independent (i.e., α returns �̇ on any input), all
contexts are equiprobable.

Definition 7 (Contextual function). A contextual function of
a ground formula φ, is a function β:K̇ → [0, 1], defined as:

β(x) =
∑

{w|w�̇x,D∪Σ|=K̇,αw
φ}

P (w) (5)

The contextual function allows exploring how conclu-
sions vary with contexts. To “drill down”, it suffices to re-
strict the domain of β by binding parts of the inputs. For
instance, let Ki be some arbitrary context with K̇, with
1 ≤ i ≤ n and v ∈ dom(Ki), then β |#i=v (x) ranges over
the tuple of K̇ whose ith position equals v.

Example 6. Figure 1 visually represents the contextual
function for the fact Eurosceptic(JohnDoe) of our running
example. Figure 1 (i) depicts the function with the restric-
tion TIME = [−∞,+∞] applied. In this case, the function
ranges over the power set of sources and shows for instance
that B is the single source with the strongest confidence that
John Doe is eurosceptic over that period. In Figure 1 (ii), the
restriction is SRC = {B,C}. Each cell in the figure depicts
a time interval, with darker colors corresponding to higher
values. Looking at each 1-year interval sequentially, we see
that confidence was low until 2011, dropped to 0 in 2012,
peaked in 2013, and finally dropped to 0 again until the end.

We now define query answering for scope queries which
relies on contextual functions.

Definition 8 (Scope query answering). Let Q:b be a scope
query, anScope(Q:b,S) is a set of results the form φ:β,
where φ is a conjunction of facts, and β is defined as
in Equation 5 for φ, and there exist a homomorphism
μ:vars(Q) → ΔC ∪ ΔN , s.t. φ = μ(Q) and μ(Q) ⊆
chase(D,Σ). The restriction b translates into the corre-
sponding restriction on β.

Example 7. The query “Who was euroscep-
tic between 2008 and 2014?” is expressed as
Eurosceptic(X): TIME = [2008, 2014].
The answer is Eurosceptic(JohnDoe):{{A} → .028,

{B}→.053, {C}→.042, {A,B}→.135, {B,C}→.138,
{A,C}→.113, {A,B,C}→.304}.

In other words, taking all sources into account, the claims
has a confidence of .304, while considering source A alone,
the measure drops to .028.
Definition 9 (Support query answering). Let Q/s be a sup-
port query, anSupport(Q/s,S) is the set of results of the
form φ:E, where E is a set of contexts such that ∀e ∈ E, s ≤
β(μ(Q)), with φ, μ and β defined as in Definition 8.
Example 8. The query Eurosceptic(x)/.5 asks in what con-
text(s) the conjunction has at least 50% confidence. The an-
swer is Eurosceptic(JohnDoe): {{[−∞, 2014], {A,B,C}},
{[2006, 2015], {A,B,C}}, {[2008, 2016], {A,B,C}},
{[2009,+∞], {A,B,C}}, . . . }.

Algorithms

We now to turn to how implement query answering. We
first describe a naı̈ve algorithm for answering scope queries,
inspired from the Threshold Algorithm in (Gottlob et al.
2013). The inputs are a scenario S, a scope query Q:b. The
algorithm loops over all contexts w ∈ K̇. For each context,
we project the data instance and dependencies over w and
chases. We compute the individual score for w (Equation 4),
and update Z. For each match r of Q in the chase closure,
we update the result by iterating of over all contexts satisfy-
ing b, and dominated by w. For support queries, one needs
to answer its scope query first, and keep only those context
mapping to values exceeding the support.
Theorem 1. Query answering is PTIME-complete in data
complexity for both scope and support atomic queries, under
guarded TGDs.

Proof (Sketch). This follows from Theorem 1 in (Gottlob et
al. 2013), and the observation that |K̇| is also considered
constant here. Computing the chase under guarded TGDs for
the query Q is PTIME-complete. This also holds for the con-
textual chase since, it only requires a polynomial amount of
additional work. Updating the result requires an additional
nested loop over K̇, selecting the relevant context to the cur-
rent function input, re-chasing and recompute the score.

In general, one can expect K̇ to be large, rendering the
above algorithm of little practical use. It is common how-
ever to materialize the output of the Chase before evaluating
a query over it. We can thus move the Chase outside the loop,
using the observation that chasing once with α and project-
ing later on w has the same effect as projecting first and
chasing afterwards. This also implies that not all context tu-
ples need to be kept alongside each derived fact, but only the
maximal ones, saving both space and time in the contextual
chase. Finally, assuming the context is topologically sorted,
it is possible to exploit results from prior rounds in the nested
loop, and interrupt it early. This yields Algorithm 1. The
function computeScore uses Equation 4 to compute the fi-
nal probability of the context associated with w (for which
we keep Z up-to-date in line 5). For cases where K̇ is still
too large, we plan to adapt the algorithm to existing approx-
imate methods to estimate the most probable worlds.
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input : S = 〈D,Σ,M, K̇, α〉 and Q:b
output: R, a set of results of the form r:β

1 (D′, α′) ← chaseK̇(D,Σ, α)

2 foreach w ∈ K̇ in topological order do
3 α′

w ← projection of α′ over w
4 pw ←computeScore(M,D′, α′

w)
5 Z ← Z + pw
6 if w agrees with b then
7 foreach match r of Q do
8 // Obtain r:β from R if present
9 if r holds under α′

w then
10 r:β(w) ← r:β(w) + pw
11 foreach v̇w do
12 r:β(w) ← r:β(w) + r:β(v)
13 end

14 end
15 R ← R ∪ r:β
16 end

17 end

18 end
19 return R

Algorithm 1: Semi-Naı̈ve Scope Query Evaluation

Related Work

The current work draws connections between recurring
problems in Web data: coping with uncertainty, incomplete-
ness, inconsistencies and provenance. Many approaches
have been devised to marry programming language or logic
with probabilistic models (Goodman 2013), among which
Relational Markov Network (Bunescu and Mooney 2004)
or the BLOG language (Milch, Marthi, and Russell 2004),
based on MN and Bayesian Networks (BN), respectively.
Probabilistic databases, such as MYSTIQ (Boulos et al.
2005) and MayBMS (Huang et al. 2009), have also thrown
a bridge between the relational and probabilistic models
with the goal of scaling to large data instances. Dealing
with incompleteness and uncertainly has also been explored
in probabilistic Datalog (Fuhr 1995). The closest work to
ours is probabilistic Datalog± (Gottlob et al. 2013). While
our semantics and the problem we tackle are different, our
syntax is inspired from it. However, in that setting depen-
dencies are annotated with subsets of the Herbrand base
to specify in which possible world they may hold. In this
sense, we believe our syntax is more usable in practice.
Other semantics for probabilistic Datalog± have been pro-
posed (Riguzzi, Bellodi, and Lamma 2012). Provenance
semirings can be used to jointly deal with incompleteness
and uncertainty (Green 2009).

A large body of research has explored the use of context
in logics for at least 20 years (McCarthy 1993), recent ex-
amples of which include (Joseph et al. 2016) and (Bozzato
and Serafini 2014). Among others, in Multi-Context Logics
(MCL) and Distributed Description Logics (DDL), contexts
amount to local theories and so-called bridge rules (essen-
tially TGDs) are used to exchange knowledge across them in
a fixpoint computation. The notion of context in Contextual

Knowledge Repositories (CKR) (Serafini and Homola 2012)
is also close to ours. To the best of our knowledge, these do
not deal with uncertainty in the way introduced here.

Computational journalism is an emerging research
field (Cohen, Hamilton, and Turner 2011), of which compu-
tational fact checking is an active branch pioneered with (Wu
et al. 2014). The authors formulate claims as SQL query
templates and explore the parameter space to reveal how
conclusions change. Two other recent works (Lehmann et al.
2012; Ciampaglia et al. 2015) fall into the category of “fact
validation”. The input is an RDF triple whose truthfulness is
assessed w.r.t. some distance is computed from background
data either coming from knowledge bases or extracted from
Web pages. Fact validation also gets attention from the NLP
community where for instance “textual entailment” is a pop-
ular problem (Mineshima et al. 2015). In (Hassan, Li, and
Tremayne 2015), the authors aim to automatically classify
claims worthy of further verification.

Our objective is to assess the validity of claims within one
or more contexts. In context-sensitive probabilistic query
answering (Ngo and Haddawy 1997) a query Q and a set
of evidence E are used to construct a BN and compute
P(Q | E). In this work, we use lattice-valued annotations
to model contexts, without interfering with the data itself.
More generally, such annotations have long been a popu-
lar tool to “overlay” meta-data over existing data. Gener-
alized Annotated Logics (Kifer and Subrahmanian 1992)
pioneered this idea originally to deal with inconsisten-
cies in logic. Recently, similar ideas have been extended
and adapted to the RDF/SPARQL (Dividino et al. 2009;
Zimmermann et al. 2012). The latter builds upon provenance
semirings, and defines a more actionable method to deal
multiple annotation domains. They suggest combining do-
mains into functions mapping from one domain into another,
an approach bearing similarity with contextual functions.

Discussion and future work

We have introduced a model and language to support the
task of checking claims against background data. Observ-
ing that the task is inherently context sensitive, our approach
combines earlier works on data management in the presence
of incompleteness and inconsistency, as well as annotations,
making context a first-class citizen in the process. The lan-
guage and the algorithms proposed in this paper could serve
as a foundation for assisted fact checking system implemen-
tations. We plan to extend the language, to allow other types
of aggregation in contextual function (e.g. average, max) and
other types of reasoning (e.g. weight learning), and evaluate
its usefulness on real-world data.

Beyond fact checking, we think of adapting and applying
our approach to knowledge base construction and incident
analysis. The former has recently accomplished impressive
progress, due in part to careful and efficient MLN implemen-
tations. However, inferring context-dependent facts remains
a difficult challenge. Likewise, our approach could be in-
strumental in building better systems for incident prevention
and recovery, making it possible to explore possible causes
of events from different angles.
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