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Abstract

In this work, we study the guaranteed delivery model which
is widely used in online advertising. In the guaranteed deliv-
ery scenario, ad exposures (which are also called impressions
in some works) to users are guaranteed by contracts signed in
advance between advertisers and publishers. A crucial prob-
lem for the advertising platform is how to fully utilize the
valuable user traffic to generate as much as possible revenue.
Different from previous works which usually minimize the
penalty of unsatisfied contracts and some other cost (e.g. rep-
resentativeness), we propose the novel consumption mini-
mization model, in which the primary objective is to mini-
mize the user traffic consumed to satisfy all contracts. Under
this model, we develop a near optimal method to deliver ads
for users. The main advantage of our method lies in that it
consumes nearly as least as possible user traffic to satisfy all
contracts, therefore more contracts can be accepted to pro-
duce more revenue. It also enables the publishers to estimate
how much user traffic is redundant or short so that they can
sell or buy this part of traffic in bulk in the exchange market.
Furthermore, it is robust with regard to priori knowledge of
user type distribution. Finally, the simulation shows that our
method outperforms the traditional state-of-the-art methods.

Introduction

Online advertising is now an industry which is worth tens of
billions of dollars. According to the latest report released by
Interactive Advertising Bureau (IAB 2016), the annual rev-
enue of online advertising in the US reaches $59.6 billion in
2015, which is $10.1 billion higher than that in 2014. In on-
line advertising, ad exposures (also called impressions) are
sold in two major ways: either in spot through real-time bid-
ding (or RTB) or in advanced by guarantee delivery (or GD)
(Chen, Yuan, and Wang 2014). Although RTB is develop-
ing rapidly, only 13% of publishers’ revenue is generated by
RTB by the year 2012 (eMarketer 2012). Large amounts of
ad exposures are still sold through GD.

GD is usually adopted by top tier advertisers (Apple,
P&G, Coca-Cola etc.) and publishers (Yahoo!, Amazon
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etc.). Generally, top tier publishers have frequently vis-
ited web pages and large amounts of first-hand user data.
These resources are valuable, and undoubtedly, heavily at-
tractive for advertisers, especially for those top tier advertis-
ers. When promoting their products or brands, top tier adver-
tisers usually prefer to sign a contract with publisher of high
quality to ensure advertising effects. This contract contains
targeted user types (what kinds of users the ads can only be
displayed to) and the amount of exposures of corresponding
ad to those targeted users. Publisher should comply with this
contract and is paid when this contract is satisfied.

Previous works usually focus on meeting the require-
ments of all contracts. Specifically, they perform study on
designing delivery policy to minimize some loss functions,
which are related to unsatisfied contracts and other particu-
lar requirements such as representativeness and smoothness
of delivery (Chen et al. 2012; Lefebvre, Contournet, and
Crivelli 2012). In this work we propose a novel optimiza-
tion model, in which the primary target is to minimize the
user traffic (or page views of users) within the constraint of
satisfying all exposure requirements. Compared to previous
model, this model has more practical value:

• For most publishers, the redundant user traffic1 will be
sold in exchange market to avoid waste. However, com-
pared with contract orders, selling user traffic in exchange
market is usually less profitable. User traffic consump-
tion for all contracts is minimized implies that more con-
tracts can be accepted. Consequently, the proportion of
user traffic sold to exchange market is decreased.

• Under the consumption minimization model, the amount
of required user traffic can be estimated with proper de-
livery policy. This estimation can be viewed as an impor-
tant indicator to predict how much user traffic is redun-
dant or short. Then, publishers can sell or purchase user
traffic in bulk, which is more profitable than doing that
in scattered. This estimation is also useful for order man-
agement. When a particular contract comes, publisher can

1The part of user traffic that is not targeted by any contract or
corresponding contracts are already satisfied.
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make decision on whether to accept it based on the change
of user traffic consumption.

Contributions

In this work we propose a practical consumption minimiza-
tion model for Guarantee Delivery. Under this model, we
provide the theoretical analysis and design a near optimal
delivery policy. Our contributions mainly consist of two
parts which are listed as follows.

Theoretical analysis for optimal expected user traffic con-
sumption. By employing some fundamental results in stop-
ping theory, we prove that the optimal offline expected user
traffic consumption is lower bounded by an expected flow
(THEOREM 1). This is shown to be very useful for per-
formance measurement of delivery policies. Besides, we
construct an optimal online delivery policy based on a re-
cursion. However, solving this recursion needs exponential
time, which motivates us to design more efficient approxi-
mation delivery policy.

Efficient near optimal delivery policy. Inspired by some
insights derived from the proof of lower bound for optimal
offline user traffic consumption, we design a flow based de-
livery policy (ALGORITHM 1) in the online setting. This de-
livery policy has several advantages:
(i) It consumes nearly as least as possible user traffic to sat-

isfy all exposure requirements. Let n stand for the number
of user types. If the total amount of all ads exposures is
large enough, which is a realistic assumption in practice,
the delivery policy achieves a near optimal competitive
ratio 1 + 1

poly(n) (THEOREM 2).

(ii) It is robust on the priori knowledge of user type distri-
bution. As this distribution is learned from history data, it
usually has a bias compared to the real one. It is a concern
that whether this bias will influence the delivery efficiency
significantly. For this issue, we provide a robustness re-
sult indicating that when the bias between the learned user
type distribution and the ground truth is bounded, the loss
on delivery efficiency is also bounded (THEOREM 3).

(iii) Our policy can estimate user traffic consumption as
well (THEOREM 2). As aforementioned, this estimation
is very useful for order and traffic management.

(iv) Our delivery policy is also flexible. It can be easily im-
plemented to reach some other requirements, such as rep-
resentativeness and smoothness of delivery (REMARK 1.).
According to simulation experiments, our delivery policy

works well under different settings and outperforms other
delivery policies including the well known HWM policy
(Chen et al. 2012).

Related Works

Online advertising is a hot topic concerned by researchers
in both economic and computer science communities. We
discuss the line of works that are most related to our paper.

The GD problem has been well studied as a special ver-
sion of online assignment in theoretical domain. The clas-
sical online assignment problem studies adversary (or worst
case) setting, such as (Karp, Vazirani, and Vazirani 1990;

Mehta et al. 2007; Agrawal, Wang, and Ye 2014; Sun,
Zhang, and Zhang 2016). Some generalizations take distri-
bution information into account. In the work (Feldman et al.
2009), the authors study the online matching problem when
types of users are drawn independently from a known dis-
tribution, which is similar to our setting. However, their tar-
get is to maximize the matching size when there are n users
in total. They propose an algorithm with competitive ratio
0.6702. This result is improved by works such as (Bahmani
and Kapralov 2010; Jaillet and Lu 2013). Correspondingly,
authors in the work (Karande, Mehta, and Tripathi 2011)
study the online matching problem when the distribution of
user types is unknown. In the work (Vee, Vassilvitskii, and
Shanmugasundaram 2010), the authors propose the online
allocation problem with forecast and suppose there is a sam-
ple set of vertices that will come online. They provide a gen-
eral framework to optimize several object functions which
satisfy some constraints. According to (Chen et al. 2012),
this framework is sensitive to the accuracy of the forecast
and requires solving a non-linear convex problem. We refer
to the survey (Mehta 2012) for a systemic view.

Some more practical works have also been done in this
field. In the work (Chen et al. 2012), the authors propose a
delivery policy which is called High Water Mark (or HWM).
It is efficient, space saving and stateless so that can run in
parallel on distributed machines. However, it is not designed
to optimize the user traffic consumption. Numerical results
in the experimental part of our work show that HWM is not
good enough when considering user traffic consumption. In
the work (Lefebvre, Contournet, and Crivelli 2012), the au-
thors design a policy called SHALE, which can be treated
as an improvement of HWM. Actually, SHALE achieves
a better performance on delivery with a loss on efficiency.
However, SHALE is a heuristic algorithm, and usually needs
specific number of iterations, which is sensitive to input, to
get good enough results. A common problem for HWM and
SHALE is that expected user traffic consumption is hard to
estimated. Both HWM and SHALE take representativeness
into consideration, which means ads in one campaign should
be delivered somehow fairly to users among all targeted user
types, instead of only partial types. Besides, user reach (the
number of different individuals who see the ad) and deliv-
ery frequency (the number of times a user should see the
ad) are also concerned by some works (Turner et al. 2014;
Shen, Li, and Chen 2014).

In this work, we assume the user type distribution D is
known in advance and the types of users are sampled from
this distribution, while in other works, such as (Cetintas,
Chen, and Si 2013; Cetintas et al. 2011), authors study how
to estimate user traffic in a particular period. Another line
of works concern the pricing mechanism and revenue max-
imization in GD (Bharadwaj et al. 2010; Radovanovic and
Heavlin 2012). In the work (Bharadwaj et al. 2010), two al-
gorithms are provided to calculate the price of each guaran-
teed contract based on the price of each targeted user.

As RTB is adopted by more and more publishers, some
works study how to combine RTB and GD to make more
profit. In the work (Ghosh et al. 2009), publishers are
considered to act as bidders for guaranteed contracts. In
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works (Araman and Popescu 2010; Balseiro et al. 2011;
Chen, Yuan, and Wang 2014), a similar framework is consid-
ered that publishers can dynamically select which ad cam-
paign contract to accept. In the work (Chen, Yuan, and Wang
2014), it is shown that RTB and GD can be seamlessly com-
bined programmatically and the authors provide some re-
sults about what percentages of user traffic should be sold in
GD and what the price is.

Consumption Minimization Model

In guaranteed delivery (GD) scenario, users are categorized
into a set of atomic types according to their traits, e.g., ge-
ographic, gender, age etc. Atomic means each user visiting
the publish platform can only belong to a unique type. Each
advertiser has one or more ad campaigns and each campaign
corresponds to a contract with publisher. The contract speci-
fies how many times the corresponding ad should be exposed
and the set of targeted user types. See Figure 1 as an exam-
ple. The first ad campaign reserves 200 thousand exposures
and all users at the age of 20 to 25 are targets of this cam-
paign. Thus when a user who satisfies this requirement visits
the platform, corresponding ad can be displayed to this user.

200K {Age [20, 25]}

1M {Female, Age [20, 30]}

500K {Male, Age ≥ 30}

2M {UK, Age [20, 30]}

{Male, Age = 20}

{Female, UK, Age = 20}

{Male, UK, Age = 30}

{Female, Age = 30}

{Male, US, Age = 30}

Demand Supply

Figure 1: An example of ads campaigns in GD.

The ad campaigns and user types relationship can be for-
mally modeled as a demand-supply graph G = (A,U,E)
with |A| = m and |U | = n. The nodes in A stand for
m ad campaigns, while nodes in U stand for n user types.
For each ad campaign ai ∈ A and user type uj ∈ U , the
edge (ai, uj) ∈ E means that uj is targeted by ai. Con-
ventionally, for any v ∈ A ∪ U , we use Γ(v) to stand
for the neighbors of v in G. Wi stands for total amount
of exposures that ai reserves in the contract. We denote
W = {W1,W2, · · · ,Wm} for convenience, and let M �∑m

i=1 Wi. We can safely assume M � n.
We assume the users come one by one online. Once a user

visits the publish platform (we call it a user visit), her type
is revealed and the publisher should irrevocably deliver only
one ad2 (we call it an exposure). Usually, there are large
amounts of users’ visiting logs available on the publish plat-
form, thus, we assume that each user type is drawn from
a distribution D = {pj | 1 ≤ j ≤ n} which can be learned
from those log data. That is, for any unseen user, she belongs
to type uj with probability pj , which satisfies

∑n
j=1 pj = 1.

We define pmin (resp. pmax) as the minimum (resp. maxi-
mum) arrival probability. D is considered as a part of the
input. Thus, the input instance I is a triple (G,W,D).

2Our results can be easy extended to meet multiple delivery re-
quirement. See the full version (Zhang et al. 2016) for detail.

Our objective is to design an ads delivery policy to min-
imize the expectation of user traffic. Here the user traffic
consumed means the number of users’ visits when all con-
tracts are fulfilled. It is a random variable due to the un-
certainty of user traffic and the delivery policy. This is the
consumption minimization problem for user traffic (abbrevi-
ated as CMPUT). For a delivery policy π, we employ the
concept of competitive ratio to measure its performance. We
say π has a competitive ratio c if and only if for any input in-
stance, E(π)

E(OPT ) ≤ c, where E(π) is the expected user traffic
consumed by policy π and E(OPT ) is the expectation of
optimal user traffic consumption when the publisher is al-
lowed to modify previous delivery decisions. We also call
E(OPT ) optimal offline expected user traffic consumption.

We provide several important definitions for further anal-
ysis. Given an input instance I = (G,W,D) and a non-
negative number T , we can construct an expected network
FG(T ) by adding two nodes s (source) and t (sink) into
G and set the capacities as follows. For ai ∈ A, we con-
nect s with ai and set the capacity of the edge (s, ai) as
Wi. For uj ∈ U , we connect t with uj and set the ca-
pacity of the edge (uj , t) as Tpj . For those edges in E,
we just set their capacities as M . Let MAX-FLOW(FG(T ))
stand for the maximum flow that can pass through FG(T ).
Zflow is defined as the minimum value of T that satisfies
MAX-FLOW(FG(T )) = M .

Theoretical Analysis
In this section we first prove a lower bound of the optimal
offline expected user traffic consumption, and then construct
an optimal online policy based on a recursion which needs
exponential time to solve. To beat this hardness we develop
an efficient and near optimal flow based policy.

Lower Bound for Optimal Offline User Traffic
Consumption

The main tool we employ to develop our lower bound is
Wald’s identity (Wald 1944). Wald’s identity is a foot stone
in optimal stopping theory. Here we use a variant introduced
in work (Blackwell 1946), and it can be described as follow.

Wald’s Identity. Let X1, X2, · · · be i.i.d. random vari-
ables with E(X1) < ∞, and let τ be a stopping rule which is
independent with Xτ+1, Xτ+2, · · · and satisfies E(τ) < ∞,
then there has E(

∑τ
i=1 Xi) = E(τ)E(X1).

To use Wald’s Identity, we need an upper bound of
E(OPT ). Consider a simple delivery policy called RAN-
DOM, in which each ad campaign ai is expanded as Wi

ads. These ads target the same types of users and each of
them needs to be exposed only once. When a user that be-
longs to uj comes, RANDOM uniformly chooses one ad from
all valid ones waiting for exposure. For each uj , denote
W (uj) =

∑
ai∈Γ(uj)

Wi, we have the following result.

Proposition 1.

E(RANDOM) ≤
∫ ∞

0

(1−
m∏
i=1

(1− e
−t

∑
uj∈Γ(ai)

pj
W (uj) )Wi)dt.

Proof. In RANDOM, each expanded ad will be deliv-
ered with probability

∑
uj∈Γ(ai)

pj

W (uj)
when the first
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user comes. This probability will increase with more and
more ads are delivered. If we fix the probability just as∑

uj∈Γ(ai)
pj

W (uj)
, the GD problem is reduced to the non-

uniform coupon collection problem, and according to the
work (Flajolet, Gardy, and Thimonier 1992), the expected
user traffic consumption can be calculated by an integral as
shown in this proposition. Clearly, this integral will converge
to a value, which is an upper bound of E(RANDOM).

According to above proposition, E(OPT ) ≤
E(RANDOM) < ∞.

Denote Uj as the number of users belong to type uj

when all contracts are fulfilled and let [n] stand for the set
{1, 2, · · · , n}. We can use Wald’s Identity to show the fol-
lowing proposition.

Proposition 2. E(Uj) = pjE(OPT ) for any j ∈ [n].

Proof. This is a direct application of Wald’s Identity. Fix
any j ∈ [n], define

Xt =

{
1, the t-th user belongs to type uj ,

0, otherwise.

We can find that {Xt}t≥1 is a sequence of i.i.d. ran-
dom variables and E(Xt) = pi < ∞. In addition,
the stopping time of the policy, i.e. OPT is indepen-
dent of XOPT+1, XOPT+2, · · · and E(OPT ) < ∞. Thus
E(Uj) = E

(∑OPT
t=1 Xt

)
= pjE(OPT ).

Theorem 1. For any input instance, E(OPT ) ≥ Zflow.

Proof. According to the definition of Zflow and the prop-
erty of maximum flow, there exists a subset S ⊆ A such that∑

ai∈S Wi ≥ ∑
uj∈Γ(S) pjZflow, where Γ(S) ⊆ U is the

set of user types targeted by ad campaigns in S. Otherwise,
Zflow can be decreased to a smaller value which still satis-
fies MAX-FLOW(FG(Zflow)) = M. It is a contradiction to
the definition of Zflow.

On the other hand, the delivery procedure can stop only if
the ad corresponding to campaign ai has been delivered Wi

times, thus
∑

uj∈Γ(S) Uj is always no less than
∑

ai∈S Wi.
According to PROPOSITION 2, we have E(Uj) =

pjE(OPT ) for any i ∈ [n], thus
∑

uj∈Γ(S)

pjE(OPT ) = E
∑

uj∈Γ(S)

Uj ≥
∑

uj∈Γ(S)

pjZflow,

which implies E(OPT ) ≥ Zflow.

Optimal Online Delivery Policy

Suppose the first user comes with type uj . If no ad cam-
paign targets uj , nothing will be delivered to this user; oth-
erwise, the delivery policy should decide which ad in Γ(uj)
will be delivered. It is easy to argue that if Γ(uj) is not
empty, delivering nothing can not be better than delivering
any arbitrary ad to the user. Suppose ai ∈ Γ(uj) is deliv-
ered, then the problem is reduced to a sub problem in which
ad ai should be delivered Wi − 1 times. For convenience,
we construct an input I(i) = (G,W (i),D), where W (i) =

{W1, . . . ,Wi−1,max{0,Wi − 1},Wi+1, . . . ,Wm}. Based
on above analysis, in the optimal online delivery pol-
icy π∗, ai must be chosen to satisfy that ai =
argminak∈Γ(uj) E (π∗(I(k))), where E(π∗(I(k))) stands
for expected user traffic consumed by π∗ on input
instance I(k). According to the properties of con-
ditional expectation, we have E(π∗(I)) = 1 +∑n

j=1 pj minai∈Γ(uj) E(π∗(I(i))). Thus, π∗ can be con-
structed from bottom to top by dynamic programming (DP).
However, it is easy to check that there are

∏m
i=1(Wi + 1)

sub problems in this DP. Thus, exponential time is needed to
construct π∗ in this way. In fact, we believed that π∗ is hard
to construct in any way. This motivates us to design some
delivery policies with polynomial running time.

Delivery Policy Design for CMPUT

According to previous analysis, Zflow is highly related to
E(OPT ). It somehow reminds us to use expected flow to
guide ads delivery. Inspired by this insight, we design a flow
based delivery policy.

Flow Based Delivery Policy As shown in ALGORITHM 1,
the flow based delivery policy can be divided into two parts:
the offline part and the online part. In the offline part, we first
construct an expected network with integer capacities on all
edges, that’s F̂G(Ẑ) used in ALGORITHM 1. The difference
between FG(Ẑ) and F̂G(Ẑ) lies in that the capacity of edge
(uj , t) is set to be 	Ẑpj
 for j ∈ [n] in the latter. Then we
find the minimum value of Ẑ while ensuring the max flow on
F̂G(Ẑ) is no less than M . To find such a value of Ẑ, we ex-
tend the idea of binary search, that’s to say, we enumerate a
value Ẑ, and calculate MAX-FLOW(F̂G(Ẑ)), then adjust the
value of Ẑ with a similar idea of binary search. According to
the properties of maximum flow, the traffic on each edge in
maximum flow is a non-negative integer when the capacities
of all edges are integers. This is why we use F̂G(Ẑ) instead
of FG(Ẑ). In the online part, when a user comes, we deliver
a proper ad according to the maximum flow of F̂G(Ẑ).

Note that we haven’t specified how to deliver an ad
according to the maximum flow of F̂G(Ẑ) in the line
REM. Actually, FLOW-BASED-DELIVERY-RULE stands for
a class of delivery rules which satisfy that when there are no
less than 	Ẑpj
 users of type uj come to the publish plat-
form, either all ads of ai are delivered or no less than Ci,j

ads of ai are delivered to users of type uj . We can implement
a FLOW-BASED-DELIVERY-RULE according to particular
requirements, such as representativeness and smoothness of
delivery. Here we give a simple implementation in ALGO-
RITHM 2.

Next, we will prove that the performance of ALGORITHM
1 is quite good by showing that it is close to the lower bound
provided in THEOREM 1 when Mpmin = Ω(n−ε) for ε > 0.
The main tool we employ is the Chernoff Bound, which is
an important tool in probability theory. Besides the Cher-
noff Bound, the full proof of THEOREM 2 mainly depends
on delicate analysis of expectation. We leave this proof in
supplemental material of the full version (Zhang et al. 2016).
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Algorithm 1: Expected Flow Based Delivery Policy
INPUT: I = (G,W,D).
OFFLINE PART:

Set Ẑ ← M/2.
repeat

Set Ẑ ← 2Ẑ.
Construct an expected network F̂G(Ẑ).

until MAX-FLOW(F̂G(N̂)) ≥ M ;
Set Begin ← Ẑ/2, End ← Ẑ.
repeat

Set Mid ← (Begin+ End)/2.
if MAX-FLOW(F̂G(N̂)) < M then

Set Begin ← Mid+ 1.
else

Set End ← Mid.
until Begin ≥ End;
Set Ẑ ← Begin.
for each (ai, uj) ∈ E do

Set Ci,j as the traffic passing through (ai, uj) in
the maximum flow of F̂G(Ẑ).

ONLINE PART:
for each user comes to the publish platform do

if M = 0 then exit.
Suppose uj is the type of this user.

REM Set i ← FLOW-BASED-DELIVERY-RULE(uj).
IF if i = NULL then

Taking this user for other purpose.
Deliver an ad of ai to current user.
Set Wi ← Wi − 1 and M ← M − 1.

Algorithm 2: GREEDY-DELIVERY-RULE

GREEDY-DELIVERY-RULE(uj)
Set i′ ← argmaxai∈Γ(uj),Wj>0 {Ci,j}.
if we can’t find such an i′ then

return NULL.
Set Ci′,j ← Ci′,j − 1.
return i′.

Theorem 2. Given ε > 0, when Mpmin = Ω(nε), the ex-
pected user traffic consumption of ALGORITHM 1 is at most(
1 +O

(
n−ε/2

)) · Zflow, which implies that it achieves a
competitive ratio 1 +O

(
n−ε/2

)
.

Remark 1. It should be pointed out that the flow based deliv-
ery policy can be generalized to solve the representativeness,
smoothness and multiple delivery issues. The details can be
found in the supplemental material of (Zhang et al. 2016).
Remark 2. The flow based delivery policy provides a thresh-
old that how many users of each type are needed to satisfy
all contracts, thus user traffic beyond this threshold can be
safely utilized for other purpose, such as sell it in an ex-
change market. It is shown in Line IF of ALGORITHM 1.

Robustness In our model, we assume the user type distri-
bution is accurate. However, there usually has a bias between
estimated distribution and the real one. The following anal-
ysis provides a robustness guarantee for flow based delivery
policy.

Given a delivery policy π, denote ED(π(D̂)) as the ex-
pected user traffic consumption when the distribution input
to π is D̂ while the real distribution is D. We also define p̂j
as the estimated probability for pj in D̂. Now we have the
following theorem for the flow based delivery policy. The
full proof is moved to supplemental material of (Zhang et al.
2016).

Theorem 3. Denote the flow based delivery policy as πf , for
any δ > 0, if (1− δ)pj ≤ p̂j ≤ (1 + δ)pj for each user type

aj , we have ED(πf (D̂)) ≤ (1+O(n−ε/2))(1+δ)
1−δ ED(πf (D)).

Experiments

In this section, we perform some simulations of the flow
based delivery policy and several other policies on differ-
ent random graphs. All experiment arguments are selected
to approximate the real world system. The results show the
superiority of the flow based delivery policy.

Experimental Setup

Hardware A desktop with an Intel i5-4570 CPU @ 3.2GHZ
and a 4GB DDR3 memory.
Settings Restricted by the business model of GD, the size
of demand-supply graph in real system is usually not large.
Thus we conduct experiments on a random demand and
supply graph with 500 ad campaigns and 1000 user types.
Edges are generated uniformly and randomly while the av-
erage degree of user types are fixed. To generate the user
types distribution D, we choose a random value rj > 0
for each uj , and set pj =

rj∑1000
l=1 rl

. rj is chosen in two
ways: rj is drawn uniformly from [0, 1] (we call this method
Random-Normalization) or rj equals to 1

1000 +ε, where ε ∼
N (0, 1/60002) (we call this method Gauss-Perturbation).
Delivery Policies We compare the flow based deliv-
ery policy (FB) with other four delivery policies, includ-
ing RANDOM, HWM, and two intuitive greedy policies:
PROBABILITY-GREEDY (PG) and DEGREE-GREEDY (DG).

Policies DG and PG are based on a straightforward idea
that ad campaigns that are difficult to be fulfilled should
have a higher priority. Specifically, when a user comes, the
ad with minimum degree on demand-supply graph is cho-
sen in DG, while in PG, it calculates a delivery value ri =∑

uj∈Γ(ai)
pj

W (uj)
for each ad campaign ai, and delivers an

ad with minimum delivery value. Recall that W (uj) =∑
ai∈Γ(uj)

Wi. For these policies, we compare their com-
petitive ratios and the robustness on different random graphs
and different user visiting sequences. On each generated ran-
dom graph, we simultaneously run five policies with 100
sampled user sequences. The competitive ratio for each pol-
icy is estimated as dividing the average user traffic consumed
on these sampled sequences by the average optimal user traf-
fic needed.

Experiments under Different Average Degrees

The first experiment is conducted under different average
degrees of user types. With a specific average degree, there
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are 100 input instances generated independently and ran-
domly. Half of them use Random-Normalization to generate
D, the others use Normalization-Perturbation. Wi is drawn
uniformly from [50, 100]. In the second experiment we will
show that the amount of exposures has little influence on
performance, thus a small value for Wi is enough.

Experiment results for average degrees 5, 10, 15, 20 and
25 are shown in Figure 2. The height of the bar stands for
the average competitive ratios on 50 input instances with
corresponding setting while the vertical lines indicate the
fluctuation ranges of those competitive ratios. According to
this figure, the flow based delivery policy has a much bet-
ter competitive ratio under all average degrees. These fluc-
tuation ranges of competitive ratios also show that the flow
based delivery policy is more robust on different graphs.

Surprisingly, DG is the second best policy. When the av-
erage degree is 5, its average competitive ratio is very close
to that of the flow based delivery policy with a gap about
0.015 for Random-Normalization and 0.035 for Gauss-
Perturbation. However, these gaps will be enlarged as the
average degree increases to 10, 15 and 20. From Figure 2
we can also find the fact that the performances of all delivery
policies will be improved continuously with average degree
increasing. In fact, when the average degree is large enough,
all polices are near optimal3. However, for the purpose of ac-
curately targeting, the demand-supply graph is usually very
sparse in real world.

In Figure 3, we show more detail experiment results of
five delivery polices on 50 input instances with Random-
Normalization and average degree 10. Figure 3a shows the
results of competitive ratios. The horizontal axis stands for
50 input instances. As we can see, the flow based deliv-
ery policy achieves a much better competitive ratio on each
input instance and it works more steadily. The worst case
performance among all sampled user visiting sequences on
50 input instances is shown in Figure 3b. Clearly, the flow
based delivery policy is more robust on the worst sampled
sequence too.

Experiments under Different Exposure

In this part, we compare five polices under different expo-
sure settings. The number of exposures for each ad cam-
paign is uniformly drawn from 100 to 2500, 5000, 10000
and 20000. We only consider average degrees of 5 and 10.
Similarly, 100 graphs are drawn independently, and for 50 of
them, we construct distributions by Random-Normalization
and for the rest, Gauss-Perturbation is used. Then input in-
stances are constructed with different exposure settings.

Figure 4 shows the results for Random-Normalization.
The flow based delivery policy outperforms other polices
under all exposure settings. We point out that the amount
of exposures seems to have little influence on the perfor-
mance for each delivery policy. It is somehow means the
user traffic consumption of each studied policy has a lin-
ear relationship with the total amount of exposures for a
fixed demand-supply graph. Besides, comparing Figure 4a

3Considering an extreme case that when the demand-supply
graph is complete, any reasonable delivery policy will be optimal.
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(b) Gauss-Perturbation

Figure 2: Comparison under different average degree with
Random-Normalization and Gauss-Perturbation. The height
of the bar is the average of competitive ratios on 50 input in-
stances and the vertical lines indicate the fluctuation ranges.

(a) Competitive ratios

(b) Performance on the worst user visiting sequence

Figure 3: Results for 50 input instances with average degree
10 and Random-Normalization. The horizontal axis stands
for those input instances.

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

 2500                               5000                               10000                             20000 

(a) degree = 5

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

 2500                              5000                             10000                             20000 

(b) degree = 10

Figure 4: Comparison under different exposures with
Random-Perturbation.

and 4b and combining previous experiments, we can find
that the structure of demand-supply is much more crucial
for the GD problem. Similar results are obtained for Gauss-
Perturbation. These results can be found in supplemental
material of (Zhang et al. 2016).

Conclusions and Future Works

In this work, we study the consumption minimization prob-
lem for user traffic, which lies in the heart of GD scenario.
We provide a lower bound for the optimal offline user traffic
consumption with an expected flow, which is shown to be
useful for performance evaluation. We then propose a flow
based delivery policy. This delivery policy consumes nearly
as least as possible user traffic to satisfy all contracts un-
der a realistic constraint. What’s more important, it is robust
with regard to estimation error of user type distribution and

257



shown to be very useful for order and traffic management.
There are some works remained to be done. For example,

there may be a time window for each advertiser indicating
the ad campaign’s starting time and deadline. Another inter-
esting problem is how to design delivery policy when adver-
tisers also come online instead of being revealed in advance.
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