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Abstract

The management of uncertainty is crucial when harvest-
ing structured content from unstructured and noisy sources.
Knowledge Graphs (KGs) are a prominent example. KGs
maintain both numerical and non-numerical facts, with the
support of an underlying schema. These facts are usually ac-
companied by a confidence score that witnesses how likely
is for them to hold. Despite their popularity, most of exist-
ing KGs focus on static data thus impeding the availability
of timewise knowledge. What is missing is a comprehensive
solution for the management of uncertain and temporal data
in KGs. The goal of this paper is to fill this gap. We rely on
two main ingredients. The first is a numerical extension of
Markov Logic Networks (MLNs) that provide the necessary
underpinning to formalize the syntax and semantics of un-
certain temporal KGs. The second is a set of Datalog con-
straints with inequalities that extend the underlying schema
of the KGs and help to detect inconsistencies. From a theoret-
ical point of view, we discuss the complexity of two impor-
tant classes of queries for uncertain temporal KGs: maximum
a-posteriori and conditional probability inference. Due to the
hardness of these problems and the fact that MLN solvers
do not scale well, we also explore the usage of Probabilistic
Soft Logics (PSL) as a practical tool to support our reasoning
tasks. We report on an experimental evaluation comparing the
MLN and PSL approaches.

Introduction

Open Information Extraction (OIE) or machine reading has
been announced as a new paradigm for extracting domain in-
dependent knowledge from large Web corpora (Banko et al.
2007; Etzioni et al. 2008; Pujara et al. 2013). OIE is of par-
ticular interest for the creation of knowledge graphs (KGs)
and enriching existing ones (Pirrò 2015). KGs like Google’s
knowledge graph (Dong et al. 2014), NELL (Mitchell et
al. 2015), and ReVerb (Fader, Soderland, and Etzioni 2011)
store probabilistic facts, that is, facts along with their confi-
dence scores witnessing how likely they are to hold. Indeed,
the automated construction of KGs often produces noisy and
inaccurate facts and rules with errors that can propagate
upon inference or knowledge base expansion (Chen and
Wang 2014). The harvesting of KGs poses some key chal-
lenges. The first concerns the need to clean KGs from noisy
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facts to avoid maintenance costs and provide reliable con-
tent. A limitation of existing methods (e.g., (Schlobach et al.
2007; Sirin et al. 2007)) is the lack of capabilities to deal
with probabilistic and temporal information. This leads to
situations where statements that refer to objects at differ-
ent points in time are assumed to be inconsistent. In addi-
tion, little has been done in terms of techniques to debug
uncertain KGs, with the exception of the preliminary results
in (Chekol et al. 2016; Huber, Meilicke, and Stuckenschmidt
2014; Chen and Wang 2014; Dylla, Sozio, and Theobald
2011). The second challenge is about providing temporal
information. Most of existing approaches have focused on
identifying static facts encoded as binary relations (Fionda,
Gutierrez, and Pirrò 2016). However, the vast majority of
facts are fluents (dynamic relations whose truth is a function
of time), only holding during an interval of time. Facts like
(ClaudioRanieri, coach, Chelsea) loose relevance without a
temporal scope (2000–2004 in this case). Inference or de-
duction rules and consistency checking constraints are use-
ful to both derive implicit/new facts from existing ones and
constrain or identify conflicting facts. As an example, the
date of birth of a person is functional. The broad goal of this
paper is to tackle the above challenges and study uncertain
temporal KGs. Specifically, we tackle the following general
problem:
Problem 1 Given an uncertain temporal KG G, a set of tem-
poral inference rules F , and a set of temporal constraints C,
what is the most probable and error free temporal KG?
Related work. Preliminary results that highlight the use of
Markov Logic Networks (MLNs) to debug temporal knowl-
edge bases are presented in (Chekol et al. 2016; Huber, Meil-
icke, and Stuckenschmidt 2014). The idea is to use hand-
crafted temporal constraints to identify conflicts in knowl-
edge bases containing date and time datatype values. How-
ever, this study: (i) does not provide a formal characteriza-
tion in terms of syntax and semantics, (ii) only considers a
subset of RDF(S) inference rules, and (iii) does not consider
constraints for debugging numerical attributes.

Dylla et al (Dylla, Miliaraki, and Theobald 2013) extend
probabilistic databases with a temporal dimension. Besides,
in an earlier version (Dylla, Sozio, and Theobald 2011), au-
thors proposed an approach for resolving temporal conflicts
in RDF knowledge bases. The idea is to use first-order logic
Horn formulas with temporal predicates to express temporal
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and non-temporal constraints. However, these approaches
are limited to a small set of temporal patterns and only al-
low for uncertainty in facts. Moreover, extending knowledge
graphs using open domain information extraction, will often
also lead to uncertainty about the correctness of schema in-
formation; a large variety of temporal inference rules and
constraints, some of which will be domain specific, can also
be the subject of uncertainty. Finally, Chen and Wang (Chen
and Wang 2014) debug erroneous facts by using a set of
functional constraints although they do not deal with numer-
ical and temporal facts at the same time.

Despite the general complexity of MLNs, it has been
shown that it can be used to reason about facts extracted
at Web scale using a combination of hand-crafted (Schoen-
mackers, Etzioni, and Weld 2008) and extracted inference
rules (Schoenmackers et al. 2010). MLNs can be used to
deal with temporal relations in open information extrac-
tion (Ling and Weld 2010) or check the consistency of
knowledge bases (Chen and Wang 2014). Building upon this
experience, we make use of an extension of MLNs to pro-
vide a formal characterization of uncertain temporal KGs.
Our contributions are the following: (i) a formal syntax and
semantics, based on a numerical extension of MLN, for un-
certain temporal KGs along with a set of temporal inference
rules, (ii) a formalization of the maximum a-posteriori and
conditional probability inference problems in uncertain tem-
poral KGs along with a study that shows how these problems
remain NP-hard and #P-hard respectively, and (iii) a set of
constraints to clean erroneous facts in KGs. To support the
theoretical results, we carry out a set of experiments using
state-of-the-art MLN solvers and their scalable variants.

Preliminaries
We now briefly outline KGs and MLNs along with their tem-
poral and numerical extensions, respectively. We also dis-
cuss probabilistic soft logic (PSL).

Knowledge Graphs

For ease of exposition we assume KGs to be encoded in the
W3C standard RDF data model (Hayes 2004). Let I and L
be two disjoint infinite sets denoting the set of IRIs (identi-
fying resources) and literals (character strings or some other
type of data), respectively. We abbreviate the union of these
sets (I∪L) as IL . A triple of the form (s, p, o) ∈ I×I×IL
is called an RDF triple1; s is the subject, p is the predicate,
and o is the object of the triple. Each triple can be thought of
as an edge between the subject and the object labeled by the
predicate; hence a set of RDF triples is referred to as an RDF
graph. We use the term knowledge graph loosely to refer to
an RDF graph.

Temporal Knowledge Graphs. In (Motik 2012; Gutier-
rez, Hurtado, and Vaisman 2005), it has been shown that an
RDF graph can be extended with temporal information by
labeling each triple in the graph with a temporal element.
The temporal element represents the time period in which
the triple is valid, i.e., the valid time of the triple. We con-
sider a discrete time domain T as a linearly ordered finite
1 We do not consider blank nodes.

sequence of time points; for instance, days, minutes, or mil-
liseconds. The finite domain assumption ensures that there
are finitely many possible worlds in MLNs. A time interval
is an ordered pair [t1, t2] of time points, with t1 ≤ t2 and
t1, t2 ∈ T , which denotes the closed interval from t1 to t2.
We will work with the interval-based temporal domain for
defining our data model. Note that point-based temporal do-
mains can be converted into interval-based domains by using
for every time point t an interval [t, t].

Definition 1 (Temporal KG) A temporal KG is a KG where
each fact (s, p, o) in the graph has a valid time [t1, t2], i.e.,
f = (s, p, o, [t1, t2]). We refer to f as a temporal fact.

For a temporal KG G, its snapshot at time t is the
graph G(t) (the non-temporal KG): G(t) = {(s, p, o) |
(s, p, o, [t, t]) ∈ G}. The KG associated with a temporal KG,
denoted u(G), is

⋃
t G(t), the union of the graphs G(t). We

define temporal entailment as follows: for temporal KGs G1

and G2, G1 |=t G2 if G1(t) |= G2(t) for each t; |=t de-
notes temporal entailment (Gutierrez, Hurtado, and Vaisman
2005) and |= is the standard RDF entailment (Hayes 2004).
We use MLNs to extend temporal KGs with uncertainty.

Markov Logic Networks

Markov Logic Networks (MLNs) combine Markov networks
and first-order logic (FOL) by attaching weights to first-
order formulas and treating them as templates for features of
Markov networks (Richardson and Domingos 2006). MLNs
have been extended with numerical (Chekol et al. 2016) and
continuous (Wang and Domingos 2008) constraints. In this
paper, we will use the numerical extension, specifically MLN
with numerical constraints, which is useful for reasoning in
uncertain temporal KGs.

Definition 2 A numerical constraint NC is composed of nu-
merical constants (such as elements of natural numbers N,
integers I, and so on), variables, elementary operators or
functions (such as, +, ∗, −, ÷, %,

√
), standard relations

(>, <, =, �=, ≥, ≤), and boolean operators (∧, ∨, ¬). An
MLN L with numerical constraints (simply MLN) is a set of
pairs (FCi, wi) where FCi is a FOL formula that may con-
tain a NC and wi is a real number representing the weight
of formula FCi.

Together with a finite set of constants C, a MLN with nu-
merical constraints defines a Markov Network ML,C , where
ML,C contains one node for each possible grounding of each
predicate appearing in L. The value of the node is 1 if the
ground predicate is true, and 0 otherwise. The probability
distribution over possible worlds x, specified by the ground
Markov network ML,C , is:

P (X = x) =
1

Z
exp

( F∑

i=1

wini(x)
)

where F is the number of formulas in the MLN and ni(x) is
the number of true groundings of FCi in x. The groundings
of a formula are formed simply by replacing its variables
with constants in all possible ways.
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Example 1 Using MLN it is possible to represent the hard
constraint: footballers born before 1850 are not alive:
footballer(a) ∧ bdate(a, y) ∧ NC(y) → dead(y), NC(y)
= y < 1850.
A common inference task with MLNs is finding the most
probable state of the world, i.e., finding a complete assign-
ment to all ground atoms which maximizes the probability.
This is known as maximum a-posteriori inference (MAP).
Finding a most likely world of an MLN is a generalization of
the (NP-hard) MaxSAT problem. Another equally important
inference problem is conditional probability inference. This
is the task of computing the probability of a set of variables
given evidence. The complexity of this problem is known to
be #P-hard (Richardson and Domingos 2006).

Our experimental findings indicate that MLN solvers do
not scale well. This comes as no surprise due to the com-
plexity of inference in MLN; thus we exchange their expres-
siveness for scalability and choose to use our extended prob-
abilistic soft logic (PSL) solver in the experiments.

Probabilistic Soft Logic

Probabilistic Soft Logic (PSL) uses first-order logic to spec-
ify templates for probabilistic graphical models. MLNs are
defined over Boolean variables whereas PSL is defined
over random variables with soft truth values in the inter-
val [0, 1]. In addition, PSL formulas are restricted to rules
with conjunctive bodies. PSL is a template language for
HR-MRFs (Hinge-Loss Markov Random Fields) that are de-
fined over continuous variables (Bach et al. 2015). Unlike
MLNs, PSL does not support negative weights. We chose
PSL over Tractable Markov Logic (TML) (Domingos and
Webb 2012) because it retains most of the rich expressive-
ness of MLN while being scalable. On the other hand, TML
imposes heavy restrictions on the structure of the KG to
achieve tractability. Due to this, most of the constraints and
rules that we use for experimentation are not applicable to
TML and its variants. By using probabilistic graphical mod-
els (for instance, MLN and PSL), it is possible to represent
uncertainty in temporal KGs.

Reasoning in Uncertain Temporal KGs

Uncertain temporal knowledge graphs (UTKGs) are exten-
sions of temporal KGs with probabilistic graphical models
that are capable of representing uncertainties and reason-
ing over temporal knowledge bases. A UTKG is a temporal
knowledge graph where each fact has a valid-time and an as-
sociated weight or confidence. In other words, each temporal
fact has a confidence value.
Syntax. A UTKG graph G = (D,U) consists of a determin-
istic (hard) temporal KG D and an uncertain (soft) temporal
KG U with D ∩ U = ∅. U = {〈fi, wfi〉} where fi is a tem-
poral fact and wfi is a real-valued weight assigned to fi.
The syntax of an uncertain temporal fact is similar to the un-
derlying temporal RDF; besides, each fact has an associated
weight, written as {(fi, wfi)}.
Example 2 Consider the following UTKG which represents
sport’s personality Claudio Raineri’s (CR) career:
(1) (CR, coach, Chelsea, [2000,2004]) 0.9

(2) (CR, coach, Leicester, [2015,2016]) 0.7

(3) (CR, playsFor, Palermo, [1984,1986]) 0.5

(4) (CR, bdate,1951) 1.0

(5) (CR, coach, Napoli, [2001,2003]) 0.6

Before providing semantics to UTKGs, we need to extend
the use of membership (∈) and subset (⊆) relations as fol-
lows: given a UTKG G, a temporal fact (s, p, o, [t1, t

′
1]),

and a UTKG G′, we say that (s, p, o, [t1, t
′
1]) ∈ G if

∃(s, p, o, [t2, t′2]) ∈ G such that t2 ≤ t1 and t′1 ≤ t′2; we
also say that G′ ⊆ G if for all f ∈ G′, then f ∈ G.
Semantics. The semantics of a UTKG is based on a joint
probability distribution over the uncertain part of the UTKG.
In particular, the weights of the facts in U determine a log-
linear probability distribution. As mentioned earlier, we as-
sume that the time domain, in which the validity of facts is
expressed, is finite as well as discrete; hence, the set of possi-
ble worlds is finite. Formally, for a given UTKG G = (D,U)
and some G′ over the same set of IRIs and literals IL, the
probability of G′ is defined as:

P (G′)=

⎧⎪⎪⎨
⎪⎪⎩

1
Z
exp

( ∑
{(fi,wfi

)∈U:G′|=tfi}
wfi

)
if G′ |=t D

0 otherwise
where |=t is a temporal entailment relation, and Z is the nor-
malization constant of the log-linear probability distribution
P . Note that in MAP inference, which gives the most proba-
ble temporal KG, Z is not computed. A UTKG can be mapped
into a first-order knowledge base by transforming every tem-
poral fact into a quad atom as shown in Definition 3.
Herbrand Models. Temporal KG inference rules2 F are
listed in Figure 1. Let C be the set of IRIs and Literals that
appear in some UTKG G, the Herbrand base of F can be
constructed by instantiating all the variables in F using the
constants in C. The function θ, given a finite set C and a set
of time points T , maps each fact in some UTKG into a sub-
set of the Herbrand base HB of F with respect to C and T .
Each subset of the Herbrand base is a Herbrand interpreta-
tion specifying which ground atoms are true. A Herbrand in-
terpretation H is a Herbrand model of F , denoted as |=H F ,
iff it satisfies all groundings of the formulas in F .
Definition 3 (Mapping UTKG into FOL) Given a UTKG G
over a finite set of IRIs and literals C, a time domain T ,
and HB the Herbrand base of F with respect to C and T ,
θ : P(G) → P(HB) maps G into subsets of HB as follows:

θ(G) =
⋃

f∈G
θ(f), where θ((s, p, o, T )) = quad(s, p, o, T ).

The predicate quad is typed, i.e., s, p ∈ I, o ∈ IL, and
T = [t1, t

′
1] where t1, t

′
1 ∈ T . At this point, we need to

show that the function θ is bijective, i.e., it induces a one-
to-one correspondence between the Herbrand models of F
2 In Figure 1, we abbreviate RDF/S vocabulary names as fol-
lows: sp for rdfs:subPropertyOf, type for rdf:type,
property for rdf:Property, sc for rdfs:subClassOf,
class for rdfs:Class, dom for rdfs:domain, and ran for
rdfs:range.
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(r1) q(a, α, property, T1) → q(a, sp, a, T1)

(r2) q(a, sp, b, T1) ∧ q(b, sp, c, T2) ∧ check(T1, T2) → q(a, sp, c, T3)

(r3) q(a, sp, b, T1) ∧ q(x, a, y, T2) ∧ check(T1, T2) → q(x, b, y, T3)

(r4) q(a, α, class, T1) → q(a, sc, a, T1)

(r5) q(a, sc, b, T1) ∧ q(b, sc, c, T2) ∧ check(T1, T2) → q(a, sc, c, T3)

(r6) q(a, sc, b, T1) ∧ q(x, α, a, T2) ∧ check(T1, T2) → q(x, α, b, T3)

(r7) q(a, dom, c, T1) ∧ q(x, a, y, T2) ∧ check(T1, T2) → q(x, α, c, T3)

(r8) q(a, ran, d, T1) ∧ q(x, a, y, T2) ∧ check(T1, T2) → q(y, α, d, T3)

T3 = [t1, t
′
1] �� [t2, t

′
2] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[t1, t
′
1] if t1 = t2 ∧ t′1 = t′2

[t′1, t2] if t′1 = t2

[t2, t
′
1] if t1 < t2 ∧ t2 < t′1 ∧ t′1 < t′2

[t1, t
′
1] if t1 < t2 ∧ t′1 < t′2

[t1, t
′
1] if t1 = t2 ∧ t′1 < t′2

[t2, t
′
2] if t′1 < t1 ∧ t2 = t′2

∅ if t′1 < t2

Figure 1: A set of temporal RDF inference rules that we de-
note by F . check(T1, T2) = false if T1 �� T2 = ∅ and true
otherwise. α denotes the RDF type relation and q is a short-
hand for quad. Moreover, all of the formulas are universally
quantified over all the variables.

and expanded KGs. Applying F repeatedly on an UTKG may
generate a set of new facts; this results in an expanded KG.

Theorem 1 Let C ⊆ IL be a set of IRIs and literals and let
T be a set of time points. In addition, let G be a UTKG over
C and let HB be the Herbrand base of F with respect to C.
Then, for any G′ ⊆ G, G |=t G′ ⇒ θ(G′) |=H F and for
any H ⊆ HB , H |=H F ⇒ θ−1(H) |= G′′ and G |=t G′′.

Relying on the above theorem, we can introduce MAP infer-
ence in UTKGs.

MAP Inference

MAP inference in UTKG corresponds to obtaining the most
probable, consistent, and non-probabilistic temporal KG.
Given a UTKG G, a set of inference rules F , and a translation
function θ, we denote the MAP problem by map(θ(G),F).
Computing map(θ(G),F) requires to translate G with the
function θ into an equivalent Markov logic formalization.
Then, the inference rules F are added to this translation. The
MAP state is computed with the help of a cutting planes al-
gorithm (Chekol et al. 2016) applied to this input data. To
do so, the evidence clauses θ(G) and the grounding of F
with respect to θ(G) are given as input. Applying the in-
verse translation function θ−1 to the MAP state, yields the
most probable temporal KG. The MAP problem in MLN can
be turned into an integer linear program (Noessner, Niepert,
and Stuckenschmidt 2013), which allows to integrate exter-
nal functions (e.g., to check the conditions in Figure 1).

Theorem 2 Given the following:

• a UTKG G = (D,U) over a finite set IL of IRIs and liter-
als, and a finite set of time points T ,

• the Herbrand base HB of the formulas F with respect to
IL and T ,

• the set of ground formulas G1 constructed from D, and
• the set of ground formulas G2 constructed from U.
The most probable, expanded and consistent temporal KG is
obtained with:

θ−1(H) = argmax
HB⊇H|=G1∪F

( ∑
(f,wj)∈G2:H|=Hfj

wj

)

From Theorem 1 and the results in (Chekol et al. 2016) it
follows that the problem of computing the most probable
temporal KG is NP-hard.

Example 3 (MAP state) Given a UTKG, which contains
the uncertain temporal facts (1)–(5) of Example 2 and the
hard temporal constraints (6) and (7) below, its most proba-
ble and consistent temporal KG contains the facts (1)–(4).
• A person cannot be a coach of two clubs at the same time.
(6) quad(x,coach, y, T1) ∧ quad(x,coach, z, T2) ∧
y �= z → disjoint(T1, T2)

• A person cannot be a coach before s/he was born.
(7) quad(x,bdate, y, T1)∧quad(x,coach, z, T2) →
before(T1, T2)

The predicates disjoint and before are Allen’s inter-
val relations (Allen 1983). Below, we introduce expressive
constraints that allow to identify erroneous facts.

Conditional Probability Inference

Given a UTKG G, the conditional probability of a temporal
fact f is the sum of the probabilities of the consistent tem-
poral KGs containing f. In general, a conditional probability
query is a conjunction of a set of temporal facts given some
UTKG. Given a query q and a UTKG G, the conditional prob-
ability of q is given by:

Pq(q | G) =
∑

G′:q⊆G′
P (G′)

G′ is a possible world over the same signature IL and T
as G. In order to sum over all G′, if the valid time ranges
of the temporal facts in q does not appear in G, we need
to compare time intervals in the facts of q with those of
G. To do so, we rewrite the query q as follows: for each
temporal fact f ∈ q if ∃f′ ∈ G and that f ⊆+ f′,
then we replace f in q with f′. The relation ⊆+ is de-
fined as follows: for two temporal facts f=(s, p, o, [t1, t′1])
and f′=(s′, p′, o′, [t2, t′2]), f ⊆+ f′ if s=s′, p=p′, o=o′,
t2 ≤ t1 and t′1 ≤ t′2. This allows us to compute condi-
tional probabilities on top of current solvers such as MC-
SAT (Poon and Vanderwende 2010). The rewriting can be
done in polynomial time in the size of the UTKG in the worst
case. For instance, given the KG G in Example 2, the con-
ditional query: q(CR, coach,Chelsea, [2001 , 2003 ] | G) is
rewritten as: Pq(q(CR, coach,Chelsea, [2000 , 2004 ]) | G).
Since no additional computation is required, the complex-
ity of conditional probability inference remains #P-hard for
UTKGs. Since conditional inference is intractable, computing
exact probabilities is hard. Thus, it is customary to approx-
imate inference via sampling. The state of the art marginal
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inference algorithm is MC-SAT, which is based on Monte
Carlo sampling and samples consistent or conflict-free tem-
poral KGs according to the distribution Pq . This is very dif-
ficult for three reasons: (i) the complexity of reasoning in
MLN; (ii) the size of uncertain KGs (such as NELL, ReVerb),
and; (iii) the presence of deterministic dependencies in the
UTKGs. Because of these reasons, emerging lifted inference
techniques should be used for marginal inference (Singla
and Domingos 2008). We leave this as a future work.

Conflict Detection in Uncertain KGs

Often uncertain knowledge graphs may contain a large num-
ber of numerical data like dates, times, latitudes/longitudes,
numerical values measured in different units, and so on.
For instance, the fact that Claudio Ranieri is 1.82 meters
tall can be expressed as (CR, height , 1 .82 ) with a nu-
meric data (1.82). Uncertain facts that contain numerical
data can be conflicting. One way of resolving such errors
is to use a set of (probabilistic) constraints and compute a
MAP state of a given KG, which basically throws out facts
that have inferior weights or confidences. However, this is
not enough. Consider, for instance, an uncertain KG that
contains two facts: (1) 〈(CR, height , 1 .80 ), 0 .3 〉 and (2)
〈(CR, height , 3 .5 ), 0 .9 〉. Assume that these facts are trans-
lated into an MLN framework along with the constraint that
the property ‘height’ is functional, i.e., t(x, height, y) ∧
t(x, height, y′) → y = y′. In this setting, performing
MAP inference results in a KG containing the certain fact
(CR, height , 3 .5 ). However, the correct output should con-
tain only the first triple because normally people are not
taller than 2.5 meters. In order to rule out such conflicts, we
can add another constraint as discussed below. Constraints
are used in description logics and database systems to en-
sure data validity. In the following, we introduce constraints
to ensure validity of numerical attributes in uncertain KGs.
The constraints will also serve to extend the schema of the
underlying KG.

Constraints A Datalog constraint is an expression of the
form body → head, where the head is an atom (i.e., an ex-
pression of the form p(x1, . . . , xn) in which each xi is either
a constant or a variable) and body is a set of atoms, such that
each variable occurring in the head also occurs in some atom
in the body (Abiteboul and Vianu 1991). Since our choice of
MLN with numerical constraints allows to use external func-
tions, whose truth values are computed outside the MLN
setting, we can extend Datalog constraints (specifically, in-
clusion dependencies, equality generating dependencies and
negative constraints (Abiteboul and Vianu 1991)) with nu-
merical constraints. To debug uncertain KGs we can intro-
duce a set of Datalog-inspired constraints that become hard
(deterministic) or soft (uncertain) formulas in MLNs. For in-
stance, if we want to state that “a person cannot be taller
that 2.5 meters”, then we can introduce a rule of the form:
t(x, type, person) ∧ t(x, height, y) → y < 2.5. We intro-
duce three different kinds of constraints.

Inclusion dependencies with inequalities (IDIs). IDIs are
first-order logic formulas of the form ∀x,y : Φ(x,y) ∧

NC(xi,yj) → Ψ(y), where Φ(x,y) is the body of the for-
mula, it is a conjunction of atoms, Ψ(y) is the head of
the formula, x,y are sets of variables, and xi ⊆ x and
yj ⊆ y. In addition, NC(xi,yj) denotes a numerical con-
straint which is an arithmetic expression (see Definition 2).

Example 4 Those who are above the age of 40 are proba-
bly retired footballers: t(x, type,Footballer)∧t(x, age, y)∧
NC(y) → t(x, type,RFootballer), NC(y) = y > 40.

(In)equality generating dependencies (IGDs). IGDs are
first-order formulas of the form ∀x:Φ(x) → NC(xi), where
Φ(x) is a conjunction of atoms (x and xi are defined as
above).

Example 5 Temperature Celsius tc can be converted into
an equivalent Fahrenheit scale tf using the formula tf =
1.8tc+32: t(x, tempc, tc)∧ t(x, tempf, tf ) → NC(tc, tf ),
NC(tc, tf ) = 1.8tc + 32. From a practical viewpoint, this
rule can be used for checking if two facts (e.g., extracted
from Wikipedia), one containing temperature in Celsius for-
mat and the other in Fahrenheit, are conflicting.

Disjointness constraints (DCs). DCs are first-order formu-
las of the form ∀x : Φ(x) ∧ NC(xi) → ⊥.

Example 6 Using DCs we can formulate the constraint “a
valid life span of a person is less than 150 years” as fol-
lows: t(x, bdate, bd) ∧ t(x, ddate, dd) ∧ NC(bd, dd) → ⊥,
NC(bd, dd) = (dd− bd) > 0 ∧ (dd− bd) < 150.

These constraints are more expressive than RDF schema
constraints because they allow to express disjointness, func-
tionality of properties, and inverse properties, among the
others. Once an uncertain KG is translated into an equivalent
Markov logic formalism using the formula θ, and sets of
IDIs, IGDs, and DCs constraints over the KG have been con-
structed, we can apply MAP inference in order to retrieve the
most probable and conflict-free KG using map(θ(G),F , C).

Experiment

We conducted two different kinds of experiments: (i) per-
formance test in terms of running times for MAP inference
comparing three state-of-the-art solvers, and (ii) conflict de-
tection in a noisy setting. We ran the experiments on a 2GHz
24-core processor with 386GB of RAM running Debian 8.
Data: At present, uncertain temporal datasets are not avail-
able. Thus, we prepared datasets by extracting temporal facts
from footballdb.com and wikidata.org. Therefore, we can
test the efficiency and scalability of the proposed approach.
In addition, we experimented with YAGO (Galárraga et al.
2015) to mine temporal rules as discussed below.

• Footballdb: Table data often contain numeric and tem-
poral data. Recently, table data extraction has attracted
considerable attention from the data mining commu-
nity (e.g., (Ritze et al. 2016)). Inspired by this, we ex-
tracted temporal facts about American football players
from footballdb.com, that contains two important rela-
tions: playsFor and birthdate. We extracted >13K tem-
poral facts for the playsFor relation and >6K facts for the
birthdate relation.
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• Wikidata: Wikidata contains structured temporal infor-
mation obtained from various sources using OIE. At the
time of writing, we extracted over 6.3 million temporal
facts from Wikidata. We extracted temporal facts for vari-
ous relations including: playsFor (>4 million facts), edu-
catedAt (>6K), memberOf (>23K), occupation (>4.5K),
spouse (>20K), and so on.

Constraints: The extraction of temporal rules/constraints is
a well-known problem (Galárraga et al. 2015). Using one of
the most famous rule mining tools (i.e., AIME (Galárraga et
al. 2015)), we mined rules from the YAGO dataset (see be-
low). However these rules are not sufficient to capture many
conflicts (e.g., valid life span of a person, or a footballer
cannot play for two clubs at the same time); thus we hand-
crafted more complex constraints that are used to identify
conflicts in UTKGs. We used several of these constraints in
order to detect conflicts in footballdb and wikidata KGs.

• Mined: With a workaround to AIME, we were able to
learn rules of the following form from the YAGO dataset.

(a) A person’s birth date is before his
death date.
?e bd ?a ?e dd ?b => ?a before ?b 0.968
(b) Birth and death date are functional
?e bd ?a ?e bd ?b => ?a equal ?b 0.734
?e dd ?a ?e dd ?b => ?a equal ?b 0.686

• Hand-crafted: We use the rules in Figure 1 and designed
20 different constraints including the ones already dis-
cussed in the examples (see for instance Example 7).

Tools: We used the following tools to conduct the ex-
periments: (i) two state-of-the-art MLN solvers, namely
Tuffy (Niu et al. 2011) and nRockIt (Chekol et al. 2016), and
PSL solver (Bach et al. 2015); (ii) we implemented a numer-
ical extension, that we call nPSL, on top of PSL for temporal
reasoning. In our experiments, we found out that Tuffy and
nRockIt hardly scale for predicates of arity 4 (we stopped
the execution after a 24h timeout). In one occasion, while
running Tuffy on footballdb, we noticed that its grounded
database is 400GB large, thereby our execution eventually
ran out of memory. To overcome this shortcoming, we re-
sort to PSL. While MLN is more expressive than PSL, PSL
scales well since it computes a soft approximation of the dis-
crete MAP state. Note that, using PSL, we compute the most
probable explanation (MPE) which is the same as MAP in-
ference in MLN (Bach et al. 2015).

Performance: MAP Inference

We computed the running times of nRockIt, Tuffy and nPSL
for performing MAP inference on an uncertain temporal
footballdb data and obtained 12181ms, did not terminate af-
ter several hours, 6129.2ms respectively. The running times
are averaged over 10 runs. Independently, we performed
MPE inference using nPSL on varying sizes of uncertain
temporal Wikidata and obtained the following results:

Data size: 50K 100K 200K 400K 500K
Time (m): 0.33 1.44 3.85 8.72 11.25

Injection 0% 10% 25% 50% 75% 100%

nP
SL P 1.00 0.93 0.85 0.70 0.63 0.53

R 1.00 0.94 0.86 0.81 0.72 0.70
Time (m) 0.77 0.86 0.93 1.15 1.37 1.56

nR
oc

kI
t P 1.00 0.91 0.83 0.67 0.55 0.50

R 1.00 0.95 0.94 0.94 0.94 0.93
Time (m) 3.05 4.4 5.74 6.53 6.92 11.1

Table 1: Precision (P) and recall (R) scores for comput-
ing the MPE and MAP state with increasing percentage of
wrong temporal facts injection.

Conflict Detection in UTKGs

In this experiment we used nPSL and nRockIt for conflict
detection on a subset of Wikidata containing 50K uncertain
temporal facts. Due to space constraints, we only report re-
sults on this data size. However, we run both tools on var-
ious data sizes. We excluded Tuffy due to scalability after
attempting repeatedly with varying configurations were not
successful. We generated erroneous temporal facts specify-
ing the playsFor, birthdate, and deathdate relations. We in-
jected a fraction of 10%, 25%, 50%, 75%, and 100% in-
correct facts to the Wikidata dataset. For instance, injecting
25% erroneous facts means that we added 25% additional
wrong facts for each of the three relations. We randomly as-
signed weights in the range [0.5, 1.0] to the newly added
facts and [0.8, 1.0] to each of the original temporal facts.

The results of our experiments are shown in Table 1. Since
we randomly assigned weights, we repeated each experi-
ment 10 times and present average scores. We were able to
compute meaningful results in highly inconsistent settings.
Even in a setting where we added 100% incorrect temporal
facts, we are still able to achieve a precision of 53% for nPSL
and 50% for nRockIt. Note that in the case of nRockIT, the
runtime does not increase linearly with respect to the size of
the input data. This is due to each added incorrect temporal
fact might be involved in a conflict resulting in a non trivial
optimization problem.

Conclusions and Future Work

We have presented an MLN based approach for reasoning
over UTKGs. We proposed a formal syntax and semantics
for UTKGs and formalized the MAP and conditional prob-
ability inference problems; we showed that these problems
remain NP-hard and #P-hard, respectively. We used Datalog
constraints to detect erroneous facts in UTKGs. Then, we ap-
plied MAP inference to obtain a most probable and conflict-
free temporal KG from an uncertain one. We carried out ex-
periments on state-of-the-art tools and datasets and reported
their performances.

While we think that this work opens several research di-
rections; our primary objective is to tackle scalability. This
can be investigated, for instance, (1) by parallelizing MLN
solvers, or (2) by using relational database model for SQL-
based inference. Taking account preferences (Fionda and
Pirrò 2013) is another line of future work.
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Pirrò, G. 2015. Explaining and Suggesting Relatedness in
Knowledge Graphs. In Proc. of International Semantic Web
Conference, 622–639.
Poon, H., and Vanderwende, L. 2010. Joint inference for
knowledge extraction from biomedical literature. In Human
Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computa-
tional Linguistics, 813–821. Association for Computational
Linguistics.
Pujara, J.; Miao, H.; Getoor, L.; and Cohen, W. 2013.
Knowledge graph identification. In Proc. of International
Semantic Web Conference.
Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Machine learning 62(1-2):107–136.
Ritze, D.; Lehmberg, O.; Oulabi, Y.; and Bizer, C. 2016.
Profiling the Potential of Web Tables for Augmenting Cross-
domain Knowledge Bases. In Proc. of International World
Wide Web Conference, 251–261.
Schlobach, S.; Huang, Z.; Cornet, R.; and Van Harmelen,
F. 2007. Debugging incoherent terminologies. Journal of
Automated Reasoning 39(3):317–349.
Schoenmackers, S.; Etzioni, O.; Weld, D. S.; and Davis, J.
2010. Learning first-order horn clauses from web text. In
EMNLP, 1088–1098.
Schoenmackers, S.; Etzioni, O.; and Weld, D. S. 2008. Scal-
ing Textual Inference to the Web. In EMNLP, 79–88.
Singla, P., and Domingos, P. M. 2008. Lifted first-order
belief propagation. In AAAI, volume 8, 1094–1099.
Sirin, E.; Parsia, B.; Grau, B. C.; Kalyanpur, A.; and Katz,
Y. 2007. Pellet: A Practical OWL-DL Reasoner. J. Web
Semantics 5(2):51–53.
Wang, J., and Domingos, P. M. 2008. Hybrid markov logic
networks. In AAAI, volume 8, 1106–1111.

94




