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Abstract

In this paper we present a novel geometric method for the
problem of global pairwise alignment of protein-protein in-
teraction (PPI) networks. A PPI network can be viewed as
a node-edge graph and its alignment often needs to solve
some generalized version of the subgraph isomorphism prob-
lem which is notoriously challenging and NP-hard. All exist-
ing research has focused on designing algorithms with good
practical performance. In this paper we propose a two-step al-
gorithm for the global pairwise PPI network alignment which
consists of a Geometric Step and an MCMF Step. Our al-
gorithm first applies a graph embedding technique that pre-
serves the topological structure of the original PPI networks
and maps the problem from graph domain to geometric do-
main, and computes a rigid transformation for one of the em-
bedded PPI networks so as to minimize its Earth Mover’s
Distance (EMD) to the other PPI network. It then solves a
Min-Cost Max-Flow problem using the (scaled) inverse of
sequence similarity scores as edge weight. By using the flow
values from the two steps (i.e., EMD and Min-Cost Max-
Flow) as the matching scores, we are able to combine the
two matching results to obtain the desired alignment. Unlike
other popular alignment algorithms which are either greedy
or incremental, our algorithm globally optimizes the problem
to yield an alignment with better quality.

Introduction

A protein-protein interaction (PPI) network is a graph that
describes the interaction of proteins, where a node repre-
sents a protein, and an edge means that two corresponding
proteins interact with each other. The alignment of two PPI
networks is thus the alignment of two undirected graphs.
Since this is usually a generalized subgraph isomorphism
problem which is NP-hard, researches on this problem are
mostly heuristic algorithms aimed at achieving good practi-
cal efficiency. Current alignment algorithms can be broadly
classified into two categories: local alignment and global
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alignment. Local alignment algorithms are designed to find
isomorphic subgraphs of two (or more) PPI networks. Pop-
ular algorithms include Mawish (Koyutürk et al. 2006) and
AlignNemo (Ciriello et al. 2012). While local alignment al-
gorithms can find isomorphic substructures, global align-
ment algorithms can better capture the global picture of how
conserved substructure motifs are organized.

A great deal of recent research has focused on global
alignment algorithms. Some algorithms are designed to han-
dle the alignment of multiple PPI networks, such as Iso-
RankN (Liao et al. 2009), NetCoffee (Hu, Kehr, and Rein-
ert 2013), ConvexAlign (Hashemifar, Huang, and Xu 2016)
and an algorithm framework in (Kalaev, Bafna, and Sha-
ran 2008) Some alignment algorithms are designed to work
with the alignment of two PPI networks, such as IsoRank
(Singh, Xu, and Berger 2008), MI-GRAAL (Kuchaiev and
Pržulj 2011), GHOST (Patro and Kingsford 2012), MAGNA
(Saraph and Milenković 2014), Prob (Todor, Dobra, and
Kahveci 2013), NETAL (Neyshabur et al. 2013), HubAlign
(Hashemifar and Xu 2014) and an embedding algorithm
based on graphlet frequency (Przulj 2007) . IsoRank is the
first algorithm of such kind, and is also one of the most pop-
ular ones. It defines the similarity of two nodes recursively,
meaning that two nodes are similar if their neighbors are
similar. MI-GRAAL is an algorithm that uses both topolog-
ical and biological information, and produces an alignment
in a greedy way using a seed-and-extend approach. GHOST
defines the distance between two nodes as the difference of
spectral signatures of them, and then generates the alignment
in a greedy way. NETAL first defines topological similarity
between nodes in a similar way to IsoRank, then tries to op-
timize the number of conserved edges, and finally builds the
alignment greedily.

In this paper we propose a novel global pairwise align-
ment algorithm, called GeoAlign, to align two PPI networks
based on techniques including graph embedding, geometric
algorithms and flow algorithms. GeoAlign is a two-step al-
gorithm, with a Geometric step which gives us a topological
matching score, and an MCMF step which gives us a biolog-
ical matching score. The general ideas can be summarized as
follows.

Geometric Step. Since directly aligning graphs is chal-
lenging and the mostly used information in PPI network
alignment is the local topology of each node, a natural way
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of thinking is to transform the problem from the graph do-
main to some other domain and hope that the target do-
main preserves these topological information and has better
matching algorithms to solve the original alignment prob-
lem.

Since matching is a very thoroughly researched topic in
computational geometry, we choose to transform the prob-
lem to the geometric domain. Given two PPI networks, we
first use a graph embedding technique to embed both net-
works into a low dimensional Euclidean space. The graph
embedding technique has the ability to conserve the original
topological structures of the graph. In this way the origi-
nal node-edge graph is transformed into a low dimensional
point set, and local topological properties (such as connec-
tivity between nodes, length of shortest path between nodes)
are preserved in a geometric form. Then, with some prepro-
cessing, we apply a geometric matching algorithm called
Earth Mover’s Distance under Rigid Transformation (EM-
DRT) (Ding and Xu 2016) to the two point sets. EMDRT
establishes a matching between the two point sets. Based
on this matching, we can then obtain a matching score for
each pair of nodes. EMDRT ensures that if two nodes have
similar local topology, they are more likely to have a higher
matching score. This score is later used as the topological
score.

MCMF step. In addition to the topological information
used in the Geometric Step, we also make use of the avail-
able sequence similarity information. We build a Min-Cost
Max-Flow (MCMF) model (Gabow and Tarjan 1989) using
the inverse of the similarity score as edge weights. Solving
the MCMF problem gives us another matching score. Since
MCMF favors node pairs that have higher sequence similar-
ity (thus smaller cost), we can consider this matching score
as the sequence score (or biological score).

Combining the two types of scores, we obtain a final
matching score between node pairs. A pair of nodes are
matched if their combined matching score is higher than a
certain threshold.

Method

Problem Definition

Definition 1. PPI network A PPI network is an undirected
graph G = (V,E), where the node set V represents the
proteins and the edge set E represents interactions between
proteins.

Based on Definition 1, in this paper, the notions “graph”
and “PPI network” are often used interchangeably.

Definition 2. Pairwise Global Alignment of PPI Networks
The pairwise global alignment of two PPI networks G1 =
(V1, E1), G2 = (V2, E2) is a matching (one-to-one or
many-to-many) M = V1∪V2 = M1∪M2∪ · · ·Mk of the
node sets (V1, V2).

For simplicity, in the rest of the paper, we refer to “global
pairwise alignment” simply as “alignment”. The goal of the
algorithm is to find a matching so that certain evaluation
metrics are optimized (detailed in later sections). There can
be many such metrics, however most of them follow the

same intuition: if a node v1 from PPI network A has similar
local topology to another node v2 from PPI network B, they
should have a high probability to be matched. Also, if v1
and v2 have high sequence similarity score, they also should
have high probability to be matched. Based on these intu-
ition, we introduce the proposed method in the following
subsections.

Geometric Step

Graph Embedding Algorithm. As discussed in the introduc-
tion, we need to first transform the problem from graph do-
main to geometric domain. To achieve this, we need a graph
embedding algorithm that is able to preserve the topologi-
cal properties of the original graph. Intuitively, by preserv-
ing topology we mean that if the length of the shortest path
between two nodes in a PPI network is short, the geomet-
ric distance between embedded points should also be short.
More specifically, we want to be able to recover the con-
nectivity of the original graph based only on the positions
(coordinates) of the embedded points using some connectiv-
ity algorithm. There are multiple connectivity algorithms to
choose from, in this paper we used the k-nearest-neighbor
algorithm, where a point in a point set is connected to its
k nearest neighbors. So when given an input graph, the de-
sired graph embedding algorithm should be able to produce
an embedding (point set) which, if fed as the input to the
k-nearest-neighbor algorithm, will result in a graph that is
close to the original graph. In this way, a good matching
between the embedded point sets will also lead to a good
matching between the original graphs.

In this paper we choose to use an embedding algorithm
called the Structure Preserving Embedding (SPE) algorithm
(Shaw and Jebara 2009). The algorithm satisfies the afore-
mentioned requirements, and also have some other nice
properties, such as a low dimensionality embedding result
that will reduce the computation time.

Roughly speaking, for each connectivity algorithm G, the
SPE algorithm enumerates a certain number of linear con-
straints on the kernel matrix K of G (in our case the knn
algorithm). It is shown that as long as these constraints are
satisfied, the topological properties of the original graph can
be preserved. Then the SPE algorithm tries to optimize an
objective function that ensures a low dimensional embed-
ding. The pseudo code of the algorithm is as follows:

Algorithm 1 Structure Preserving Embedding
1: INPUT: Adjacency matrix A of graph G; connectivity

algorithm G; parameter C
2: Solve SDP K̃ = argmaxK∈K tr(KA)−Cξ s.t. Dij >

(1−Aij)maxm(AimDim − ξ)

3: Apple SVD to K̃ and return the top eigenvectors as em-
bedding coordinates.

In the above algorithm, K = {K � 0, tr(K) ≤
1,
∑

ij Kij = 0, ξ ≥ 0} is a set of constraints to en-
sure that the embedding is centered at the origin. Dij =
Kii+Kjj − 2Kij is a distance function based on the kernel
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matrix K, and Dij > (1−Aij)maxm(AimDim) is the lin-
ear constraints mentioned above. The parameter C is used
to allow some constraints be violated to make sure that there
will always be a solution to the SDP. For more detailed ex-
planation on SPE we refer the reader to (Shaw and Jebara
2009).
Earth Mover’s Distance under Rigid Transformation. After
transforming the problem from graph domain to geomet-
ric domain, we need an algorithm to match the two point
sets resulting from the graph embedding step. Since in the
original graph domain, we would like nodes with similar lo-
cal topology to be matched, the ideal geometric matching
algorithm should also try to match points with similar lo-
cal geometric structure (such as similar relative position to
its neighbors). For this purpose we first introduce the con-
cept of Earth Mover’s Distance (EMD) (Rubner, Tomasi,
and Guibas 2000).
Definition 3. (Earth Mover’s Distance). Given two point
sets A = {p1, p2, · · · , pn} and B = {q1, q2, · · · , qm} in R

d

with nonnegative weights αi and βj for each pi ∈ A and
qj ∈ B respectively, the earth mover’s distance between A
and B is defined as:

EMD(A,B) =
minF

∑n
i=1

∑m
j=1 fij · ‖pi − qj‖

min {∑n
i=1 αi,

∑m
j=1 βj}

where F = {fij} is a feasible max flow.
Despite the relatively long definition, the intuition behind

EMD is easy to understand. Without loss of generality, we
assume that A has a smaller total weight. We can then con-
sider the weight αi as the amount of “earth” that a point in
A holds, and βj as the maximum amount of “earth” that a
point in B can hold. The “earth mover” wants to move all
“earth” from A to B, and he wants to find a way of moving
“earth” into B using the smallest amount of effort, where
effort is defined as the sum of the product of the amount of
earth moved and the distance that it is moved.

The intuition of EMD is that the “earth mover” should try
to move more “earth” for a shorter distance. So points from
A and B that are close to each other are favored. Also, since
EMD is associated with an underlying flow f , a matching is
naturally generated: simply match the points that have a pos-
itive flow between them (in our case, we assign a matching
score that equals the flow value between them). An impor-
tant property of EMD is that it is a concept based on global
optimization. Thus instead of greedily matching local points
that are close to each other, EMD will find a matching that
is able to capture the global relationship between two point
sets. All these properties of EMD makes it a suitable choice
for the measure of closeness of two embedded PPI networks.

However, directly computing the EMD between two PPI
networks embedded into Euclidean space will not give us
any valuable information, since the embedding algorithm
will only preserve the relative positions within the original
graph and the generated point set may have arbitrary orien-
tation and scale. Thus before computing the EMD between
two embedded PPI networks (A and B), we need to put them
in a position where points with similar local structure are ac-
tually close. To achieve this goal, we need to compute a rigid

transformation for one of them, say A, to best match the po-
sition of B so that the EMD between A and B is minimized.
This is called the Earth Mover’s Distance under Rigid Trans-
formation (EMDRT) problem. Before formally introducing
the EMDRT problem, we need to perform a preprocessing
step on A and B.

Algorithm 2 Preprocessing
1: INPUT: Point sets A and B.
2: Compute average pairwise distance of points of A and

B, as a and b;
3: For all point v ∈ A, scale its coordinates to v · b

a

Because the SPE algorithm could output point sets with
different scaling, and we would like to consider only relative
positions of points within a point set, we do not want the
matching to be influenced by the scaling of the point set.
This preprocessing step ensures that point sets A and B have
the same scaling.

We are now ready to introduce the last piece of the geo-
metric part of our algorithm, the EMDRT problem.

Definition 4. (Earth Mover’s Distance under Rigid Trans-
formation). Given two weighted point sets A,B ∈ R

d, com-
pute a rigid transformation (rotation, translation or both) τ
on A, so that the EMD between the transformed point set
τ(A) and B, EMD(τ(A), B) is minimized.

There are multiple EMDRT algorithms with strength in
different aspects. In this paper we choose to use the Itera-
tive Closest Point (ICP) (Besl and McKay 1992) algorithm.
It tries to find a transformation step by step to decrease its
objective value. Although it may converge only to a local
minimum, instead of a global minimum, ICP performs quite
well in practice in most of the time, and a PTAS that finds
a near global minimum will generally take a much longer
running time rendering it unpractical for our problem.

Before introducing the ICP algorithm, we first need to set
the weight for points in the point set A and B. In this paper
we choose to let A and B have the same total weight (the
same principal is also applied to the MCMF step described
later). So each point in A has weight |B|, and each point in
B has weight |A|.

We are now ready to introduce the ICP algorithm, which
is briefly described as the following algorithm:

Algorithm 3 Iterative Closest Point
1: INPUT: Two point sets A, B in R

d.
2: For each point v ∈ A, find the closest point u ∈ B;
3: Find the rigid transformation that will best match v to u

found in previous step;
4: Apply the rigid transformation found in previous step;
5: Repeat until convergence.

After the ICP algorithm finds a rigid transformation τ ,
we apply this transformation to A and compute the EMD
between τ(A) and B. We record the computed flow value in
a matrix T = {tij}, where tij is the flow value from node i
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in A to node j in B. Based on the definition of EMD, a larger
flow value between node i and j means a higher chance of
them being close, since EMD tries to move large amount of
“earth” along the shortest possible distance. We then use the
matrix T as the topological score.

MCMF Step

The sequence similarity score is a biological measure of the
sequence similarity of the two proteins represented by that
two nodes, thus is considered part of the input data to the
alignment algorithm. Note that in most cases (for example
the NAPAbench dataset used in this paper) the similarity
score is partial, meaning that not all pairs of proteins have
their sequence similarity measured. In this paper in addition
to the “Embedding-EMDRT” method, we also make use of
the available sequence similarity score to better align the PPI
networks. More specifically, we build another network flow
model for the two PPI networks in the following way:
Definition 5. Min-cost Max-flow with Sequence Similar-
ity Score For two PPI networks A = (V1, E1) and B =
(V2, E2), construct a flow network G = (V,E) in the fol-
lowing fashion: V = V1 ∪ V2 ∪ {s, t}, where s is the source
and t is the sink of the flow network. Connect s to all nodes
in V1 and t to all nodes in V2, and set the edge cost to be
0. Set the capacity of edge between s and v ∈ V1 to be |B|,
set the capacity of edge between t and u ∈ V2 to be |A|. For
v ∈ V1 and u ∈ V2, connect them iff there is a sequence
similarity score between them. Also set the edge cost c(vu)
to be the inverse of the similarity score between v and u. Set
the edge capacity of all edges between V1 and V2 to be inf .
Find a max flow f with minimum cost.

In the problem definition above, since the edge cost is the
inverse of sequence similarity score, an MCMF will favor
those edges with large sequence similarity score. In practice,
we use a scaled and rounded inverse of sequence similarity
score as the edge weight, since it will speed up computation
and increase precision. Min-cost max-flow is one of the most
fundamental problem of computer science, and has received
a significant amount of attentions over the years. In this pa-
per we choose to use the Network Simplex (Cunningham
1976) algorithm which is very fast in practice and produces
a very good result. For details on the algorithm, we refer the
reader to (Cunningham 1976).

Once we have a solution f to the MCMF problem, similar
to the EMDRT step, we record the flow value between nodes
of A and B as S = {sij} where sij is the flow value from
node i in A to node j in B. We use this matrix S as the
biological score.

The GeoAlign Algorithm

In this subsection we are ready to introduce the GeoAlign
algorithm. An illustration of the geometric step is shown as
Figure 1.

Experiments

We compare our algorithm with 4 popular alignment algo-
rithms, including IsoRank, MI-GRAAL, GHOST and NE-
TAL. We choose the value of λ and μ in GeoAlign using a

Algorithm 4 GeoAlign
1: INPUT: Two PPI networks, with (possibly partial) sim-

ilarity scores; parameter λ, μ.
2: Apply the SPE algorithm to both PPI Networks, with k-

nearest-neighbor as the connectivity algorithm; Denote
the two point sets that we get from SPE as A and B.

3: Apply the preprocessing step to A to update the coordi-
nates of points in A;

4: Apply the ICP algorithm on A and B to get a rigid trans-
formation τ so that EMD(τ(A), B) is minimized;

5: Compute EMD(τ(A), B) to get the topological score
matrix T = {tij}, where an element tij represents the
topological score between node i in A and node j in B;

6: Solve the min-cost max-flow problem to get the biologi-
cal score matrix S = {sij}, where an element sij repre-
sents the biological score between node i in A and node
j in B;

7: Compute the combined matching score M = λ · T +
(1 − λ) · S, where λ is the parameter controlling the
relative importance of topological score over biological
score;

8: Match node i in A to node j in B, if Mij > μ.

10-fold cross-validation on the NAPAbench CG data opti-
mizing the specificity.

Datasets

For synthetic data, we use the NAPAbench (Sahraeian and
Yoon 2012), which is a widely accepted synthetic bench-
mark dataset with functional annotation of proteins. It
is generated from an ancestral network using a sophis-
ticated tree growth algorithm. The NAPAbench consists
three types of network: crystal growth (CG), duplication-
mutation-complementation (DMC) and duplication-with-
random-mutation (DMR). The NAPAbench provides pair-
wise, 5-way and 8-way network data, here we are only go-
ing to use the pairwise data. Each network is grown from an
ancestral network of 2000 nodes, and there are 1000 nodes
generated for A, 2000 nodes generated for B. So the size of
A is 3000 and the size of B is 4000. In addition to the net-
work topology and functional annotation, the NAPAbench
also provides a partial sequence similarity score between
nodes of A and B that mimics the BLAST bit score.

For real world data, we use the PPI networks of
C.elegans, D.melanogaster, S.cerevisiae, and H.sapiens
from the IsoBase data set (Park et al. 2011). We use the
BLAST bit score (Tatusova and Madden 1999) as the se-
quence similarity scores. We use the GO terms (Aladağ and
Erten 2013) as annotations for proteins where the root GO
terms that are on level higher than 5 are excluded.

Evaluation Metrics

We use the following four metrics to evaluate the perfor-
mance of alignment algorithms.

Induced Conserved Structure (ICS).(Patro and Kings-
ford 2012) Let G(V ) denote the induced subgraph of G on
vertices V , then the induced conserved structure score of an
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Figure 1: Illustration of the geometric step of GeoAlign. (a). The original PPI networks. (b). After applying the em-
bedding algorithm, the PPI networks become two point sets with arbitrary orientation and position. (c). Apply EM-
DRT to the red point set, so that the EMD between these two point sets are minimized. The matching we get is
{{v1, u3}, {v3, u1}, {v2, u2}, {v4, u4}, {v5, u5}}. Note that for the purpose of a clear demonstration, we show the matching
that we get from EMDRT as a one-to-one matching. In real cases, the matching is almost always a many-to-many one.

alignment M from A = (V1, E1) to B = (V2, E2) is

ICS(M) =
|M(E1) ∩ E2|
|EB(M(V1))|

This metric is based on the edge correctness (EC), where the
denominator is |E1|, instead of |EB(M(V1))|. An advantage
of ICS over EC is that ICS penalizes alignments that map
to denser subgraphs of B. Also, ICS = 1 iff M is an iso-
morphism. ICS is considered a topological score, because it
only takes into account the graph topology of the two PPI
networks, with no functional annotation information.

Specificity (SPE).(Flannick et al. 2009)(Liao et al. 2009)
Note that the alignment produced by GeoAlign is not nec-
essarily an one-to-one mapping. It can be potentially one-
to-many or many-to-many, since the indices of the highest
scores in rows of the score matrix M may collide. We call a
connected component C of the matching a cluster. A cluster
is annotated if at least two of the proteins are annotated, and
we call a cluster correct if all annotated proteins share the
same annotation. Specificity measures the ratio of correct
clusters to annotated clusters. Obviously, the higher speci-
ficity an alignment has, the more functional consistent it is.

Mean Normalized Entropy (MNE).(Flannick et al.
2009)(Liao et al. 2009) The mean normalized entropy is also
a measure of the consistency of the alignment. The smaller
MNE an alignment has ,the more functionally coherent it is.
For a cluster C, the normalized entropy is defined as

NE(C) = − 1

log d
·

d∑

i=1

pi · log pi

where d is the number of annotations in C, pi is the frac-
tion of proteins with annotation i. Then the mean normal-
ized entropy is simply the average normalized entropy for
all annotated clusters. By the definition of MNE, we can see
that a cluster that consists of proteins with higher functional
consistency will have lower normalized entropy.

Conserved Orthologous Interactions (COI). COI is de-
fined as the ratio of the total number of interactions between
all correct clusters to the total number of aligned interac-
tions. In other words, it measures the alignment algorithm’s
ability to detect conserved interactions between orthologous
proteins.

SPE, MNE and COI are considered biological score, since
they take into account the functional annotation of each pro-
tein alongside the topological information. An alignment al-
gorithm will be awarded higher biological score if it tries to
match proteins with the same functional annotation to each
other.

Figure 2: Average relative performance on NAPAbench
dataset. Here the performance of GeoAlign is set as 1, while
the performance of compared algorithms is shown as the per-
centage of the performance of GeoAlign.

Results on Synthetic Dataset

Results on the NAPAbench dataset are summarized in Tables
1 to 3. Note that for MNE, smaller value is better, while for
other metrics, larger value is better. The best performer in
each row is shown in black.
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Figure 3: Comparison on real world datasets. Except MNE, all other metrics see worse performance than synthetic data. This
is mainly due to noise, outlier, or incompleteness of data. GeoAlign still outperforms compared algorithms on ICS, MNE and
COI.

We see that GeoAlign outperforms all other algorithms
on ICS and COI, where the improvement is relatively big.
For SPE and MNE the GeoAlign algorithm performs on par
with the best of the compared algorithms. Since ICS is a
topological metric, a high ICS score means that the align-
ment produced by the GeoAlign algorithm has a better topo-
logical quality. COI is a biological metric, meaning that a
higher COI score is usually an evidence of the alignment
being more functional consistent, that proteins that have the
same functional annotation are more likely to be matched.

CG IsoRank GHOST MI-GRAAL NETAL GeoAlign
ICS 0.58 0.81 0.76 0.52 0.9
SPE 0.78 0.83 0.8 0.21 0.82
MNE 21.54 16.34 18.23 24.32 12.55
COI 0.42 0.51 0.53 0.49 0.72

Table 1: Comparison of performance on NAPAbench CG
type networks.

DMC IsoRank GHOST MI-GRAAL NETAL GeoAlign
ICS 0.47 0.69 0.55 0.51 0.87
SPE 0.76 0.81 0.78 0.33 0.79
MNE 23.49 16.1 27.57 29.32 16.87
COI 0.45 0.58 0.6 0.48 0.68

Table 2: Comparison of performance on NAPAbench DMC
type networks.

DMR IsoRank GHOST MI-GRAAL NETAL GeoAlign
ICS 0.56 0.79 0.62 0.55 0.85
SPE 0.79 0.82 0.81 0.38 0.81
MNE 21.82 16.97 25.67 27.32 13.45
COI 0.44 0.55 0.59 0.46 0.71

Table 3: Comparison of performance on NAPAbench DMR
type networks.

Figure 2 shows the average performance of the compared
algorithms on the whole NAPAbench dataset. Here the per-
formance is shown as percentage of the performance of
GeoAlign, for a better comparison.

Results on Real World Dataset

We perform tests on all pair of networks (6 in total). The re-
sults, together with the average score, are shown as Figure

3. We can observe that although the general performance is
worse than that on synthetic data, the proposed GeoAlign
algorithm still outperforms the compared algorithms on the
ICS, MNE and COI metric. The improvement on ICS is rel-
atively significant, showing that GeoAlign is good at deal-
ing with topological information. Also, a nearly 14% in-
crease on COI indicates that the combination of topological
and sequence similarity information and the use of global
matching algorithms yield an alignment with higher func-
tional consistency.

Conclusion and Discussion

This paper introduces a new algorithm, GeoAlign, for the
global pairwise alignment of PPI networks. The most sig-
nificant difference from other alignment algorithms is that
GeoAlign transforms the problem from the relatively diffi-
cult graph domain to geometric domain where good global
matching algorithms exist. Since the transformation pre-
serves the topological information, the geometric matching
will also serve as a good candidate for the alignment of
the original PPI networks. Combining with the solution of
a min-cost max-flow problem built on top of the available
sequence similarity data, GeoAlign is able to produce align-
ment with relatively high topological quality and biological
quality, on both synthetic and real world datasets.

Currently the wall clock running time of the GeoAlign al-
gorithm is several hours. The running time is mainly bottle-
necked by the embedding algorithm and flow computations.
It is possible to modify the GeoAlign algorithm for different
purpose. If performance and accuracy has the highest pri-
ority, we can use a PTAS for EMDRT problem, instead of
the current ICP algorithm. Generally this step will be the
new bottleneck of running time of the whole algorithm. If
speed is desired, we can change the embedding algorithm
to shorten the running time. Algorithms like spectral em-
bedding (Luo, Wilson, and Hancock 2003) will generally
run much faster than SPE, however parts of the topological
information might be lost. We can also modify the MCMF
step to speed it up, for example use unit edge capacity, and
use sequence similarity score directly as edge weight. Then
it becomes a maximum weight bipartite matching problem,
where the final matching is one-to-one.
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Kuchaiev, O., and Pržulj, N. 2011. Integrative network
alignment reveals large regions of global network similarity
in yeast and human. Bioinformatics 27(10):1390–1396.
Liao, C.-S.; Lu, K.; Baym, M.; Singh, R.; and Berger, B.
2009. Isorankn: spectral methods for global alignment of
multiple protein networks. Bioinformatics 25(12):i253–
i258.
Luo, B.; Wilson, R. C.; and Hancock, E. R. 2003. Spec-
tral embedding of graphs. Pattern recognition 36(10):2213–
2230.
Neyshabur, B.; Khadem, A.; Hashemifar, S.; and Arab, S. S.
2013. Netal: a new graph-based method for global align-
ment of protein–protein interaction networks. Bioinformat-
ics 29(13):1654–1662.
Park, D.; Singh, R.; Baym, M.; Liao, C.-S.; and Berger,
B. 2011. Isobase: a database of functionally related pro-

teins across ppi networks. Nucleic acids research 39(suppl
1):D295–D300.
Patro, R., and Kingsford, C. 2012. Global network align-
ment using multiscale spectral signatures. Bioinformatics
28(23):3105–3114.
Przulj, N. 2007. Geometric local structure in biological
networks. In Information Theory Workshop, 2007. ITW’07.
IEEE, 402–407. IEEE.
Rubner, Y.; Tomasi, C.; and Guibas, L. J. 2000. The earth
mover’s distance as a metric for image retrieval. Interna-
tional journal of computer vision 40(2):99–121.
Sahraeian, S. M. E., and Yoon, B.-J. 2012. A network syn-
thesis model for generating protein interaction network fam-
ilies. PloS one 7(8):e41474.
Saraph, V., and Milenković, T. 2014. Magna: maximiz-
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