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Abstract

In this paper, we investigate the profit-driven team grouping
problem in social networks. We consider a setting in which
people possess different skills and compatibility among these
individuals is captured by a social network. Here, we assume
a collection of tasks, where each task requires a specific set of
skills, and yields a different profit upon completion. Active
and qualified individuals may collaborate with each other in
the form of teams to accomplish a set of tasks. Our goal is
to find a grouping method that maximizes the total profit of
the tasks that these teams can complete. Any feasible group-
ing must satisfy the following three conditions: (i) each team
possesses all skills required by the task, (ii) individuals within
the same team are social compatible, and (iii) each individ-
ual is not overloaded. We refer to this as the TEAMGROUP-
ING problem. Our work presents a detailed analysis of the
computational complexity of the problem, and propose a LP-
based approximation algorithm to tackle it and its variants.
Although we focus on team grouping in this paper, our results
apply to a broad range of optimization problems that can be
formulated as a cover decomposition problem.

Introduction

In this paper, we consider the problem of grouping teams
on a networked community of people with diverse skill sets.
We consider a setting in which people possess different skills
and compatibility among these individuals is captured by a
social network. Here, we assume a collection of tasks, where
each task requires a specific set of skills, and yields a differ-
ent profit upon completion. Active and qualified individu-
als may collaborate with each other in the form of teams to
accomplish a set of tasks. Our goal is to find a grouping
method that maximizes the total profit of the tasks that these
teams can complete. One relevant example is from the do-
main of online labor markets, such as Freelancer, Upwork ,
and Guru. In these online platforms, freelancers with vari-
ous skills can be hired to work on different types of projects.
Instead of just working independently, more and more free-
lancers are realizing that it is more beneficial to work as a
team, together with other solo freelancers who have com-
plementary skills (Golshan, Lappas, and Terzi 2014). This
allows them to expand their talent pool and achieve better
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load balance. Nowadays many major platforms in this area
such as Upwork has provided team-hiring services to their
enterprise customers.

In this paper, we formalize the profit-driven team group-
ing problem as follows: we assume a set of m individuals V
and a set of n skills S. Each individual u ∈ V , is represented
by a subset of skills, i.e., u ⊆ S; these are the skills that the
individual possesses. We also assume a set of tasks T , every
task t ∈ T can also be represented by the set of skills that are
required in order for the task to be completed (i.e., t ⊆ S).
Finally, every task t is associated with a profit λt, this could
be the benefit that the completion of a task will yield for
the platform. The team grouping problem is to group indi-
viduals to different teams and assign them to different tasks
satisfying the following three conditions: (i) each team pos-
sesses all skills required by the task, (ii) individuals within
the same team have high social compatibility, and (iii) each
individual is not overloaded. Our goal is to maximize the
sum of profits from all tasks that can be performed. We re-
fer to this as the TEAMGROUPING problem. It was worth
noting that the social compatibility among individuals can
be interpreted in many ways. In this work, we model the so-
cial compatibility by means of a social network. One natural
and popular option with respect to capturing the underlying
social compatibility of a team is connectivity. This follows
the approach of (Lappas, Liu, and Terzi 2009) and requires
that each team forms a connected graph. Other options to
measure social compatibility include the diameter of a team
(Anagnostopoulos et al. 2012), i.e., the induced graph of any
team in G must have small diameter. Fortunately, our results
are not restricted to any specific measures of social compat-
ibility, instead, we propose a general framework that works
for any reasonable measure.

Contributions: To the best of our knowledge we are the
first to define and study the TEAMGROUPING problem and
its variants. We summarize our contributions as follows:

(1) We show that this problem is 1/ lnm hard to approx-
imate, i.e., it is NP-Hard to find a solution with approxima-
tion ratio larger than 1/ lnm.

(2) We propose a LP-based algorithm with approximation
ratio max{μ/Δ, μ/2

√
m} where Δ denotes the size of the

largest minimal team and 1/μ is the approximation ratio of
MINCOSTTEAMSELECTION problem (defined formally in
Definition 1). If there is no constraint on social compatibil-
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ity, this ratio is equivalent to max{1/n lnn, 1/2
√
m lnn}.

(3) We also consider two extensions of the basic model.
In the first extension, we relax the assumption that each in-
dividual can only participate in one task by allowing indi-
viduals to have different load limits. In the second part, we
consider the scenario when each task can only be performed
by a fixed number of teams or times. We develop effective
approximation algorithms to tackle both extensions.

(4) Although we restrict our attention to the profit-driven
team grouping problem in this paper, our results apply to
other applications such as lifetime maximization problem
in wireless networks (Bagaria, Pananjady, and Vaze 2013),
resource allocation and scheduling problems (Pananjady,
Bagaria, and Vaze 2014), and supply chain management
problems (Lu 2011). In this sense, this research contributes
fundamentally to the development of approximate solutions
for any problems that fall into the family of generalized
cover decomposition problem.

Related Work

To the best of our knowledge we are the first to formulate
and study the team grouping problem and its variants. How-
ever, our work is closely related to other team formation and
cluster hiring problems. (Lappas, Liu, and Terzi 2009) in-
troduce the minimum cost team formation problem. Given
a set of skills that need to be covered and social network,
their objective is to select a team of experts that can cover all
required skills, while ensuring efficient communication be-
tween the team’s members. There is a considerable amount
of literature on this topic and its variants (Li and Shan 2012;
Kargar, Zihayat, and An 2013; Dorn and Dustdar 2010;
Gajewar and Sarma 2012; Kargar and An 2011; Li and Shan
2010; Sozio and Gionis 2010). In (Golshan, Lappas, and
Terzi 2014), they study cluster hire problem, where the ob-
jective is to hire a profit-maximizing team of experts with
the ability to complete multiple projects, subject to a fixed
budget. Different from all the above works where they aim
to select a best qualified team, our objective is to group indi-
viduals into multiple teams. It turns out that these two prob-
lems are closely related, this allows us to leverage existing
techniques on team formation to solve our problem.

The other category of related work is maximum disjoint
set cover problem (Bagaria, Pananjady, and Vaze 2013).
Given a universe, and a set of subsets, the objective is to find
as many set covers as possible such that all set covers are
pairwise disjoint. Our problem can be considered as a gen-
eralized disjoint set cover problem in the sense that every
task in our problem may have different requirement of cov-
erage, capacity constraint, and profit, and any feasible set
cover must satisfy both coverage requirement as well as so-
cial compatibility. In addition, the requirement of “disjoint”
is also relaxed by allowing individuals to have different load
limits in our problem. Therefore, this work contributes fun-
damentally to the generalized cover decomposition problem.

Problem Formulation

Individuals. Skills. Tasks. In this paper we will assume
that there is a set of n skills S, a set of m individuals V and

a set of k tasks T . Each individual u ∈ V , is represented
by a subset of skills, i.e., u ⊆ S; these are the skills that
the individual possesses. Similarly, every task t ∈ T can
also be represented by the set of skills that are required in
order for the task to be completed (i.e., t ⊆ S). In addition,
each task t is associated with a profit λt upon the comple-
tion of this task. We assume that each task has unlimited
number of copies, i.e., the same task can be performed by
multiple teams. Notice that this assumption may not always
hold in real world, to this end, we also study the case where
each task has a capacity constraint, i.e., task t can only be
performed up to gt times.

Load. Our basic model assumes that each individual can
only participate in one task. In our extended model, we will
relax this assumption by allowing individuals to have differ-
ent load limits, i.e.,, each individual u can participate in up
to fu number of tasks.

Teams. In practice, the social compatibility among indi-
viduals play an important role in a team work. For exam-
ple, low social compatibility or high coordination cost will
degrade the efficiency of organizations (Coase 1937). We
model the social compatibility by means of a social network
G = (V, E). One natural and popular option with respect
to capturing the underlying social compatibility of a team
is connectivity. This follows the approach of (Lappas, Liu,
and Terzi 2009) and requires that each team C forms a con-
nected graph. It was worth noting that there exist many ways
to quantify the social compatibility among individuals, other
options include the diameter constraint (Anagnostopoulos
et al. 2012), i.e., the longest shortest path among team mem-
bers in G is no larger than a given threshold. Fortunately,
our results are not restricted to any specific measures of so-
cial compatibility, instead, we propose a general framework
that works for any measure of social compatibility that has
been explicitly defined.

Problem Formulation. For a team of individuals C ⊆ V ,
we say that team C has a skill s if there exist at least one
individual u ∈ C, such that u has skill s, i.e., s ∈ u. For
a task t ∈ T , we say that team C covers t if C (as a team)
has all the skills required for t. Clearly, a team of individuals
may cover more than one tasks, but they can only participate
in one of those tasks due to each individual’s load limit1.
We define the set of qualified teams for task t to be the set
of distinct teams that is social compatible and covers task t.
That is,

Ct = {C ⊆ V|C is social compatible and covers t}

Let Cti denote the i-th team in Ct. A minimal qualified team
of a task t is a qualified team of this task that is not a superset
of any other qualified team. In the rest of this paper, we only
consider minimal qualified teams and let C = {C1, · · · , Ck}
denote the set of sets of minimal qualified teams for all tasks.

1As mentioned earlier,this assumption will be relaxed in the ex-
tended model.
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The objective of this work is to find a most profitable way to
group individuals into different teams, and assign one task
to each team, such that (i) each team possesses all skills re-
quired by the corresponding task, (ii) all team members are
social compatible, and (iii) each individual can only partic-
ipate in one team. Given the above notation and constraint,
we can now define TEAMGROUPING problem as follows:

P.1: Maximize
∑

Cti∈Ct∈C(xti · λt)
subject to: {∑

u∈Cti∈Ct∈C xti ≤ 1, ∀u ∈ V
xti ∈ {0, 1}, ∀Cti ∈ Ct ∈ C

In the above formulation, xti indicates whether team Cti

has been selected (xti = 1) or not (xti = 0), and the first
constraint specifies the load limit on each individual. The
following results show that we cannot hope to achieve an
ω(1/ lnm) approximation ratio for this problem.

Theorem 1 The TEAMGROUPING problem is 1/ lnm hard
to approximate.

Proof: For our proof, we will consider a simplified ver-
sion of TEAMGROUPING problem with only one task, i.e.,
k = 1, and there is no constraint on social compatibil-
ity. We call this problem S-TEAMGROUPING. We next
prove that the maximum disjoint set cover cover problem
(DSCP) can be reduced to S-TEAMGROUPING. The for-
mal definition of DSCP is as follows: Given a universe U ,
and a set of subsets X , find as many set covers as possi-
ble such that all set covers are pairwise disjoint. We wish
to formulate an equivalent S-TEAMGROUPING with a set of
skills S required the task, and a set of individuals V . Let
S = U and V = X . Because there is only one task and
no constraint on social compatibility, S-TEAMGROUPING
is equivalent to grouping V into maximum number of dis-
joint teams each of which can cover all skills in S. It
was shown in (Bagaria, Pananjady, and Vaze 2013) that the
DSCP is hard to achieve an ω(1/ lnm) approximation ratio
unless NP ⊆ DTIME(nO(ln lnm)), thus TEAMGROUP-
ING, which is a general case of S-TEAMGROUPING, is also
1/ lnm hard to approximate. �

One immediate result from the above proof is that if there
is only one task and no constraint on social compatibility, we
can simply adopt the method proposed in (Bagaria, Panan-
jady, and Vaze 2013) to achieve 1/ lnm approximation ra-
tio. In the following, we propose a LP-based approximation
algorithm to tackle the general case.

LP-Based Approximation Algorithm

In this section, we give a max{μ/Δ, μ/2
√
m}-

approximation algorithm for TEAMGROUPING, where
1/μ is the approximation factor of the algorithm
for the MINCOSTTEAMSELECTION problem, and
Δ = maxC∈Ct∈C |C|, i.e., the size of the largest minimal
team. The formal definition of MINCOSTTEAMSELECTION
will be introduced in Definition 1.

LP Relaxation

Primal LP of P.1: Maximize
∑

Cti∈Ct∈C(xti · λt)
subject to: {∑

u∈Cti∈Ct∈C xti ≤ 1, ∀u ∈ V
0 ≤ xti ≤ 1, ∀Cti ∈ Ct ∈ C

The above is the linear program (LP) relaxation of P.1.
This LP has m constraints (excluding the trivial constraints
xti ≥ 0, ∀Cti ∈ Ct ∈ C). However, since the number of
variables

∑
t∈T |Ct| could easily be exponential in the num-

ber of individuals, standard LP solvers can not solve this
packing LP effectively.

To tackle this challenge, we adopt ellipsoid algorithm
(Grötschel, Lovász, and Schrijver 1981) which is capable
of solving certain LP problems where the number of con-
straints is exponential in polynomial time.

We refer to the above relaxed TEAMGROUPING problem
as the primal LP. The dual to this primal LP associates a
price y(u) for each node u ∈ V:

Dual LP of P.1: Minimize
∑

u∈V y(u)
subject to:{∑

u∈Cti
y(u) ≥ λt, ∀Cti ∈ Ct ∈ C

y(u) ≥ 0, ∀u ∈ V

We leverage the ellipsoid method for exponential-sized LP
with an (approximate) separation oracle to establish an
approximation-preserving reduction from MINCOSTTEAM-
SELECTION, as defined in the following, to primal LP.

Definition 1 (MincostTeamSelection) Assume that there is
a set of skills S and individuals V , each individual u ∈ V is
associated with a cost and possesses a subset of skills. Find
a team of individuals with minimum cost such that (1) all
team members are social compatible, and (2) all skills in S
can be covered.

Depending on the definition of social compatibility, MIN-
COSTTEAMSELECTION has been intensively studied in the
literature. In (Lappas, Liu, and Terzi 2009), they propose
to use connectivity as a measure of social compatibility, that
is, all team members must be connected in the social net-
work. Under this context, the MINCOSTTEAMSELECTION
problem can be reduced from node weight group steiner tree
problem (Khandekar, Kortsarz, and Nutov 2012) which ad-
mits a performance ratio of O(|E|1/2 ln |E|) where |E| is the
number of edges in the social network. It was worth noting
that condition (1) can be replaced by other reasonable mea-
surements on social compatibility among team members, for
instance, some work (Anagnostopoulos et al. 2012) requires
that a team must have bounded diameter. The following the-
orem is not restricted to any specific measure of social com-
patibility. Due to space constraints, the missing proofs are
deferred to the full version.

Theorem 2 If there is a polynomial 1/μ-approximation al-
gorithm for MINCOSTTEAMSELECTION, then there exists
a polynomial μ-approximation algorithm for P.1.
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Approximation Algorithm

Having described the LP relaxation, we now propose an ap-
proximation algorithms computing a group of teams from
LP solutions. Our approach involves two algorithms as sub-
routines.

Candidate Solution I: Let CH
t denote the subset of teams

on task t corresponding to the separating hyper-planes found
by the above separation oracle while running the ellipsoid al-
gorithm, define CH = {CH

1 , · · · , CH
k }. In the first algorithm

(Algorithm 1), we directly apply the deterministic round-
ing (Algorithm 4) to CH . We can prove that this algorithm
achieves μ/Δ approximation ratio. For ease of presentation,
we put the detailed description of our rounding technique in
next section.

Algorithm 1 Candidate Grouping - I
1: Apply deterministic rounding (Algorithm 4) to CH and

output a group of teams.

Lemma 1 Algorithm 1 achieves μ/Δ approximation ratio
for TEAMGROUPING.

Candidate Solution II: The framework of the second
candidate solution (Algorithm 2) can be summarized as fol-
lows:

Step 1: For every task t, we first partition CH
t to two

disjoint subsets CH1
t and CH2

t such that: ∀C ∈ CH1
t :

|C| ≤
√
m and ∀C ∈ CH2

t : |C| >
√
m. That is, CH1

t

(resp. CH2
t ) contains all teams with no more (resp. more)

than
√
m individuals. Let CH1 = {CH1

1 , · · · , CH1

k } and
CH2 = {CH2

1 , · · · , CH2

k }.
Step 2: Apply deterministic rounding (Algorithm 4) to

CH1 and output a group of teams C̃.
Step 3: Select a team, say Ctmax

, from CH2 whose task
tmax has the highest profit λtmax

.
Step 4: Compare C̃ and {Ctmax}, choose the one with

larger profit as the final output, i.e, the profit of the returned
solution is max{

∑
Cti∈˜C λt, λtmax

}.

Algorithm 2 Candidate Grouping - II
1: Partition CH into two subsets CH1 and CH2

2: Apply the deterministic rounding (Algorithm 4) to CH1

and output C̃.
3: Select a team with the highest profit, say Ctmax

, from
CH2 .

4: Compare C̃ and {Ctmax
}, return the one with larger

profit.

We next prove that the approximation ratio of Algorithm
2 can be bounded by μ/2

√
m.

Lemma 2 Algorithm 2 achieves μ/2
√
m approximation ra-

tio for TEAMGROUPING.

Putting It All Together. Given solutions returned from
Algorithm 1 and Algorithm 2, we simply choose the one

Algorithm 3 Approx-TG
1: Compute two candidate solutions using Algorithm 1 and

Algorithm 2.
2: Return the one with higher profit.

with higher profit as our final output. We refer to this algo-
rithm as Approx-TG (Algorithm 3). Lemma 1 and Lemma
2 together imply our main theorem.
Theorem 3 Approx-TG achieves max{μ/Δ, μ/2

√
m} ap-

proximation ratio for TEAMGROUPING.
Now consider a special case of TEAMGROUPING where

there is no constraint on social compatibility. Under this
setting, MINCOSTTEAMSELECTION problem as defined in
Definition 1 is equivalent to classic weighted set cover prob-
lem (Chvatal 1979), which allows lnn approximation. In
addition, we have Δ ≤ n, this is because the number of
possible skills is at most n, if there is no constraint on social
compatibility, any minimal qualified team contains at most n
individuals. Then the following corollary holds by replacing
μ using 1/ lnn, and Δ using n in Theorem 3.
Corollary 4 If there is no constraint on social compatibility,
Approx-TG achieves max{1/n lnn, 1/2

√
m lnn} approxi-

mation ratio for TEAMGROUPING.
It was worth noting that if n � m, i.e, the number

of skills is much smaller than the number of individuals,
the above approximation ratio can be further rewritten as
1/n lnn.

Consider another special case that uses connectivity to
measure the social compatibility. As discussed earlier, un-
der this setting, the MINCOSTTEAMSELECTION problem
can be reduced from node weight group steiner tree prob-
lem (Khandekar, Kortsarz, and Nutov 2012) which admits
a performance ratio of O(|E|1/2 ln |E|). Therefore, we have
the following corollary.
Corollary 5 If all teams are required to be connected,
Approx-TG achieves

max{1/O(|E|1/2 ln |E|)Δ), O(1/|E|1/2 ln |E|)2
√
m)}

approximation ratio for TEAMGROUPING.

LP Rounding We next discuss how to round the factional
solution of primal LP, this will be used as a subroutine in
Algorithm 3. In the rest of our discussion, we say two teams
are adjacent if they contain at least one common individual.
We use N (C) to denote the adjacent teams of C. Let CI

denote the set of input teams, e.g., CI refers to CH (or CH1

resp.) in Algorithm 1 (or Algorithm 2 resp.).
Our rounding method (Algorithm 4) can be described as

follows:
Step 1: Sort all teams in CI in non-decreasing order of

their profit.
Step 2: Select the team Cti ∈ CI with the highest profit

and add it to our final solution.
Step 3: Remove Cti and N (Cti) from CI . This step en-

sures that no individual participates in multiple tasks.
Step 4: Goto Step 2 unless there are no teams left.
We next provide the approximation ratio of Algorithm 4.
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Algorithm 4 Deterministic Rounding
1: Sort all teams in CI in non-decreasing order of their

profit.
2: while CI 	= ∅ do
3: Select the team with highest profit in CI , say Cti

4: CDR = CDR ∪ {Cti}
5: CI = CI \ {Cti ∪N (Cti)}
6: end while
7: Return CDR

Lemma 3 Let τ denote the size of the largest team in CI ,
Algorithm 4 achieves approximation ratio 1/τ .

Extensions

Incorporating Heterogenous Load Limits

Our basic model assumes that each individual can only par-
ticipate in one task. However, as mentioned earlier, different
individuals may have different capabilities, i.e., , each indi-
vidual u can participate in up to fu number of tasks. In order
to capture this scenario, we can simply create fu copies of u
with identical skill set, then all results developed previously
can apply to the modified instance.

Theorem 6 Approx-TG achieves max{μ/Δ, μ/2
√
m} ap-

proximation ratio when individuals have heterogeneous load
limits.

Incorporating the Capacity Constraint of Each
Task

Throughout this paper, we assume that each task can be per-
formed unlimited number of times. However, this may not
always hold in practice, take puzzle assembly as an exam-
ple, this type of task can only be performed once. To this
end, we add a group of additional constraints to the original
problem:

∑
Cti∈Ct

xti ≤ gt, ∀t ∈ T where gt denotes the
capacity of task t ∈ T , i.e., task t can be performed up to gt
times.

P.2: Maximize
∑

Cti∈Ct∈C(xti · λt)
subject to: ⎧⎪⎨

⎪⎩
∑

u∈Cti∈Ct∈C xti ≤ 1, ∀u ∈ V∑
Cti∈Ct

xti ≤ gt, ∀t ∈ T
xti ∈ {0, 1}, ∀Cti ∈ Ct ∈ C

Similar to the one developed in the basic model, we propose
a LP-Based Approximation Algorithm for P.2. The detailed
description and analysis of our modified Approx-TG can be
found in the full version.

Theorem 7 The modified Approx-TG achieves
max{μ/(Δ + 1), μ/2(

√
m + 1)} approximation ratio

for P.2.

Performance Evaluation

In this section, we conduct an empirical evaluation of the
proposed algorithms. All experiments were run on a ma-
chine with Intel Xeon 2.40GHz CPU and 64GB memory,

running 64-bit RedHat Linux server. The goal of our ex-
periments is multifold. First, we would like to evaluate the
performance of the Team Grouping algorithms as measured
by the total profit achieved. Second, we evaluate the extent
to which the required number of skills and the connectivity
constraint affect the quality of the solutions by measuring
the cardinality of the teams produced by the algorithms. For
extended version of the TEAMGROUPING problem, we eval-
uate the total profit achieved by the algorithms under differ-
ent individual load limits and project capacity constraints.

Datasets. We evaluate the proposed algorithms on the
real world benchmark dataset collected from Upwork. Up-
work is a global freelancing platform where businesses and
independent professionals connect and collaborate remotely.
Upwork has 10 million registered freelancers and 4 million
registered clients.

Social compatibility. We follow the definition of social
compatibility introduced in (Lappas, Liu, and Terzi 2009): a
group of individuals are social compatible as long as there
exists a path between each pair of individuals in the team.
Building a team of social compatible members can be done
by solving an instance of the STEINER TREE problem as
described in (Lappas, Liu, and Terzi 2009).

Algorithms. In addition to the algorithms we proposed,
we also test with some straightforward heuristics that would
be natural alternatives for solving the team grouping prob-
lem. The intuition behind these algorithms is to form a so-
lution iteratively.
Random: A baseline algorithm that employs an iterative

procedure. In each iteration, it selects a random project from
the pool of projects T , and then builds a team to cover the
project with random selection. In order to fulfill the require-
ment of social compatibility, the algorithm needs to solve
an instance of the STEINER TREE problem as described in
(Lappas, Liu, and Terzi 2009) to ensure the connectivity of
the team. The algorithm repeats this procedure until the in-
dividual pool is exhausted. For the extended version of the
TG problem, it respects the capacity constraints of the tasks
by moving on to the next task if the current task is already
assigned to gt teams.
Greedy: This is an algorithm that greedily picks the

projects to be covered, one at a time, and finds the best set of
individuals that can cover the selected project using the stan-
dard greedy approximation algorithm for set cover problem.
In particular, it first ranks tasks w.r.t. profits and then selects
teams for tasks using this order until the individual pool is
exhausted. The project capacity constraints in extended ver-
sion are taken care of in the same way as in Random. For
each task t, the algorithm follows an iterative greedy proce-
dure to build a team, adding at each step l the individual u
that possesses the most yet uncovered required skills in t, an
instance of the STEINER TREE problem needs to be solved
to satisfy the social compatibility constraint.
Greedy+: This is an alternative version of Greedy

which takes cost efficiency into account. It first ranks tasks

w.r.t. cost efficiency,
λt

|t| (profit/number of skills required),

and then builds teams for tasks using this order until individ-
ual load limit is exhausted. The rest of the procedure is the
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Figure 1: Performance of algorithms for basic Team Grouping problem.

same as in Greedy.
Approx-TG: An alias for Algorithm 3.
Approx-TG+: This is a modified version of

Approx-TG to handle the capacity constraints of the
tasks.

For Random, Greedy and Greedy+ algorithms, we
evaluate their output using Monte Carlo simulations with
10K runs and report average results in the following.

Evaluating Algorithms for Basic Team Grouping
Problem

First, we focus on the evaluation of our algorithms for the
basic TEAMGROUPING problem, i.e., Random, Greedy,
Greedy+ and Approx-TG. Recall that in the basic version
of the problem, we have the individual load limit fu set to 1,
and the project capacity constraint gt set to infinity (i.e., ∞).
We report the total profit achieved by each algorithm, for in-
creasing values of the social connectivity threshold, i.e., ρ
ranging from 0 to 1. We also report the extent to which the
required number of skills and the social connectivity thresh-
old affect the average size of the teams produced by each
algorithm.

Figure 1(c) shows the performance of different algorithms
on the Upwork dataset, in terms of the dollar profit. The y-
axis shows the profit achieved by each algorithm, and the
x-axis shows the connectivity threshold (ρ) that was used
to adjust the social compatibility constraint. As shown in
Figure 1(c), we observe that, in all cases, Approx-TG out-
performs all the other algorithms. We also notice that the
total profit produced by each algorithm goes down as ρ in-
creases. This is because as ρ increases all the edges with
weight less than ρ are removed from the social graph, re-
sulting in the disconnection of team members that were con-
nected in original graph due to a sparse structure of the new
graph. As a result, more individuals are selected as connect-
ing nodes other than as functional nodes that actually utilize
their skills on the projects, and the total profits achieved by
the algorithms decrease accordingly.

Figure 1(a) illustrates how the average team sizes are af-
fected by different project sizes (i.e., required number of
skills). The y-axis shows the average team size produced by
each algorithm, and the x-axis shows the required number
of skills. In this set of experiments, we fix the connectivity
threshold ρ to be 0. As shown in the figure, Approx-TG

consistently produces small teams under all the skill set
size values, and the average team size produced increases
almost linearly with required number of skills. In con-
trast, Random, Greedy and Greedy+ algorithms produce
larger teams and the produced average team sizes increase
exponentially as the required number of skills increases.

Figure 1(b) shows how the average team sizes are affected
by different connectivity threshold (ρ) values. The y-axis
shows the average team size produced by each algorithm,
and the x-axis shows the value of ρ. In this set of experi-
ments, we fix the required number of skills to be 3. In par-
ticular, projects that require exactly 3 skills are selected for
this evaluation. We observe that as ρ increases, the average
team sizes produced by all algorithms increase first and then
decrease after ρ passes 0.6. It is reasonable that the aver-
age team sizes increase at the beginning because more nodes
are required in the teams to fulfill the social compatibility
requirement as ρ increases, since more edges are removed
from the original graph. At the point ρ passes 0.6, the av-
erage team sizes are shown to be decreasing. The reason is
that as a significant number of edges are removed from the
graph, the graph is decomposed to a number of small compo-
nents, resulting in a very sparse graph structure. Therefore,
potential teams that can be built are restricted to these local
small components, so as to ensure that the social compati-
bility constraint is satisfied in this case.

Conclusion

In this paper, we study the profit-driven team grouping prob-
lem. We aim to group individuals into different teams, and
assign them to different tasks, such that the total profit of the
tasks that can be performed is maximized. We consider three
constraints when perform grouping, and present a LP-based
approximation algorithm to tackle it. We also study several
extensions of this problem. Although this paper studies team
grouping problem, our results are general enough to tackle a
broad range of problems that involve cover decomposition.
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