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Abstract

Systems deployed in unstructured environments must be able
to adapt to novel situations. This requires the ability to per-
form in domains that may be vastly different from training
domains. My dissertation focuses on the representations used
in lifelong learning and how these representations enable pre-
dictions and knowledge sharing over time, allowing an agent
to continuously learn and adapt in changing environments.
Specifically, my contributions will enable lifelong learning
systems to efficiently accumulate data, use prior knowledge
to predict models for novel tasks, and alter existing models to
account for changes in the environment.

Introduction
Lifelong machine learning (Thrun 1996) is a branch of arti-
ficial intelligence that has developed to handle systems that
can adapt and learn in ever-changing environments. In Life-
long machine learning, there are possibly many source tasks,
and the objective is to optimize the representation and per-
formance for all tasks, as new information arrives. Exam-
ples of lifelong learning include methods for constructing
general representations for discrete reinforcement learning
problems (Ring 1998; Rafols and others 2005), bootstrap-
ping learned relations to infer new relations in text under-
standing (Mitchell and others 2015), and using sparse cod-
ing to share information across learned models (Ruvolo and
Eaton 2013).

I am interested in a subclass of lifelong learning, con-
tinuous learning, where previous knowledge is immediately
transferred to new tasks, and the learning process is allowed
to continue without relearning already learned knowledge.

My dissertation views the problem of continuous learn-
ing as a problem of representation. In order to efficiently
represent knowledge over the lifetime of a system, we need
representations that can handle the demands of a continuous
learner. The representations must accumulate knowledge in
an online manner, scale to a large number of diverse tasks,
discover similarities, share knowledge between tasks, adapt
to changes over time, and be able to predict good initial-
izations for novel tasks. The last point of prediction, is of
particular importance to continuous learning, since it allows
the system to run continuously in changing environments.
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The initial work of my thesis has been to address the issue
of predicting task models. My previous work (Isele, Ros-
tami, and Eaton 2016) introduced a coupled dictionary that
works with a sparse coding reinforcement learning frame-
work (Bou Ammar, Eaton, and Ruvolo 2014) to learn a dic-
tionary online. Our coupled dictionary learns to model task
descriptions enabling the system to make predictions for
novel tasks.

Moving forward, I plan to look into more expressive mod-
els that have a greater focus on time and changing repre-
sentation. To this end, I am considering two directions: a
hierarchical online learner that can accommodate tasks that
change over time and a non-linear time-varying model that
incorporate exploration into its predictions.

By designing representations that are able to handle the
demands of continuous learning I hope to lay the foundation
for lifelong learning systems that can robustly function in
unstructured environments.

Past Work: Predicting Policies

A lifelong learning framework that has been shown to be
versatile is the sparse coding method of Ruvolo and Eaton
(2013) which was developed for classification and regres-
sion and has been extended to handle reinforcement learning
problems with continuous state and action spaces (Bou Am-
mar, Eaton, and Ruvolo 2014). In this approach, models for
different tasks are represented as sparse combinations of a
shared knowledge repository of basis vectors.

I have shown that this approach can be used on robotic
systems (Isele and others 2016). However a problem with
this approach is that each time a new task is encountered, the
system is halted to gather training data to characterize the
new task. This was addressed in previous work that (Isele,
Rostami, and Eaton 2016) showed already learned knowl-
edge can be used to predict a starting policy.

In order to accomplish this, we add a coupled dictionary
that learns to represent both a description of the task and the
learned policy. Given the description of a new task, a policy
can be predicted without needing to train on the new task.
This approach enables us to predict policies that often out-
perform the policies learned by a single task policy gradient
learner. Additionally, using the predicted policy as a jump
start allows our lifelong learning system to focus specifically
on the novel aspects of a new task.
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Future Work: Hierarchical Temporal Models

The system described in the previous section is capable of
learning and transferring information across a variety of
tasks, however all models are restricted to be linear in the
basis defined by the knowledge repository. This greatly lim-
its the expressiveness of the system, preventing its applica-
tion to many interesting real world problems. We are looking
into ways of extending current lifelong learning techniques
to accommodate more powerful learners, with representa-
tions that adapt to changing environments.

In order to achieve a hierarchical model that can share
knowledge across tasks and adapt to changes over time,
we consider using deep nets as a foundation. Deep nets
have powerful hierarchical representations which have been
shown to learn features that generalize well and can be used
for transfer (Razavian and others 2014).

The training method for deep nets is already sequential,
suggesting that they can be extended to online applications
and will adapt to changes over time. However, a problem
is that sequential data often causes the network to change
too quickly - experience replay is needed to break temporal
correlations and drift (Mnih and others 2013). In order to be
useful for a continuous learner, experience replay must be
modified to allow adaption to changing environments while
holding on to past experiences that are still relevant.

Other considerations that must be addressed to extend
deep nets into continuous learners center around efficiency.
Experiences must be represented efficiently so that the sys-
tem can scale to an arbitrary length runs. Similarly, while
there has been some work related to handling multiple tasks
(Rusu et al. 2016), these approaches do not scale well to
many tasks.

Future Work: Exploratory Predictions

The coupled dictionary approach (Isele, Rostami, and Eaton
2016) predicts new models based on learned locally optimal
models. While this can produce good initializations, the pre-
dicted models are restricted to the space of known solutions.
This puts the burden on the single task learner to explore the
state space, and by design the single task learner’s initializa-
tion makes it unlikely that it will explore other local optima.

In the context of a sequential decision-making multi-
armed bandit problem this is equivalent to only exploiting.
Since we want our continuous learner to constantly improve
and adapt, it would be beneficial to incorporate exploration
into it’s prediction model. This requires a representation
that can compare the value of exploring and exploiting in a
space that changes over time. One possible solution is to use
the Gaussian Process Upper-Confidence Bound (GP-UCB)
(Srinivas et al. 2010) with extensions to time-varying func-
tions (Bogunovic, Scarlett, and Cevher 2016).

However, using Gaussian Processes presents a scalability
challenge for continuous learning. The complexity of Gaus-
sian Processes increase as the number of samples grows.
Any continuous learner requires a way to incorporate mul-
tiple sequential tasks while bounding the complexity to pre-
vent the system from arbitrarily increasing over time.

Fundamental Questions

My thesis aims to identify some of the fundamental aspects
required for continuous learning representations while also
demonstrating specific implementations that satisfy these
requirements. I plan to address the following fundamental
questions:

• What are the needs of a continuous learning system?
• What abstract representations address these needs?
• How can these abstract representations be realized?

By identifying the specific needs of a continuous learn-
ing system, and demonstrating example systems that satisfy
these needs I hope to create a framework for the develop-
ment of robust continuous learning in novel domains.
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