
Open-Ended Robotics Exploration
Projects for Budding Researchers

David R. Musicant, Abha Laddha, Tom Choi
Carleton College

1 North College Street
Northfield, MN 55057

Abstract

There are many benefits to introducing students to the idea
of doing projects where the outcome is unknown or unsure.
Some have proposed that engaging students in research can
help with retention of underrepresented groups. In this pa-
per, we report on a particular approach we have used to intro-
duce high school students to open-ended robotics projects in
a three-week summer program. We describe the structure of
our summer program, how we ramp the students up to speed,
and we summarize the five open-ended “research” projects
that the students work on. These projects can be adopted for
open-ended work elsewhere by high school students or un-
dergraduates.

Introduction

There are many benefits to introducing students to the idea
of doing projects where the outcome is unknown or unsure.
Some have proposed that engaging students in research can
help with retention of underrepresented groups (Peckham et
al. 2007; Cuny and Aspray 2000). In this paper, we report
on a particular approach we have used to introduce high
school students to open-ended robotics projects in a three-
week summer program. Our goals are to introduce students
to the idea of having control over their own projects, but in
a structured way. Is the work that they do “research”? At the
level we’re working with the students, we don’t expect them
to complete innovative work that is new to the field, but we
do hope to see students show creativity and begin engaging
some key academic principles of robotics.

It is our belief that the projects we use, and the structure
accompanying them, can work well for older high-school
or lower-level undergraduate students at a variety of experi-
ence levels. At least one of our projects is designed for stu-
dents with essentially no computing experience at all; oth-
ers are designed for students with previous programming
experience. In this paper, we describe the structure of our
summer program, how we ramp the students up to speed,
and most importantly, we summarize the various open-ended
“research” projects that the students work on.

When possible, we point students towards papers that
have been written that target the work that they are do-
ing. Being able to read research papers is an important skill

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that students can begin working on. We have found that for
this audience, unpublished manuscripts, masters theses, and
other like works can often be a rich source of material.

To summarize, here are the key contributions that we pro-
vide via this paper and the associated online materials (Mu-
sicant 2016):

• We present four structured labs for bringing students up
to speed on a variety of robotics concepts, including PID
control, finite state machines, and Q-learning.

• We present five open-ended research-like projects. In ad-
dition to presenting the project ideas and frameworks
(some of which were conceived of by others), we discuss
successful techniques as well as pitfalls that we have run
into.

Initial Labs

Our program runs for three weeks. During the first two days,
students begin with four half-days of structured classes, de-
signed to bring them up to speed. In our program, the expe-
rience students have varies from nearly none at all, to many
years of programming and/or high school robotics contests;
therefore, we believe the activities we present here could
work for a variety of experience levels. It is our goal to intro-
duce programming skills as well as academic robotics ideas
at a level appropriate for a range of experiences. While these
initial labs are not the main emphasis of this paper, we are
happy to share them. They can be adapted in a variety of
ways for other programs. The full text from the most re-
cent versions of our labs is available online (Musicant 2016).
We emphasize vigorously that in constructing these labs,
we stand on the shoulders of giants. Many aspects of these
projects have been done before, in a variety of ways.

Our first half-day lab is intended simply as a warmup to
programming with the robots we have. We currently use
LEGO Mindstorms NXT robots. In the past, we used the
NXC programming language (Hansen 2011); more recently,
we have switched over to leJOS (leJOS 2015). On the second
half day, we introduce them to PID control, and task them
in particular with having their robot follow a line. We have
found that of the students who enroll for our program, a very
few of them have encountered this beforehand. Nonetheless,
the exercise seems to challenge them. On the third half day,
we introduce finite state machines and subsumption as ar-

Proceedings of the Seventh Symposium on Educational Advances in Artificial Intelligence (EAAI-17)

4792



chitectures for organizing robot programs. Realistically, we
spend most of the time we have working on FSMs; sub-
sumption is something we end up presenting as an addi-
tional tool if students have extra time. A few students come
to our program knowing about FSMs, but it seems that es-
sentially none of them have programmed an FSM-like struc-
ture into code. Finally, on the fourth half-day, students learn
about reinforcement learning. They implement a version of
Q-learning in order for a robot to learn how to follow a wall,
based on a particular reinforcement structure. This lab is
challenging to complete in the time allotted, but is a partic-
ularly worthwhile experience for more advanced students.

Research Structure

Once students have completed the four initial labs, they then
move on to planning and completing a research project. Stu-
dents work on these research projects in teams of two that we
create, where we do our best to assign students so that they
have partners of approximately equal computing experience.
We then present the students with five research projects to
choose from. After we present the projects to the students as
a group, we then invite the pairs to look through the projects,
brainstorm some ideas among themselves, and rank their top
three choices. We then meet with each pair individually, talk
through their options and any details they may need to think
about, and help them make a final choice. Generally, we try
to make sure that we don’t have too many pairs working on
the same project, as it is more fun to have variety. We also
try to ensure that each pair is working on a project that fits
their level of expertise.

From this point forward, students essentially work on
their research project full-time for the remainder of the first
week, and then in the afternoons for the following two
weeks. (The mornings for the second and third weeks are
used for another purpose in our summer program unrelated
to this paper.) During that designated research time, the stu-
dents work to get as far as they can in completing their
projects. Support is provided by a faculty member, as well
as by an undergraduate lab assistant. (The supervising fac-
ulty member, and the undergraduate lab assistants from 2015
and 2016, are authors on this paper.) We wander the room,
helping those that need it, and directing them as necessary.
Early on in the third week students begin work on a poster
summarizing their project. On Friday morning of the last
week, students present their work at a poster and demo ses-
sion where they can talk about their work and show their
robots perform.

The Projects

In each of the following sections, we describe the projects
that the students work on. More detail can be found in the
actual prompts that we give the students (Musicant 2016). It
is important to again note that we do not claim originality on
the concepts for these projects; we learned much from look-
ing at work that others have done. Some of these are well-
known favorites, and others are based on singular implemen-
tations that we found. Our contribution here is in describing
how these projects can be structured in a research-like en-

vironment with a fixed time frame, and lessons that we and
our students have learned in implementing them.

Robot Pet

The main objective of this project is to build a robot pet that
is as lifelike as possible. This project is intended specifically
for beginning programmers. It works well for this group be-
cause of the easy access to well documented robot pet de-
signs, and no rigid boundaries that restrict the movement of
their pets. Given the open-ended nature of the project and
the lack of experience by students who work on this project,
any solution is likely a good one. That said, as our goal is
to nonetheless help them experience some of the flavor of
doing research, we do structure the project accordingly.

The first step for students is to physically design their pet,
using LEGOs. The difficulty of this step shouldn’t be under-
estimated, and was something of a surprise to us. It seems
to be the case that significant inexperience in programming
correlates highly with inexperience in physical engineering.
We therefore recommend to students that they can choose
how to spend the time that they have. They are welcome to
spend time designing their own physical robot, and accord-
ingly put less time into the programming. Alternatively, they
can research, build, and cite someone else’s physical design.
Every time that we have offered this project, students choose
to use a LEGO design that they find online. Remarkably, in
the four years that we have been doing this project, every
year a group chooses to build the NXT Puppy (Parker 2011).
(It is easy to find via popular search engines.) We also had
one group assemble a llama (Parker and Rhodes 2016). In
all cases, we did not have precisely the same LEGO parts
as these designs show, or students chose to add additional
sensors, so they still needed to add their own design ideas.

Once students have a physical design, they move on to add
functionality. In the early phase of the research, for example,
the students start out making their robots freely roam around
the room. Then, they think of other interesting actions that
they can add such as chasing an object. Groups vary, but here
is a list of features that we have seen them implement:

• Chase an infrared ball; we have HiTechnic IR balls and
sensors on hand

• Bark when some sensor value triggers, such as hear a loud
noise, or detect an object nearby; students download bark-
ing sound files, or record their own

• Respond when the person touches it, i.e., when buttons
are pressed

• Detect colors of dog bones on the floor while rolling over
them, and dance accordingly

• Maintain a “happiness” state value, and increment it or
decrement it according to sensor readings; behave accord-
ingly (perhaps make a whimper noise when sad)

To help the students keep their code organized, and to en-
courage them to integrate principled ideas, we heavily en-
courage the students to implement their program as a finite
state machine (FSM). In practice, with beginning program-
mers working on this task, we often find it challenging to get

4793



them to actually do so. Their level of programming skill is
often not high enough to see the merit of the FSM implemen-
tation, or to be able to understand the nuances of it. When
their programs get too complex to easily debug, as they of-
ten do, encouraging the students to rethink their behavior as
an FSM at this point has sometimes been more successful.

Soccer Player

The main objective of the soccer player robot is to program
a robot to play soccer which includes tracking and following
a ball and shooting it towards the goal. We point students to-
wards two papers that describe robotic soccer with LEGO
Mindstorms (Junghans 2001; Lund and Pagliarini 2000),
that use a variety of different approaches. To date, we have
seen this project only done by a a single team that focused
on the accuracy of shooting at the goal, but we also think
this project would be wonderful if two teams were willing
to work together to play against each other. The project ex-
pects some previous experience in programming.

We supply our students with a HiTechnic IR ball and cor-
responding sensor, so students begin by simply experiment-
ing with the ball and sensor and learning how it works. The
team that worked on this project next moved on to creating
a suitable design for their soccer robot in order to be able to
both track the ball, and also be able to navigate within their
homemade cardboard soccer field. The sensors they used in
the final prototype included:

• Infrared Sensor: used to pinpoint the ball’s location and
move towards it.

• Ultrasonic Sensor 1: used to determine where the robot is
with respect to the goal. The goal had a piece of cardboard
protruding higher than the rest of the soccer field, so this
ultrasonic sensor was placed at a similar height.

• Ultrasonic Sensor 2: used to determine whether or not the
robot has the ball within its grasp. This sensor was placed
low on the robot, near where the robot would catch the
ball.

• Light Sensor: helped the robot determine the boundaries
of the field. Shading and lines were used on the soccer
field to help determine where on the field the robot was.

Behaviorally, the team used an FSM to organize the dif-
ferent functions of the robot as different states. The states
included:

• Find Ball: the robot follows the ball until its ultrasonic
sensor registers that it has the ball, in which case it transi-
tions to Find Goal

• Find Goal: the robot turns until the goal sensor registers
the goal in front of the robot, in which case it transitions
to Go To Goal

• Go to Goal: the robot moves towards the goal. If it ends
up close enough, transition to Made Goal; if it loses the
ball, transition to Find Ball

• Made Goal (terminal state): the robot stops when it
reaches the goal with the ball in its grasp

Using these techniques they were able to achieve a smooth
and logically performing soccer robot that could push a ball
towards a goal. A major challenge they faced was detecting
whether the ball was in the robot’s grasp. Originally, they
tried to to do this with the infrared sensor, by measuring the
intensity of the infrared signal. This proved not to be pre-
cise enough, however. They also tried to use a light sensor
to look for a shadow made by the ball, or a touch sensor trig-
gered by the ball touching it. They struggled in both cases to
make this work reliably. For this particular group, they ended
up using the ultrasonic sensor approach. This did require
physical redesign of their robot to keep the two ultrasonic
sensors from interfering with each other. Another challenge
they faced was that the ultrasonic sensor could not detect the
goal accurately from too far away. A potential improvement
would be a multicolored field and using color sensors which
might allow for goal detection from a further distance.

Optical Code Reader

This project invites students to build an optical code recog-
nition system that is described in a published paper (Comite
and Moro 2009). It offers the students an opportunity to re-
view a research paper written at a level accessible to them. It
also exposes them to Hopfield networks, which are a partic-
ular form of recurrent artificial neural networks. This project
is intended for students who are more proficient in coding.

The objective is to build a robot that can be programmed
by paper strips. Specifically, students create paper strips with
light and dark blocks in varying patterns, and they build a
reader for those strips that utilizes a light sensor for scan-
ning it. The system they build needs to recognize which bar
code has been read, and then execute external commands as
specified. While the code reading portion of the project is
well specified, deciding what to do with the codes is up to
the students.

Students start off the project building the physical code
reader device. The research paper shows a photo of a proto-
type, so that usually helps point the students in the right di-
rection. Nonetheless, the photo is not entirely clear, and the
paper does not include step-by-step instructions on how to
build it, so the students spend time thinking through how to
design it themselves. The standard LEGO light sensor works
well enough for determining light vs. dark regions on a strip
of paper. More challenging for the students is building an ap-
paratus that uses LEGO motors and gears to linearly feed a
strip of paper through. A LEGO rack and pinion set, which
is obtainable, is typically a huge help. Students commonly
choose to use a second light sensor, but for different pur-
poses. We have seen one group using a light sensor as part
of the feeding mechanism, in order to determine whether a
paper strip is on position. We saw another group choose to
use a second sensor simply to read two columns of coding
data at a time. This latter idea was incorporated by a pair of
students that specifically wanted to improve the efficiency
beyond what they read in the original paper.

Once the apparatus is built, students work to be able to
read strips of paper and read dark and light spots on them.
This is likely the most straightforward part of the project.

4794



Finally, students need to match a strip that they read
against a library of known strips. If the reader is too ro-
bust, and the strips are too carefully made, there isn’t much
of a challenge. This project is interesting when a variety of
strips are made that represent the same code, but are impre-
cise enough so as to cause errors in reading or matching. If
the reader cannot read a strip with 100% accuracy, or of two
strips are supposed to be identical but read differently, this
is where the algorithmic aspect of the project becomes more
involved. Students then engage in a variety of approaches
for determining which strip is really intended following a
noisy read. The paper that they are provided with recom-
mends the use of Hopfield networks. Though this may not be
the first approach of choice for a modern practitioner, they’re
a lot of fun to try. Most notably, they introduce the student
to neural-network-style computation in a compelling exam-
ple that is quite implementable. It does require some math-
ematical sophistication to be able to understand, which in
turn reinforces the research-like nature of the project. Typ-
ically, we encourage the students to start off with a quick
ad-hoc method for implementing matching, and then suggest
that they implement Hopfield networks afterwards. They can
then compare and contrast the approaches, both intuitively
as well as experimentally.

We have seen three different teams work on this project,
all of whom found it quite doable. They varied notably in
where they chose to put their efforts. One of the three teams
did choose to implement a Hopfield network approach af-
ter having prototyped an ad-hoc solution. A major challenge
they faced in implementation, as would be expected, was in
debugging their mathematical formulas. Another team first
prototyped code matching via a k-nearest neighbor algo-
rithm that we we suggested. Ironically, it worked so well
that the students could not be coerced into attempting the
more challenging Hopfield network approach, which carries
more of an AI flavor to it. This was a learning lesson for us:
on this project, keeping k-nearest neighbor in reserve as a
backup algorithm is a great idea, but it is so easy that intro-
ducing it to students first may dissuade them from studying
other approaches. The third team that attempted this project
found the user interface and object-oriented aspects of the
project more interesting than the code matching, and chose
to stick with their ad-hoc matching technique. Instead, they
decided to spend their time on an object-oriented design
model that allowed them to use their code reader to inter-
act with their computer in different ways (act as a calculator,
act as mouse/keyboard input to the computer, or play music).

Emergency Rescue Robot
We describe the goal of this project as building a robot that
can navigate and locate a target trapped in a place like a
mine. In practicality, this is an easily recognizable classic
robotics project; the robot needs to learn how to navigate a
maze. We give this a research-like flavor by encouraging the
students to develop their own robot designs and their own
navigation algorithms before we point them to some clas-
sic approaches. They also have significant control over the
design of the physical maze itself. Specifically, we use two
different approaches to the physical maze. One of them is

a wooden maze with vertical walls that we constructed our-
selves; the other approach is to use vinyl square floor tiles1,
which can be laid out as desired. Each group picks one of the
two approaches and makes a robot that explores and maps
the maze on its own, and ideally pursues optimal path find-
ing as well.

The project is very flexible in terms of the experience lev-
els of the students. Those without much programming expe-
rience can focus on getting their robots to simply explore the
maze following along the wall. Further directions where the
project can go include:

• Keeping track of the robot’s own position in the maze

• Recording a map of portions visited

• Displaying the map on the robot’s LCD screen

• Transmitting the map to a desktop via Bluetooth commu-
nication, and having a program on the desktop draw the
map in progress

• After having explored the maze, determine shortest path
to a goal via breadth-first search, A* search, or D* search.

This variety of aspects of the project enables them to freely
readjust their goals in accordance with their progress and the
levels of their expertise.

As mentioned earlier, we let each research group pick ei-
ther the wooden maze or the floor tiles. The wooden maze
has physical walls that are few inches taller than the rescue
robots. The other maze is a set of 1’x1’ white floor tiles,
which allows the students to configure their own layouts.

Knowing how far a robot has traveled is essential for up-
dating its position and mapping the maze. It is in principle
possible to keep track of how far it has traveled by counting
the number of motor rotations for each direction. We have
had better success by encouraging students to apply tape to
the borders between regions of the maze. Students then use
light sensors to detect when the robot has transitioned from
region to the next.

For both forms of this project, simply navigating through-
out the maze is a more challenging task for the students
than perhaps it would seem on first look. In the case of the
wooden maze, students need to be able to determine whether
or not there is a wall on one side to determine whether or not
the robot needs to explore a new route. A touch sensor can
do this, but can be difficult to physically engineer so that it
can trigger reliably. In our experience, an ultrasonic sensor
works better. Keeping the robot oriented correctly in a given
direction is challenging as well. Our students have generally
solved this by using strips of black tape across the maze that
run across the path that the robot takes. Their robot uses two
downward-facing light sensors, one on the left side of the
robot and one on the right. If one sensor hits a strip of tape
before the other, the robot straightens itself out accordingly.

In the case of the floor tile maze, our students use tape
to mark the “walls,” and accordingly use a light sensor to
detect when the robot is hitting one. Determining when the
robot has transitioned from one tile to another for mapping

1Thanks to J. Ben Schafer at University of Northern Iowa for
this idea.

4795



purposes, is often done by using strips of tape at each tile
transition point near the center of the robot, and using a light
sensor there as well. One place where we have seen signifi-
cant variation in projects is in the navigation algorithm used.
One team took a “discrete tile” approach, where the robot
simply rolled forward from one tile to the next, where each
transition was treated as a single action. To determine if the
robot should turn, it would simply try it; it would turn, and
see if the next tape detected indicated a wall or a tile tran-
sition. If it encountered a wall it would reverse its action,
and try a different direction. Another team instead used a
“continuous” approach, where they followed along a wall as
a line-following operation, not paying attention to individ-
ual tile boundaries. A turn, then, took no extra programming
work at all; it happened automatically as part of the line fol-
lowing operation. The tricky part for this group was detect-
ing for mapping purposed when a turn happened, which they
did via timing; they determined a turn happened if the robot
lost touch with a wall for a certain calibrated period of time.
This approach admittedly is not one that we would choose
to implement ourselves, but the students involved were quite
proud of it and took considerable ownership for their tech-
nique. Furthermore, it enabled the students to leverage the
PID control code that they had written during the first week.

Exploration Robot

The exploration robot project involves having a robot ex-
plore a mostly open room and map it. It is motivated by the
fact that there are places that humans can’t go, and robots
would prove extremely useful in these circumstances. This
seems similar perhaps to the rescue robot project described
above; the key difference here is the lack of structure. In-
stead of a detailed maze, the robot is in a relatively free-form
space. The project is designed for those with at least moder-
ate previous programming experience. It is also designed at
three different levels depending on the skills and interests of
the groups:

• Explore a space with walls and obstacles (such as boxes)
and use the ultrasonic sensor to measure distances to ob-
jects, and to build a map as you go. Render the map in
some rough form on the robot LCD screen.

• Improve the representation of the map beyond the LCD
screen by drawing it on a nearby desktop, using Bluetooth
communication between the two.

• Solve the so-called “kidnapped robot problem”: have the
robot locate where it is in the space. if it were suddenly
dropped in an unknown location, after having previously
mapped the space. We point them to a paper that has de-
scribed how to do precisely this with a LEGO NXT robot
(Singh Jasmeet 2013). To date, students that have worked
on this project haven’t gotten to this stage, but we think
that having this out there as an advanced goal is worth-
while to motivate and set up what they do.

We have had two teams take on this project so far. In
both cases, we learned that this is a fairly complex project,
and each team chose a different subgoal to work on. The
first team that worked on this project choose to carefully

map a single large object of (relatively) arbitrary shape; they
started off mapping rectangular boxes, then moved on to L-
shaped arrangements. To do this, they designed a robot that
used an ultrasonic sensor for following along the edge of
the object. The actual distance traversed by the robot was
recorded by the tachometers in the drive wheels. Two touch
sensors on the front allowed the robot to detect surfaces di-
rectly in front of it.

Algorithmically, they accomplished their task by having
the robot maintain a constant distance of 20 cm from the
wall via a PID controller. When the robot was no longer
able to sense a wall next to it, or it hit an obstacle, it would
record the end of the wall, and then turn. Each turn was a
simple routine designed to put the robot in position to follow
the next wall. A complication here that they dealt with was
that the box they used had slightly rounded corners, which
means that detecting the end of the edge was tricky. They
resolved the issue by recording a corner if one wheel had
traveled significantly farther than the other one. They were
able to ultimately generate a map of the entire object, includ-
ing its orientation, which they transmitted to a desktop and
displayed on the screen.

The second team that took on this project decided to start
with the subgoal of keeping the robot in a fixed location,
and mapping the visible horizon around the robot via the ul-
trasonic sensor. In other words, the robot started in a fixed
location, and had the ultrasonic sensor on a motor; it swept
the sensor in a 360 degree circle around the robot, measuring
the distance in all directions. This was to be a first step in a
particle-filtering approach, where the robot would then move
to multiple locations, take similar measurements, and then
combine. However, this team ran into a challenging prob-
lem. They ran an initial test by placing their robot inside
a cardboard box, measuring the distance registered in all
directions around the robot, and drawing what they found.
They expected to see a rectangle, but instead, they found that
the corners didn’t match; the left and right walls of the box
didn’t intersect with the front and back walls. Furthermore,
the walls came out appearing to be curved. This stumped the
students for quite a while, and they spent considerable time
trying to debug their code and their trigonometry to see what
was going on. In the end, there were two different sources of
error contributing to what they saw:

• They discovered a non-linearity in the distances reported
by the LEGO ultrasonic sensor; at very close distances,
their distance sensor increasingly and predictably mises-
timated the distance. They solved this by experimentally
measuring actual distance with a ruler vs. distance re-
ported by the sensor at a variety of values, and used a
curve fitting approach to correct for the error.

• They had inadvertently made a very subtle physical error
in converting from polar coordinates to rectangular coor-
dinates in order to plot the space on the screen. The is-
sue was not in their trigonometry, which they spent a lot
of time re-checking. In the end, the problem was that the
LEGO ultrasonic sensor reports distance from the edge
of the sensor device, not from the junction point where it
would be attached to a motor. When determining the dis-

4796



tance from the pivot to a wall, the students had neglected
to add on the width of the ultrasonic sensor device itself.

Diagnosing these two problems was quite challenging to
the students, but they got a major reward when fixing them
resulted in a nearly perfect looking rectangle being drawn on
their robot’s screen. In the end, both teams working on this
project ended up going in a somewhat different and lesser di-
rection than the project description entails, they both ended
up facing real challenges that they had to learn how to solve.

Challenges and Lessons Learned

Working with high school students in a research-like con-
text comes with its share of challenges, and we have learned
a lot from the four times (once each summer for the last
four years) that we have run this program. One key thing we
learned is that it is important that we provide a list of projects
to choose from, as opposed to them designing their own
from scratch. The first year that we offered our program, we
invited students to design and choose their own projects. We
found that they did not know enough of the robotics land-
scape to know what to pick. For the most part, the projects
they picked were either impossibly hard to do (which we
steered them away from), or fairly dull. The quality of their
work, as well as the amount they learned, increased dramat-
ically once we began providing a choice of projects.

Every year that we have done this, one team has chosen
to implement some sort of multithreaded code. LEGO NXT
robots provide the capability for doing this. It has been our
experience that multithreaded code for this audience is al-
ways a bad idea in the end. Debugging race conditions is
challenging under the best of circumstances, let alone being
done so by relatively inexperienced students on robots that
behave unpredictably due to real-world interactions. It is our
recommendation to heavily discourage students from trying
to implement multithreading.

Our experience has not been free from the challenges that
inevitably arise when students work in pairs. In our experi-
ence, it is absolutely critical that students must have similar
skill levels in order to work on the same team; otherwise, one
team member thoroughly dominates the other. This seems to
perhaps be an even worse problem in an open-ended project
such as this one, than it would be perhaps in a more directed
class assignment.

Finally, a challenge that readers of this paper might face
is implementing our projects under different timing con-
straints. Rather than offering this as summer program, some
might think about doing this as lower-level undergraduate
research seminar, for example. We believe that the struc-
ture we present would not need to change dramatically. In
our morning classes, in which we do the structured labs, we
have a 3 hour time frame. The first window of that is spent
discussing the underlying concepts and the labs, and then
the students have approximately two hours to work on that
lab itself. Each lab could instead be done as a week of three
one-hour classes; the first would be a lecture doing the setup,
and then the remaining two classes would have the students
working on the lab itself.

Conclusion
We have presented a structure and a number of projects
to engage younger students (high school, or perhaps at
the early college level) in research-like experiences using
robotics. The prompts that we provide the students with are
available online (Musicant 2016). Many of the students that
we work with are in the process of deciding whether they
want to further study computer science as a major. We be-
lieve that these projects provide tangible ways in which the
students see their code come to life, which we hope will help
in creating and sustaining a long term interest in the field.

Acknowledgments
The three week structure for our program, described early
in this paper, was collaboratively developed by a number of
faculty and staff members at Carleton College. In particu-
lar, we thank Jeremy Updike, Amanda Williams, and Katie
Lauer at the Carleton Summer Academic Programs office
for their insights in assembling and running this program.
Daniel Barter and Eric Ewing were undergraduate lab assis-
tants during the program’s first two years, and their efforts
were critical in the development of these projects.

References
Comite, M., and Moro, M. 2009. How introducing ar-
tificial intelligent behaviours in educational robotics. In
INTED2009 Proceedings, 3rd International Technology, Ed-
ucation and Development Conference, 2476–2483. IATED.
Cuny, J., and Aspray, W. 2000. Recruitment and retention of
women graduate students in computer science and engineer-
ing. Technical report, Computing Research Association’s
Committee on the Status of Women in Computing Research.
Hansen, J. 2011. Not eXactly C. http://bricxcc.sourceforge.
net/nbc.
Junghans, A. 2001. Collaborative robotics with Lego Mind-
storms. Master’s thesis, Karlsruhe University of Applied
Sciences, Germany.
leJOS. 2015. leJOS. http://www.lejos.org/.
Lund, H. H., and Pagliarini, L. 2000. RoboCup Jr. with
LEGO Mindstorms. In Proceedings of the 2000 IEEE Inter-
national Conference on Robotics and Automation.
Musicant, D. 2016. Carleton SCSI labs and research
projects. http://www.cs.carleton.edu/faculty/dmusicant/
scsiweb/eaai.
Parker, D., and Rhodes, R. 2016. Lego NXT Llama. http:
//lego.build/2cNgBTF.
Parker, D. 2011. Puppy. http://nxtprograms.com/puppy.
Peckham, J.; Stephenson, P.; Hervé, J.-Y.; Hutt, R.; and
Encarnação, M. 2007. Increasing student retention in com-
puter science through research programs for undergraduates.
In Proceedings of the 38th SIGCSE Technical Symposium on
Computer Science Education, SIGCSE ’07, 124–128. New
York, NY, USA: ACM.
Singh Jasmeet, B. P. 2013. Map construction and localiza-
tion using Lego Mindstorms NXT. Journal of Automation,
Mobile Robotics and Intelligent Systems 7(3):22–30.

4797




