
Online SPARC for Drawing and Animation

Elias Marcopoulos,1 Maede Rayatidamavandi,2 Crisel Suarez,3 Yuanlin Zhang4

1Department of Computer Science, Tufts University, USA
2Department of Computer Science, Texas Tech University, USA

3Department of Mathematics, St. Edward’s University, USA
4Department of Computer Science, Texas Tech University, USA

1emarcopoulos@gmail.com, 2maede.rayati@gmail.com,
3csuarez@stedwards.edu, 4y.zhang@ttu.edu

Abstract

We developed a method to draw and animate using
SPARC, a logic programming system, and an online en-
vironment to support this method. Particularly, we intro-
duce two predicates: one for drawing and one for anima-
tion. By our method, programmers will write a SPARC
program, using our introduced predicates, to specify
their drawing or animation. The drawing or animation
will then be rendered upon executing the program with
our system. In fact, our online system provides an en-
vironment where the programmers can easily edit and
execute their programs.

Introduction
We have developed an online environment to produce draw-
ings and animations using a logical programming lan-
guage called SPARC. The online environment is available
at http://goo.gl/ukSZET.

SPARC is a special instance of Answer Set Programming
(ASP) (Gelfond and Kahl 2014). ASP is a recent success-
ful development in Logic Programming (Kowalski 2014).
It is now fully declarative and gets rid of procedural fea-
tures of classical Logic Programming systems such as PRO-
LOG. The procedural features are taken as the source of
misconceptions in students’ learning of Logic Programming
(Mendelsohn, Green, and Brna 1990). SPARC is designed to
further facilitate the teaching of logic programming by intro-
ducing sorts (or types) which simplify the difficult program-
ming concept of domain variables in classical ASP systems
such as Clingo (Gebser et al. 2011) and help programmers to
identify errors early thanks to sort information. Initial exper-
iment of teaching SPARC to high school students is promis-
ing (Reyes et al. 2016).

It is observed that multimedia and visualization play a
positive role in promoting students’ learning (Guzdial 2001;
Clark et al. 2009). By introducing drawing and animation
to SPARC, we expect to provide new opportunities for stu-
dents to present their solutions to problems in a more vi-
sually straightforward and exciting manner (instead of the
answer sets which are simply a set of literals). We integrate
our program for rendering the drawing and animation for

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

SPARC programs into the SPARC online development envi-
ronment (Reotutar et al. 2016). The use of an online system
is much easier than a standalone software, which is neces-
sary for teaching K-12 or general undergraduate students.

Drawing and Animation Design
To allow programmers to create drawings and animations,
we simply design two predicates, called display predicates:
one for drawing and one for animation. The atoms using
these predicates are called display atoms.

Drawing. A drawing predicate is of the form: draw(c)
where c is called a drawing command. Intuitively the atom
containing this predicate draws texts and graphics as in-
structed by the command c. By drawing a picture, we mean
a shape is drawn with a style. A shape is a geometric line
or curve. A style specifies the physical visual properties of
the shape it is applied to. For example, one visual prop-
erty is color. Note the origin of the coordinate system is
at the top left corner of the canvas. Here is a an example
of drawing a red line from point (0, 0) to (2, 2). First, we
introduce a style name redline and associate it to the
red color by the style command line color(redline,
red). With this defined style we then draw the red line
by the shape command draw line(redline, 0, 0,
2, 2). Style commands and shape commands form all
drawing commands. The SPARC program rules to draw the
given line are
draw(line color(redline, red)).
draw(draw line(redline, 0, 0, 2, 2)).

Animation. A frame, or drawing/picture, is a critical con-
cept for animation. When a sequence of frames (whose con-
tent is normally relevant) is shown on the screen in rapid suc-
cession (usually 24, 25, 30, or 60 frames per second), a fluid
animation is seemingly created. To design an animation, a
designer will specify the drawing for each frame. Given that
the order of frames matters, we give a frame a value equal
to its index in the given sequence. We introduce the animate
predicate animate(c, i) which indicates a desire to draw
a picture at the ith frame using drawing command c and i
starts from 0. The frames will be shown on the screen at
a rate of 60 frames per second, and the ith frame will be
showed at (i ∗ 1/60) second from the start of the animation
for a duration of 1/60 second.

Proceedings of the Seventh Symposium on Educational Advances in Artificial Intelligence (EAAI-17)

4817



Figure 1: Online SPARC Environment

As an example, we would like to elaborate on an an-
imation where a red box (with side length of 10 pixels)
moves from the point (1, 70) to (200, 70). We will create
200 frames with the box (whose bottom left corner is) at
point (i+1, 70) in ith frame. In any frame I , we specify the
drawing styling redline:
animate(line color(redline, red), I).

To make a box at Ith frame, we need to draw, using style
redline, its four sides: bottom - (I + 1, 70) to (I + 1 +
10, 70), left - (I + 1, 70) to (I + 1, 60), top - (I + 1, 60) to
(I+1+10, 60) and right - (I+1+10, 60) to (I+1+10, 70).
Hence we have the rules
animate(draw line(redline,I+1,70,I+11,70),I).
animate(draw line(redline,I+1,70,I+1,60),I).
animate(draw line(redline,I+1,60,I+11,60),I).
animate(draw line(redline,I+11,60,I+11,70),I).

Algorithm, Implementation and Environment
The input to the main algorithm is a SPARC program P . The
output is an HTML5 program containing a canvas which
will be rendered by the browser. The algorithm finds an
answer set (i.e., all atoms that are true under the program
by stable model semantics (Gelfond and Kahl 2014)), ex-
tracts all display atoms, and generates an HTML5 program
that uses canvas to set the drawing style properly accord-
ing to the style atoms for the ith frame and then renders
all shape commands specified by the animate atoms for the
ith frame. The drawing commands inside the display atoms
will be rendered for every frame. (An optimization is made
to reduce repeated rendering efforts.) We integrated our al-
gorithm into the existing online SPARC environment. The
interface of our environment is shown in Figure 1. The pro-
grammer can edit a SPARC program in area 1 (as shown
in the figure). Only after clicking the Execute button (area
2) will the drawing/animation be shown in area 3. Example
SPARC programs with drawing and animation can be found
at https://goo.gl/nLD4LD.

Discussion and Conclusion
Our work is based on (Cliffe et al. 2008) which first intro-
duced a design of the display predicates and rendered the
drawing and animation using a standalone program ASPviz.
The first main difference is that our design of the animate
predicate has a straightforward meaning, which is important

for both teaching and system design, while their design is
more complex. The second is that our system is an online
environment, whose convenience enables its using in teach-
ing for high school and general undergraduate students. Fi-
nally, our host language is SPARC, which is arguably more
suitable for teaching than ASPviz’s host language.

It is noted that thanks to ASP/SPARC rules, one can de-
fine more abstract and easy to use drawing/animation “com-
mands.” With the new drawing and animation features, stu-
dents can not only solve problems such as Sudoku and
AI problems, but can also present the results in vivid and
straightforward drawings and animations. We hope the new
environment will inspire more interest in Logic Program-
ming, AI, and computer science in general, as well as pro-
vide a more effective learning environment.

Acknowledgments
The work of Marcopoulos, Suarez and Zhang were partially
supported by National Science Foundation (grant# CNS-
1359359). We thank Michael Gelfond and Yinan Zhang for
their input and help. We thank Texas Tech University (TTU)
and the graduate students at KRLab of TTU.

References
Clark, D.; Nelson, B.; Sengupta, P.; and DAngelo, C. 2009.
Rethinking science learning through digital games and sim-
ulations: Genres, examples, and evidence. In Learning sci-
ence: Computer games, simulations, and education work-
shop sponsored by the National Academy of Sciences, Wash-
ington, DC.
Cliffe, O.; De Vos, M.; Brain, M.; and Padget, J. 2008. As-
pviz: Declarative visualisation and animation using answer
set programming. In International Conference on Logic Pro-
gramming, 724–728. Springer.
Gebser, M.; Kaufmann, B.; Kaminski, R.; Ostrowski, M.;
Schaub, T.; and Schneider, M. 2011. Potassco: The pots-
dam answer set solving collection. Ai Communications
24(2):107–124.
Gelfond, M., and Kahl, Y. 2014. Knowledge Representation,
Reasoning, and the Design of Intelligent Agents. Cambridge
University Press.
Guzdial, M. 2001. Use of collaborative multimedia in com-
puter science classes. In ACM SIGCSE Bulletin, volume 33,
17–20. ACM.
Kowalski, R. 2014. Logic programming. Computational
Logic, Volume 9 (Handbook of the History of Logic).
Mendelsohn, P.; Green, T.; and Brna, P. 1990. Program-
ming languages in education: The search for an easy start.
Psychology of programming 175–200.
Reotutar, C.; Diagne, M.; Balai, E.; Wertz, E.; Lee, P.; Yeh,
S.-L.; and Zhang, Y. 2016. An online logic programming
development environment. In Thirtieth AAAI Conference on
Artificial Intelligence.
Reyes, M.; Perez, C.; Upchurch, R.; Yuen, T.; and Zhang,
Y. 2016. Using declarative programming in an introduc-
tory computer science course for high school students. In
Thirtieth AAAI Conference on Artificial Intelligence.

4818




