
Exclusion Method for Finding Nash Equilibrium in Multiplayer Games

Kimmo Berg
Aalto University School of Science

Dept. of Mathematics and Systems Analysis
kimmo.berg@aalto.fi

Tuomas Sandholm
Carnegie Mellon University

Computer Science Department
sandholm@cs.cmu.edu

Abstract

We present a complete algorithm for finding an ε-Nash equi-
librium, for arbitrarily small ε, in games with more than two
players. The method improves the best-known upper bound
with respect to the number of players n, and it is the first
implemented algorithm, to our knowledge, that manages to
solve all instances. The main components of our tree-search-
based method are a node-selection strategy, an exclusion or-
acle, and a subdivision scheme. The node-selection strategy
determines the next region (of the strategy profile probabil-
ity vector space) to be explored—based on the region’s size
and an estimate of whether the region contains an equilib-
rium. The exclusion oracle provides a provably correct suf-
ficient condition for there not to exist an equilibrium in the
region. The subdivision scheme determines how the region
is split if it cannot be excluded. Unlike the well-known in-
complete methods, our method does not need to proceed lo-
cally, which avoids it getting stuck in a local minimum—in
the space of players’ regrets—that may be far from any ac-
tual equilibrium. The run time grows rapidly with the game
size; this reflects the dimensionality of this difficult problem.
That suggests a hybrid scheme where one of the relatively
fast prior incomplete algorithms is run, and if it fails to find
an equilibrium, then our method is used.

Introduction

Unlike in single-agent settings, in games, the best action for
a player may depend on what actions the other player(s)
choose. Solution concepts from noncooperative game theory
are sound definitions of rationality in such settings. How-
ever, to operationalize those concepts, one needs to develop
algorithms for finding solutions that satisfy the definition of
the concept.

The seminal solution concept in noncooperative game
theory is Nash equilibrium (Nash 1950). It plays an im-
portant role in analyzing game-theoretic situations, and has
transformed economics and other fields of science.

Finding a Nash equilibrium is an important, interest-
ing, and well-studied problem (Herings and Peeters 2010;
Daskalakis, Goldberg, and Papadimitriou 2009). Find-
ing (even an approximate) Nash equilibrium in a two-
player general-sum game or in a multiplayer game is

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

PPAD-complete (Chen, Deng, and Teng 2009; Daskalakis
2013; Rubinstein 2015; 2016). Furthermore, the multiplayer
games are FIXP-complete (Etessami and Yannakakis 2010)
and the query complexity has been examined in Babichenko
(2014). In contrast, a correlated equilibrium can be com-
puted efficiently (Papadimitriou and Roughgarden 2005;
Jiang and Leyton-Brown 2011). In larger games, it is not
only the computation time that matters but also the memory
requirements of storing the players’ payoffs, which grow ex-
ponentially in the number of players in normal-form games;
classes of games have been introduced where the payoffs can
be compactly represented (Jiang, Leyton-Brown, and Bhat
2011). Two-player zero-sum games can be solved in poly-
nomial time.

Multiplayer games differ significantly from two-player
games. In a two-player game, the set of equilibria can
be defined by, and found using, linear equations (with
binary and continuous variables (Sandholm, Gilpin, and
Conitzer 2005)). In contrast, modeling equilibria in multi-
player games involves nonlinear polynomial equations.

Finding a Nash equilibrium in multiplayer games is
known to be more challenging in practice than in two-player
games. It has also received much less attention. That said,
several techniques have been proposed:

• Homotopy (path-following) methods (Herings and
van den Elzen 2002; Govindan and Wilson 2003; 2004;
McKelvey and Palfrey 1995; Turocy 2005) find an equi-
librium in an easy artificial game first and then transform
that problem continuously to the original problem while
tracking how the equilibrium changes during this process.
The transformation means that a nonlinear homotopy
path is traced numerically.

• Polynomial equation solving and support enumeration
methods (Porter, Nudelman, and Shoham 2008; Lipton
and Markakis 2004) are based on solving a system of non-
linear polynomial equations that define the equilibrium,
and may enumerate and go through all the possible sup-
ports of the players’ mixed strategies.

• Function minimization methods (Sandholm, Gilpin, and
Conitzer 2005; Chatterjee 2009; Boryczka and Juszczuk
2013; Buttler and Akchurina 2013) provide optimization
formulations and algorithms for finding a Nash equilib-
rium. The methods may use a mixed-integer programming

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

383

formulation, where some of the variables are binary and
they indicate whether a given pure strategy is in the sup-
port of the mixed-strategy equilibrium. The algorithms are
typically based on tree search, and they branch on the bi-
nary variables. That is in stark contrast to the tree-search-
based algorithm that we develop, which is based on split-
ting the continuous probability space.

• Simplicial subdivision methods (van der Laan, Talman,
and van der Heyden 1987) construct a triangulated mesh
for the search space and try to find a completely labeled
simplex in the mesh. The triangulation is adaptively re-
fined and the algorithm can be restarted from the previ-
ously found simplex. The algorithm moves locally from
one simplex to another, which may require a long path in
a highly-refined mesh. A Nash equilibrium need not be
close to the found simplex on any given triangulation.

• Uniform-strategy enumeration methods (Lipton,
Markakis, and Mehta 2003; Hémon, de Rougemont,
and Santha 2008; Babichenko, Barman, and Peretz 2014)
search exhaustively for an approximate equilibrium over
all k-uniform strategies, that is, strategies where all the
probabilities are integer multiples of 1/k, for a given k.

Some of the above methods require drastic modifications
when moving from the two-player setting to multiple play-
ers. For example, the homotopy method of Herings and van
den Elzen (2002) uses piecewise linearization to handle the
nonlinearities in the tracing procedure, and Ganzfried and
Sandholm (2010) generalize the mixed-integer program for-
mulation of Sandholm et al. (2005) using piecewise lin-
earization.

The homotopy methods that use the global Newton
method do not converge globally (McKelvey and McLennan
1996). Govindan and Wilson (2004) observe that the iterated
polymatrix approximation method typically converges glob-
ally but is not failsafe and may get stuck in some games.
They find that the problem with homotopy methods is that
they need to traverse nonlinear paths and require many small
steps in order to obtain reasonable accuracy. They also ob-
serve that the homotopy path may have many twists and
reversals. Goldberg et al. (2013) construct examples where
homotopy methods will not only need an exponential num-
ber of pivots but also an exponential number of direction
reversals. Herings and van den Elzen (2002) and Herings
and Peeters (2010) present a globally convergent homotopy
method but note that the triangulations must have very re-
fined mesh and the homotopy path must be traced numeri-
cally.

In principle, one can find all equilibria since the nonlin-
ear equations are polynomials (Herings and Peeters 2005;
Datta 2010). The idea is to enumerate all supports, solve all
roots of the polynomial equations, and select the solutions
that correspond to probability distributions (Turocy 2008).
The methods of finding all equilibria are probabilistic, that
is, they will find all solutions with given probability when
they are run for at least some amount of time (which depends
on the probability) (Herings and Peeters 2005). There are
exponentially many supports in the game and there can be
exponentially many equilibria (McLennan 2005; von Sten-

gel 2012). Moreover, the homotopy methods (global New-
ton, tracing procedure, or quantal response method) are not
guaranteed to find all equilibria (Turocy 2010).

Lipton et al. (2003) showed that any Nash equilibrium can
be approximated with some ε-Nash where the players use
supports with a small number of pure strategies; see also
Hemon et al. (2008). Babichenko et al. (2014) improved
the bounds and presented a complete method for finding
an ε-Nash equilibrium in multiplayer games that has so far
the best-known upper bound with respect to the number of
strategies m and the number of player n. Their bound mlogm

is tight up to a constant if it takes exponential time to solve
PPAD-hard problems (Rubinstein 2016). The method enu-
merates all k-uniform strategy profiles among which an ε-
Nash equilibrium must exist. The k-uniform strategies are
mixed strategies that assign to each pure strategy a ratio-
nal probability with denominator k. The main advantage of
using k-uniform strategies is that this strategy space is rela-
tively small compared to the original strategy space. Lipton
and Markakis (2004) propose a method that has the best-
known upper bound with respect to the accuracy ε. However,
none of those methods have been implemented, as far as we
know. We implement a method based on uniform strategies
and make a comparison with our method. We also test all
the GAMBIT multiplayer algorithms and find that our ex-
clusion method is the first implemented algorithm that can
find approximate equilibrium in all instances.

We present a complete tree-search-based method that im-
proves the best-known upper bound with respect to the num-
ber of players n; see the 2-page early version published
as Berg and Sandholm (2016). We improve the bounds of
Babichenko et al. (2014) in n and ε, but our method is worse
in the number of actions m. Moreover, our method is better
in n compared to Lipton and Markakis (2004), equal in m,
and worse in ε. Babichenko et al. show that the query com-
plexity of the problem is exponential in n (as is our run-time
bound),if ε = O(1/n); so, under that condition, our run time
is optimal in n.

Our method divides the search space into smaller regions
and examines whether an equilibrium cannot exist in the re-
gion. The regions are explored in an order given by a ranking
function. This means that the regions are not examined lo-
cally, as in the simplicial subdivision method; this prevents
our algorithm from getting stuck in local minima—in the
space of players’ regrets—that may be far away from any
actual Nash equilibrium. The regions are either excluded by
the oracle or further subdivided into smaller regions. The
proposed oracle never excludes a region that contains an
equilibrium. Moreover, any point with positive regret can be
excluded when the surrounding region is small enough. Our
method keeps removing regions based on points with posi-
tive regret, and is guaranteed to find an ε-Nash equilibrium,
for arbitrarily small ε, in finite time that depends on ε.

Normal-form games
A normal-form game can be defined as a tuple G =
(N,A, u), where N = {1, . . . , n} is the set of players and
Ai = {a1, . . . , am} is the set of pure actions for player i.
For simplicity, we assume that all the players have the same

384

number of actions m. The function ui : A �→ R gives
player i’s payoff, where the set of pure action profiles is
A = A1 × . . .×An.

The players may use mixed strategies, that is, random-
ize among the pure actions. Each player i assigns a prob-
ability pi(aj) ≥ 0 for each pure action aj ∈ Ai such
that

∑m
k=1 pi(ak) = 1. The mixed strategy profile is de-

noted by p = (p1, . . . , pn). For a given strategy p, the play-
ers’ payoffs are ui(p) =

∑
a∈A p(a)ui(a), where p(a) =∏

i∈N pi(ai). Player i’s opponents’ strategies are denoted
by p−i = (p1, . . . , pi−1, pi+1, . . . , pn).

A strategy p∗ is a Nash equilibrium if ui(aj , p
∗
−i) ≤

ui(p
∗
i , p

∗
−i) for all aj ∈ Ai and i ∈ N . This means that no

player has incentive to deviate when the other players stick
to their equilibrium strategies. At least one Nash equilibrium
always exists in these finite games (Nash 1950).

For each strategy p, we can define player i’s regret of ac-
tion aj as ri(aj , p) = ui(aj , p−i) − ui(p). The regret of
player i is then ri(p) = maxaj∈Ai

ri(aj , p). Moreover, the
regret in the game is

r(p) = max
i∈N

ri(p). (1)

A strategy p∗ is a Nash equilibrium if the players have no
regret when playing their strategies, that is, r(p∗) = 0. A
strategy p∗ is an ε-Nash equilibrium if r(p∗) ≤ ε. Thus, the
computation of an equilibrium can be formulated as finding
a root of the regret function. In general, the regret function is
continuous, nonlinear, and piecewise polynomial in the play-
ers’ probabilities. The regret function r(p) need not be dif-
ferentiable, but each component ri(aj , p) is differentiable.
We reduce the dimension of the search space by noting that
the probabilities sum up to one for each player. The reduced
search space of player i is p′i = (pi(a1), . . . , pi(am−1)) and
pi(am) = 1−∑m−1

k=1 pi(ak) for each i ∈ N . Thus, the vari-
ables of the reduced search space are p′ = (p′1, . . . , p

′
n). The

reduced search space is denoted by P ′ and its dimension is
d′ = dim(P ′) = (m− 1)n.

Tree-search-based method

We propose a tree-search-based method for finding a Nash
equilibrium in multiplayer games. It splits the search space
P ′ into smaller regions, until a solution is found, that is,
when the regrets are small enough for all players. We denote
the regions by Rk, k ∈ K, where K indexes the regions. The
method either starts with the whole search space (R1 = P ′)
or a collection of regions that cover the space (P ′ ⊆ ∪Rk).
The regions are parts that do not overlap (Rj ∩ Rk = ∅ for
all j, k ∈ K, j �= k). The three main components of the
method are the following.

Region selection (node-selection strategy)

An important choice in the method is the order in which the
regions are examined. In general, there can be an arbitrary
function that computes various measures from each region
and ranks them based on these measures. An ideal function
would select a region that has high probability of contain-
ing a Nash equilibrium, and is easy to search through (e.g.,

small). The function should be fast to compute. We pro-
pose a ranking function g(R, p0) that uses the size of the re-
gion d(R), the regret, and its gradient evaluated at one point
p0 ∈ R:

g(R, p0) = max
i∈N

ri(p
0)/(d(R) ·Mi(p

0)), (2)

where
Mi(p

0) = max
aj∈A∗

i
(p0)

‖∇ri(aj , p
0)‖∞ (3)

is the maximum derivative at p0 of player i’s regret over
all the variables in p′, d(R) = maxq∈R ‖q − p0‖, and
A∗i (p) = {aj s.t. ri(aj , p) = maxak∈Ai

ri(ak, p)}. The
norm ‖ · ‖ is the Euclidean norm throughout the paper. Note
that the region with a lower value of g is better. The follow-
ing example demonstrates what Mi(p

0) consists of.

Example 1. Let us examine a two-player game with two
actions. Let the payoffs of player 1 be given in matrix A,
where Aij contains the payoff when player 1 plays i-th ac-
tion and player 2 j-th action. The players’ probabilities
of playing their first actions are given by p′ = (p1, p2).
We have r1(a1, p) = (1 − p1)[(A11 − A21)p2 + (A12 −
A22)(1− p2)]. Now, ∇r1(a1, p) = (∂r1∂p1

(a1, p),
∂r1
∂p2

(a1, p))

and ∂r1
∂p1

(a1, p) = −[(A11−A21)p2+(A12−A22)(1−p2)].

In general, ri(ai, p)’s are polynomials of order n and
∇r1(a1, p)’s are polynomials of order n − 1. Also,
∇r1(a1, p) is of dimension d′ = (m − 1)n and Mi(p

0) is
maximum over d′m = (m− 1)mn components.

Exclusion oracle

The oracle tells if a Nash equilibrium cannot be in the region.
If this is the case, the region can be excluded, and otherwise
the region is subdivided further. For example, the exclusion
oracle may compute the regret values of Eq. (1) in multiple
points in the region and fit a piecewise linear model to these
values. The model can be used to estimate how small regret
values can be obtained in the region and where the minimum
value for the regret is located. The minimum point may be
used in determining how the region is subdivided. For ex-
ample, the point may be added as a new vertex and the new
regions can be formed by using some triangulation scheme.

In this paper, we compute the regret and its gradient only
at a single point in the middle of the region for the oracle.
This point is chosen so that it minimizes the maximum dis-
tance to any other point in the region. We will show later on
how this point is determined given the subdivision scheme
that we use. Beside the regret value, we determine a global
upper bound for the gradient of the regret:

M∗
i = max

p∈P ′
max

aj∈A∗
i
(p)

‖∇ri(aj , p)‖∞.

Note that this constant is determined by maximization over
the continuous probability space P ′ over the maximum
of nonlinear polynomials. We do not know how to deter-
mine this in practice and use M∗

i = 2(maxa∈A ui(a) −
mina∈A ui(a)), i ∈ N , which can be shown to be a global
upper bound. This maintains the correctness of the oracle.

385

If the regret value in the middle point p0 is large enough, a
Nash equilibrium (i.e., the root of the regret function) cannot
be in the region if the region and the global constant are
small enough. The following result shows that any region
containing a point with positive regret can be excluded if the
region is small enough.
Theorem 1. A p0-centered ball with radius s cannot contain
0-Nash if

ri(p
0) > s ·M∗

i , for some i ∈ N. (4)

Since M∗
i is bounded, there is always some sufficiently

small region such that any point p0 ∈ P ′ with r(p0) ≥ ε
can be excluded. The following result shows how dense grid
(small enough diameter d of the region) is needed to exclude
all the points that have large enough regret values.
Theorem 2. If ri(p0) ≥ ε, for some i ∈ N , then the diame-
ter d < ε

2M∗
i

is small enough to exclude p0.

Proof. Pick any point p̂ such that ‖p̂ − p0‖ < ε
2M∗

i
. By

Theorem 1, p̂-centered ball with radius ε
2M∗

i
cannot contain

0-Nash, and p0 belongs to this ball.

Note that the oracle could exclude more if the maximum
derivative were computed over just the region in question.
This way the upper bound for the region would be smaller
than the derivative that is computed over the whole search
space. As is computing the global bound, it is difficult to
compute the bound over the region.

The following example illustrates the idea of exclusion
based on the gradient.
Example 2. We are trying to find a root r(x) = 0 for a
differentiable multivariate function r : R2 �→ R. Assume
that we have evaluated the regret at r((0.2, 0.2)) = 0.3 and
we know that the gradient ‖∇r(x)‖ ≤ 2 for all x. Then by
the mean value theorem, |r(y)− r(x)| ≤ M‖x− y‖, where
M = max ‖∇r(z)‖, where z = λx + (1 − λ)y and λ ∈
[0, 1]. Thus, we have that r(z) > 0 for all ‖z−(0.2, 0.2)‖ <
0.3/2. The root of r(x), i.e., a Nash equilibrium, cannot be
inside the (0.2, 0.2)-centered ball of radius 0.15.

Instead of selecting a region to be examined we could se-
lect a point and determine a ball around the point where a
Nash equilibrium cannot be. Then we could exclude this ball
from the search space. A possible problem with this idea is
that we need to keep track of all the points and the radii, and
select the new point so that we would find a Nash equilib-
rium in the remaining space. Thus, an efficient coding would
be required for storing in memory all the excluded balls, how
they intersect, and how to keep track of the regions that still
need to be examined. Moreover, as the selected point gets
closer to a Nash equilibrium, the regret values and the ex-
cluded balls get smaller—in fact, infinitesimal. This means
that the method would slow down without bound as it ap-
proaches an equilibrium.

Subdivision of the region

There are many ways how the search space can be subdi-
vided. For example, we may use any full-dimensional poly-
topes of dimension d′ = dim(P) in the search space. The

simplest possible polytope in any given space is a simplex,
which has the smallest number of vertices (i.e., d′ + 1 ver-
tices) over all such polytopes. For example, we can form a
simplex in a normal-form game by selecting any d′+1 points
in P ′ such that their convex hull makes a full-dimensional
object. Moreover, the simplices can be subdivided in many
ways: a new point may be added anywhere within the sim-
plex and any triangulation scheme may be used in forming
the new simplices. For example, we may make d′+1 copies
of the simplex and replace a different vertex by the new point
in each of the new simplices. A possible problem with this
procedure is that all the vertices need to be stored in mem-
ory. Also, it may not be easy to compute the point inside the
simplex so that it would minimize the maximum distance
within the simplex, and it may take time to compute the dis-
tance d(R) for the region. Furthermore, it is difficult to tell
what is a good way to triangulate the search space.

Instead of using simplices, we may use polytopes with
more vertices and bigger volume. Since we are excluding
regions that cannot contain a Nash equilibrium, we want to
exclude regions that are as large as possible.

In this paper, we use hyperrectangles (i.e., boxes) which
makes the memory requirement linear in dimension. We
only need to store the minimum and the maximum values
for each dimension and region. It is also easy to compute the
middle point p0 in the hyperrectangle and the maximum dis-
tance d to the corner points with the Pythagorean theorem:

p0x = (ux + lx)/2,

d = 1/2 ·
√∑

x∈p′
(ux − lx)2,

where lx and ux are the lower and upper bounds of the hy-
perrectangle in dimension x. The problem with this choice
is that the original search space is not a hyperrectangle but
a simplex. Thus, we exclude the regions that are completely
outside the search space, i.e., when the lower bounds of the
probabilities for the hyperrectangle sum to more than, or
equal to, one:

∑
x∈p′

i
lx ≥ 1 for any i ∈ N . Moreover, we

automatically subdivide the region if the middle point p0 is
outside the search space.

We use a bisection method and split the hyperrectangle
along the longest edge, that is, we find the dimension with
maxx∈p′ ux − lx. Thus, the method forms a binary search
tree. The algorithm is presented below.

Algorithm 1
Initialize the regions and compute the rankings with g.

Compute the constants M∗
i , i ∈ N .

Repeat until any stopping condition is met
1. Select the region with minimal value of g in Eq. (2).
2. Select p0. If it is outside the search space, goto 3.

Else compute r(p0). If Eq. (4) is satisfied,
exclude the region and return to 1. Else goto 3.

3. Bisect the region and compute g for the new
regions with r(p0) and Mi(p

0) in Eq. (3).

We can stop when r(p) is small enough. If we stop the
algorithm when r(p) ≤ ε, we can bound the number of it-
erations needed. The result is based on enumerating all the

386

regions where r(p) ≥ ε. The result holds for the bisection
method with any region-selection heuristic.

Theorem 3. Any bisection algorithm excludes all the points
with r(p) ≥ ε within 2(m−1)n�log(2M∗

ε)/ log(2)� − 1 itera-
tions, where M∗ = maxi∈N M∗

i .

Proof. Theorem 2 gives the diameter that is required to ex-
clude a point with r(p) ≥ ε, which is ε

2M∗ . In each itera-
tion, we bisect the longest edge which means that it takes
d′ = (m − 1)n iterations to bisect all the edges. The initial
diameter is 1 as the probabilities are between 0 and 1. The
number of bisections needed to reach the required diame-
ter is �log

(
2M∗
ε

)
/ log(2)�. In a binary search tree, the total

number of nodes up to depth x is 1+2+4+. . . = 2x−1.

To our knowledge, the best prior complete algorithms
for the problem are by Lipton and Markakis (2004),
which is polynomial in log 1/ε, and by Babichenko et
al. (2014), which is O(mlogm) and O((log n)n). Specif-
ically, the complexity of Lipton and Markakis (2004) is
poly(log 1/ε, nnm, L), where L is the maximum bit size
of the payoff data. Babichenko et al. (2014) proved two
bounds for their method: mnk, where k > 8(logm+log n−
log ε + log 8)/ε2 and m = poly(n), and (k + 1)nm, when
m is a constant. The former is better with respect to m,
giving O(mlogm), and the latter is better with respect to
n and ε, giving O((log n)n) and O((ε−2 log 1/ε)c), where
c is a constant. Our method is better than Babichenko et
al. (2014) with respect to n and ε, since by Theorem 3
ours is O(cn) and O(1/εc). Ours is better than Lipton and
Markakis (2004) with respect to n, as good (exponential) in
m, and worse in ε. In summary, the best-known bounds are
O(cn) by us, O(mlogm) by Babichenko et al. (2014), and
O(log 1/ε) by Lipton and Markakis (2004).

Search algorithm over uniform strategies

As an improvement to the prior exhaustive complete
method (Babichenko, Barman, and Peretz 2014), to get a
method that we can compare ours to, we implemented an al-
gorithm that goes through all the k-uniform strategies in the
following way. The idea is to start with small k which means
that the pure-strategy equlibria are found fast, and increase
k if a good-enough solution has not been found.

Algorithm 2
Initialize the value k and select constants c > 1 and k∗.
Repeat until r(p) ≤ ε or k = k∗

1. Compute r(p) for all k-uniform strategies.
2. Update k = ck.

We start the algorithm with k = m and choose c and k∗ so
that we do only two repetitions. For example, we go through
all the k-uniform strategies for k = 3 and k = 18 for 3-
player 3-action games. This means

(
m+k−1

k

)n
= 6859000

points in the probability space for k = 18 and ε = 10−3.
Note that it is impossible to compute all the strategies for
k in the range that the theoretical results of Babichenko et
al. require; k would need to be 1.9 · 107 which means 5.7 ·
1042 points. We chose the k∗ values so that it takes roughly

15 minutes to go through all the points, so that we can do
enough repetitions. Our choice of k∗ is not critical, since
the results are similar for all k∗ ≤ 30 which is the range of
values that can be computed in reasonable time.

Experiments

We tested the algorithms on randomly-generated games and
on the games produced by the GAMUT generator (Nudel-
man et al. 2004). For random games, the payoffs were ran-
domly drawn from a uniform distribution between zero and
one. We ran rep = 1000 repetitions and set the stopping
conditions as r(p) ≤ ε = 10−3 and maxtime = 900 (sec-
onds); for the other experiments, we did not use any time
limits. The results are presented in Table 1. The Dim column
shows the dimension of the search space p′, and Time gives
the average run time. OverTime% shows the percentage of
instances that hit the time limit, and OverTime ε gives the
average errors for the repetitions that hit the time limit. The
runs were conducted on Intel Core i7-6500U at 2.50 GHz
with 16 GB of RAM under 64-bit Windows 7. We imple-
mented the algorithms in Matlab R2015b.

The results for GAMUT games are in Table 2; the results
for all classes are available in the extended version. For these
games, we used ε = 10−3, and no time limit. NotSolved% is
the percentage of runs where ε > 10−3 for Algorithm 2. We
can see big differences between the game classes. Polyma-
trix games are solved clearly slower than the other games.
Note that our method solved all the instances to the given
accuracy, while Algorithm 2 did not in some classes.

The results show that the run times grow rapidly as the
search space dimension increases. Our method has higher
average run time, but it finds an ε-Nash (for given small ε)
on all instances. In contrast, Algorithm 2 is faster on aver-
age but has problems on some instances and ε can be high.
Our method seems to work better on hard instances, i.e., ε
is smaller for those instances that take a long time to solve.
In many games, especially GAMUT games, equilibria are
in pure strategies or can be found with small k; thus it is
reasonable that Algorithm 2 works well on those easy in-
stances. The run time of our method can be made equally
fast as Algorithm 2’s on those instances by first searching
pure strategies and strategies in small support (but we did
not want to design an algorithm that would take advantage of
those properties that only hold for certain classes of games).

We also compared against the algorithms available in
the well-known game-solving software package GAMBIT.
We tested the GAMBIT algorithms on the GAMUT games;
see Table 3. The algorithms are the homotopy method of
(Govindan and Wilson 2003) (gnm), its modification using
iterated polymatrix approximation (Govindan and Wilson
2004) (ipa), the polynomial equation solver (enumpoly), the
simplicial subdivision method (van der Laan, Talman, and
van der Heyden 1987) (simpdiv), a function minimization
approach (liap), and the quantal response method (McK-
elvey and Palfrey 1995; Turocy 2005) (logit).1 The numbers

1We used GAMBIT version 15.0 (except 16.0 for simpdiv as it
had a bug in 15.0; only simpdiv changed from 15.0 to 16.0, so we
reran only that algorithm when version 16.0 was recently released).

387

Algorithm 1 Algorithm 2
n m Dim Time Median OverTime% OverTime ε k Time OverTime% OverTime ε
3 2 3 0.04 0.02 0 - 2/180 49 1 0.0013
3 3 6 26 1.2 1 0.003 3/18 191 29 0.003
3 5 12 900 900 100 0.07 5 94 33 0.0059
4 2 4 99 0.48 8 0.0054 2/40 23 15 0.002
4 3 8 352 87 30 0.003 3/8 85 33 0.004
5 2 5 125 2.7 10 0.0057 2/8 1.0 30 0.0049
5 3 10 520 589 46 0.0022 3 7.9 36 0.0082

Table 1: Results for the randomly-generated general-sum games.

Algorithm 1 Algorithm 2
Game class Time 95% bound Time NotSolved% NotSolved Time NotSolved ε
Bertrand oligopoly 13.7 19.3 0.01 0 - -
Bidirectional LEG 159 337 0.013 0 - -
Collaboration 2.8 3.7 0.0009 0 - -
Congestion 29 71 0.027 0 - -
Covariant r=-0.5 95 202 80 16 434 0.003
Polymatrix 172 358 27.2 7 373 0.003
Random LEG 880 1970 0.02 0 - -
Random graphical 35000 35500 0.05 0 - -
Uniform LEG 793 1850 0.02 0 - -

Table 2: Results for three-player three-action GAMUT games.

Game class gnm ipa enumpoly simpdiv liap logit
Bertrand oligopoly 0.05 (30) 0.05 (75) 0.04 (50) 0.05 0.24 (99) 0.06
Bidirectional LEG 0.09 (0.3) 0.05 (58) 0.84 (1) 0.06 (0.1) 0.24 (99) 0.06 (0.1)
Collaboration 0.24 (0.1) 0.04 3.3 (50) 0.05 0.34 (99) 0.06 (0.3)
Congestion 0.05 (0.2) 0.05 (85) 0.05 (0.6) 0.05 (0.1) 0.21 (100) 0.05
Covariant r=-0.5 0.13 (3) 0.05 (94) 36 0.67 (2.8) 0.31 (100) 0.05 (1)
Polymatrix 0.06 (1) 0.04 (79) 0.04 (50) 0.07 (0.3) 0.3 (92) 0.05 (0.4)
Random LEG 0.05 (1) 0.04 (59) 8.1 (2) 0.05 (0.6) 0.24 (99) 0.06
Random graphical 0.08 (3) 0.04 (96) 6.3 (6) 0.17 (3) 0.31 (99) 0.06 (0.3)
Uniform LEG 0.07 (0.4) 0.05 (55) 0.04 (17) 0.05 0.23 (99) 0.06

Table 3: Computation times in seconds for the GAMBIT algorithms and percentage of instances not solved.

are the average computation times for the algorithms and the
parentheses show the percentage of instances that were not
solved (code got stuck, empty output, or accuracy not within
the given ε). One can see that the algorithms are much faster
than the complete methods, but all of them fail to solve some
instances. Moreover, there are game classes (bidirectional
LEG and polymatrix) where some instances are not solved
by any of those algorithms. The best of those methods are
logit, gnm and simpdiv.

Conclusions and future research

We introduced a complete method for finding an ε-Nash
equilibrium, for any given ε, in normal-form multi-player
games. It has the best run-time bound in n, improving prior
results of Babichenko et al. (2014) with respect to n and
ε. Moreover, the method is the first implemented algorithm,
to our knowledge, that manages to find an approximate so-
lution on all instances. The main components of our tree-
search-based method are the node-selection strategy, the
exclusion oracle, and the subdivision scheme. The node-

selection strategy determines the next region to be explored.
The exclusion oracle provides a provably correct sufficient
condition for there not to be an equilibrium in the region.
The subdivision scheme determines how the region is split if
it cannot be excluded. The method has the benefit that it need
not proceed locally, which avoids it getting stuck in a local
minimum that may be far from any actual Nash equilibrium.
The method produces a set—the non-excluded regions—that
contains all 0-Nash equilibria, and this set keeps decreasing.

Experiments confirmed that our method finds an ε-
equilibrium for a given target ε on all instances. This was
not the case with prior methods from GAMBIT which are
incomplete, or even with the prior theoretically-complete
methods. On the other hand, the incomplete methods were
often faster on instances they managed to solve. This sug-
gests a hybrid scheme where one runs a homotopy method
(or some other relatively fast incomplete method) first, and
if it fails to find an equilibrium, then one runs our algorithm.
Or, they can be run in parallel. That essentially achieves the
best of both worlds: the speed of incomplete methods and
the completeness of ours.

388

Acknowledgments
This material is based on work supported by the NSF un-
der grants IIS-1617590, IIS-1320620, and IIS-1546752, the
ARO under award W911NF-16-1-0061.

References
Babichenko, Y.; Barman, S.; and Peretz, R. 2014. Simple
approximate equilibria in large games. EC ’14, 753–770.
New York, NY, USA: ACM.
Babichenko, Y. 2014. Query complexity of approximate
Nash equilibria. STOC ’14, 535–544.
Berg, K., and Sandholm, T. 2016. Exclusion Method for
Finding Nash Equilibrium in Multi-Player Games. AA-
MAS, 1417–1418.
Boryczka, U., and Juszczuk, P. 2013. Differential evolution
as a new method of computing Nash equilibria. In Nguyen,
N., ed., Trans on Computational Collective Int IX. 192–216.
Buttler, J., and Akchurina, N. 2013. Nash equilibria in nor-
mal form games via optimization methods. 2013 European
Control Conference 724–729.
Chatterjee, B. 2009. An optimization formulation to com-
pute Nash equilibrium in finite games. In Int. Conf. on Meth-
ods and Models in Comp. Science.
Chen, X.; Deng, X.; and Teng, S.-H. 2009. Settling the com-
plexity of computing two-player Nash equilibria. Journal of
the ACM 56(3).
Daskalakis, C.; Goldberg, P. W.; and Papadimitriou, C. H.
2009. The complexity of computing a Nash equilibrium.
Communications of the ACM 52(2):89–97.
Daskalakis, C. 2013. On the complexity of approximating a
Nash equilibrium. ACM Transactions on Algorithms 9(3).
Datta, R. S. 2010. Finding all Nash equilibria of a finite
game using polynomial algebra. Econ Theory 42:55–96.
Etessami, K., and Yannakakis, M. 2010. On the complexity
of Nash equilibria and other fixed points. SIAM Journal of
Computing 39(6):2531–2597.
Ganzfried, S., and Sandholm, T. 2010. Computing equilibria
by incorporating qualitative models. AAMAS.
Goldberg, P. W.; Papadimitriou, C. H.; and Savani, R. 2013.
The complexity of the homotopy method, equilibrium selec-
tion, and Lemke-Howson solutions. ACM TEAC 1(2).
Govindan, S., and Wilson, R. 2003. A global Newton
method to compute Nash equilibria. JET 110:65–86.
Govindan, S., and Wilson, R. 2004. Computing Nash equi-
libria by iterated polymatrix approximation. Journal of Eco-
nomic Dynamics & Control 28:1229–1241.
Hémon, S.; de Rougemont, M.; and Santha, M. 2008.
Approximate Nash Equilibria for Multi-player Games.
Springer Berlin Heidelberg. 267–278.
Herings, P. J.-J., and Peeters, R. 2005. A globally conver-
gent algorithm to compute all Nash equilibria for n-person
games. Annals of Operations Research 137:349–368.
Herings, P. J.-J., and Peeters, R. 2010. Homotopy meth-
ods to compute equilibria in game theory. Economic Theory
42(1):119–156.

Herings, P. J.-J., and van den Elzen, A. 2002. Computation
of the Nash equilibrium selected by the tracing procedure in
n-person games. GEB 38:89–117.
Jiang, A. X., and Leyton-Brown, K. 2011. Polynomial-
time computation of exact correlated equilibrium in compact
games. EC.
Jiang, A. X.; Leyton-Brown, K.; and Bhat, N. A. 2011.
Action-graph games. GEB 71:141–173.
Lipton, R. J., and Markakis, E. 2004. Nash Equilibria via
Polynomial Equations. Springer. 413–422.
Lipton, R. J.; Markakis, E.; and Mehta, A. 2003. Playing
large games using simple strategies. EC ’03, 36–41. ACM.
McKelvey, R. D., and McLennan, A. 1996. Computation of
equilibria in finite games. In Amman, H.; Kendrick, D.; and
Rust, J., eds., Handbook of Comp Econ, Vol 1. 87–142.
McKelvey, R. D., and Palfrey, T. R. 1995. Quantal response
equilibria for normal form games. GEB 10:6–38.
McLennan, A. 2005. The expected number of Nash equilib-
ria of a normal form game. Econometrica 73(1):141–174.
Nash, J. 1950. Equilibrium points in n-person games. Pro-
ceedings of the National Academy of Sciences 36:48–49.
Nudelman, E.; Wortman, J.; Shoham, Y.; and Leyton-brown,
K. 2004. Run the GAMUT: A comprehensive approach to
evaluating game-theoretic algorithms. In AAMAS, 880–887.
Papadimitriou, C. H., and Roughgarden, T. 2005. Comput-
ing correlated equilibria in multi-player games. 16th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA).
Porter, R.; Nudelman, E.; and Shoham, Y. 2008. Simple
search methods for finding a Nash equilibrium. Games and
Economic Behavior 63:642–662. Early version in AAAI-04.
Rubinstein, A. 2015. Inapproximability of Nash equilib-
rium. STOC ’15, 409–418.
Rubinstein, A. 2016. Settling the complexity of
computing approximate two-player Nash equilibria. In
arXiv:1606.04550.
Sandholm, T.; Gilpin, A.; and Conitzer, V. 2005. Mixed-
integer programming methods for finding Nash equilibria.
AAAI 495–501.
Turocy, T. L. 2005. A dynamic homotopy interpretation
of the logistic quantal response equilibrium correspondence.
Games and Economic Behavior 51:243–263.
Turocy, T. L. 2008. Towards a black-box solver for finite
games: computing all equilibria with gambit and phcpack.
In Stillman, M.; Verschelde, J.; and Takayama, N., eds., Soft-
ware for algebraic geometry. 133–147.
Turocy, T. L. 2010. Software for solving noncooperative
strategic form games. In Cochran, J. J.; Cox, L. A.; Ke-
skinocak, P.; Kharoufeh, J. P.; and Smith, J. C., eds., Wiley
encycl. of operations research and management science.
van der Laan, G.; Talman, A.; and van der Heyden, L.
1987. Simplicial variable dimension algorithms for solving
the nonlinear complementarity problem on a product of unit
simplices using a general labelling. MOR 12(3):377–397.
von Stengel, B. 2012. Rank-1 games with exponentially
many Nash equilibria. arXiv:1221.2405.

389

